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Sur la commande des feux de circulation d’uneviller éguliere

Résumé:  On présente une méthode hiérarchique pour déterminer les plans de feux d'une ville
de forme réguliere. On présente d'abord un modéle pour la synchronisation des feux basé sur les
réseaux de Pétri et I'algébre minplus. Utilisant cette modélisation on décompose le probléme en
trois niveaux : —le calcul du temps de cycle d'un feu, — le calcul du temps de démarrage des cycles
de chague feu, — le calcul de la proportion de rouge et de vert de chaque cycle. L'exemple d’une
ville, &lagéométrie réguliére, Bahia Blanca, en Argentine, est donné.

Mots-clés: transport, commande des feux de circulation, réseau de Pétri, algebre maxplus



Traffic light control 3

1 Introduction.

We describe a way to compute a traffic light plan in regular towns.

In atraffic light plan three quantities must be computed for each traffic light : —the cycle length
of lights, — the starting time of the light cycle (phase), — the proportion of red and green inacycle.

We call “regular” a town which possesses some symmetry at least approximately. Here we
consider the example of the center of Bahia Blanca a map of which is given in Figure 5. It is
approximately invariant by 2 trandlations, the first is North-South of length 2 blocks, the second is
East-West also of length 2 blocks.

For such a symmetric town we build a Petri net describing the synchronization between &l the
lights of the town based on virtual car circulation at a given speed and a simple description of the
flows of these cars.

By analysising this model we show a decomposition between the flow evaluation and the time
spent in the system.

To optimize the time spent in a system by a car we have to design “green waves’. If we correctly
choose the light cycle length, we show that it is possible to design four systems of compatible green
waves which assure that we can join two pointsin the town, at prescribe speed, meeting at most one
red light. Thisresult isvalid only when there is no saturation that is when the flowsin all the streets
are smaller than the virtual car flows.

The maximal virtual car flows are given by saturation of the slowest resources which are the
junctionsin our case. The saturation is reached when the junctions are always occupied.

In practise we propose to adapt the cycle length proportion to the real flow and to maintain the
coordination between the lights given by the four systems of green waves.

The assumption of geometric regularity of the town is not so restrictive. It can be achieved more
often by adapting the speed on each portion of street in such a way that the times needed to cover
each block stay equal.

2 Max-Plus modelling of Petri nets.

Let us explain the way to compute the throughput of a quite general class of Petri nets which can be
interpreted in term of stochastic control. For more details see [ 1].

Definition 1 A continuous Petri net is defined by
N=®P, O M, pmc),
where :
1. P isafinite set whose elements are called places;;
2. Qisalfinite set whose elements are called transitions;;

3. Me (Rﬂpx CUPXCQ arethe arc multi pliersthatis M ,q (respectively Mqp) denotesthe number
of arcs fromtransition q to place p (respectively from place p to transition q);
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Figure 1: A Petri net.

4. p:Qx P —RT verifying :

Z Pp=1 VpeP,
qepOIJt

isthe routing policy which gives the imposed proportion of fluid going from place p to transi-
tion g with respect to quantity of fluid entering place p ;

5 me (R+)P is the initial marking, that is: m, is the amount of fluid available at place p at
starting time;

6. 7€ (R+)P isthe holding time which is the time that a molecule of fluid hasto stay in place p
before leaving.

The dynamics of the system are determined by the firing of transitions. A transitionfires as soon
as there is enough amount of fluid, as required by the routing policy, availablein all places p € g™
upstream’ the transition ¢ (by “available” we mean that the fluid spent the minimum holding time
in itsplace). The total quantity consumed by q at place p at timet is Zq(t) Mqp (Where the amount
of firing at g is denoted Z). The total amount of fluid produced at timet in p € q*is MpqZq(t).
The firing process works as fast as possible. The total amount of fluid which has entered place p at
timet isdenoted Z(t).

Defining :

A L A1~ 2
Kpg = Mpg, tgp = qu’ Hagp = HagpPap >

1Given anoder (respectively s) (place or transition) is upstream (respectively downstream) anode s if M & # 0. We
denoter ! (respectively r'") the set of nodes's downstream (respectively upstream)r.
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Traffic light control 5

the dynamics of the system are completely defined by :

Zq(t) =minjigpZp(t—1p).
Peq
qepin

Eliminating the variable Z , we obtain a dynamic programming equation defining Z :

Zq(1) = ,Egiqﬂ |:ﬁqp (mp + ) HpaZg (t - Tp)):| : D

q'epn

This equation may be interpreted as a dynamic programming eguation for stochastic control
problem with a discounted cost.

Under certain condition described by the following theorem this stochastic control problem ( 1)
is undiscounted.

Theorem 1 If there exists v € (IR*)Q such that :
Z vgMgp = Z Mpgvg, YPEP, ()
qe pout qe pin
equation (1) has the interpretation of an undiscounted stochastic control with Bellman function:
w, 2 £
q vq .

In particular the condition of the theorem isfulfilled when :

Y Mgp=) Mg, VpeP,
qepout qepin
that is when, for al places, there is an equal number of arcs entering and leaving the place with a
uniform routing policy (that is pqp = 1/|p®| where | A| of afinite set A denotesits cardinality). In
this case we have v = 1 (1isthe vector with all entries equal to 1).
Using this remark, we are able to define the throughput of those Petri nets which are the only
live and stable Petri nets (the other ones either explode or die after afinite time).

Theorem 2 Denoting

Piy = Vq HapitpaVas  V§ = Mpfigp |
the throughput A £ lim;_, », Zq(t)/t of a strongly connected Petri net, satisfying (2), exists, isinde-
pendent of q and is solution of the dynamic programming equation :

wq = min(wP — Aty + PPw)q, Vg € Q.
peqln
Using thistheorem we can compute the throughput of such Petri net by the Howard algorithm (see | 2]
for arecent reference) the complexity of which isexperimentally almost linear in the number of arcs
of the Petri nets.
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6 Cohen, Gaubert, Mancinglli, Quadrat & Rofman

3 Modedling traffic light synchronization by Petri net.

In the sequel we shall propose models of the circulation in an ideal regular town in terms of Petri

nets. The purpose of these Petri nets will be to model the coordination between the authorizations
given to the cars by the lights. What we will call carsin thefollowingwill not be real cars but virtual

ones which travel like real cars in the town. A rea car may decide or not to follow the speed of a
virtual car. These virtual cars are useful to study an ideal coordination. The flows of real cars cannot
be larger than the virtual ones but they can be smaller. Probabilistic links between virtual and real

car will be studied in future work. Here we define only a signal environment for the circulation of
real cars.

3.1 Modedlingajunction.

The Petri net associated with a junction is given in Figure 2. We denote by xo(t) and x;(t) the
total number of green phases that have happened at each of the two lights until date t. The green
phase lengths of the two lights are denoted respectively T and v. We suppose that the amount of
cars that can cross the junction is proportional to the length of the corresponding green phase with
a coefficient that we choose equal to one. We suppose that at each junction a proportion of vehicles
equal to « turn in the only turning direction available at the junction. We denote by u o(t) and uy (t)
the total amount of cars arrived at the junction until timet and by yo(t) and yi(t) the total amount
of cars which have left the junction until time't.

Figure 2: The Petri net of ajunction.

The relation between theinputsu and the output y isastochastic dynamic programming equation
where the Bellman functionisx :

X=a®xXx®b®u, y=cx, ©)

INRIA
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where

_ | e yor _|8%/v € | Q=a)y at
a_[av e}’b_[e aﬂ/z}’c_[ av (l—oz)r:|’

where @ denotes the minplus matrix addition (min elementwise), ® the minplus matrix multiplica-

tion (substitution of plus by min and times by plusin the usua matrix product, ¢ = oo, e = 0), § is

the unit shift intiming (Sv(t) = v(t — 1)) and y isthe unit shift in numbering (Y v(t) = 14 v(t)).
With these notations the first equation of (3) means:

Xo(t) = min{1l 4+ x¢(t — 7), ut — p)/v}, yot) = (1 —a)vxo(t) + aTXy(t) .

It isimportant to pay attention that the matrix product in y = cx isthe standard one.

Clearly these dynamic programming equations (3) are neither linear in minplus algebra nor in
the standard one. The use of the minplus matrix product is only a convenient and compact way to
write vector equations.

3.2 Modelling a block of junctions.

L et us consider aregular town, such as the one depicted in Figure 4, composed of squares separated
by one way streets (with opposite direction of circulation for successive streets).

To determine the dynamics of this system it is useful to determine first the dynamics of a block
composed of four junctions. On the city map it can be observed a regularity characterized by an
invariance by horizontal and vertical trangation of size 2 blocks.

The dynamics of a block is defined by the Petri net given in Figure 3. The corresponding equa-
tionsare:

Xi=a®xi Ober ®cx_10bT TQE®U, Vi=E ®7 ®cy, i =0,1,2,3,

Xoi e
Xoi+1 € € € € e

and the computation on theindex i has been done modulo 4.
Thisisa system with 8 states 4 inputs and 4 outputs system that we can written formally as :

where

X=A®xXx®B®u, y=Cx,

where A isthe 8 x 8 nonlinear operator :

a € e bl
A_ brlc a € €
| e br% a €
€ € brlc a
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Uz

Figure 3: The Petri net of a block of 4 junctions.
The existence of stationary regime is assured as soon as it exists an undiscounted stochastic
control interpretation of this dynamic programming equation. For that it is sufficient that
QA-—awt+ar=v, l—a)t+av=r1,

whichimpliesv = 7.
Infact, @, v and r may depend of the junction and in this case the sufficient condition become :

oq-1Tg-1 + 1- O[q—2)Vq—2 =V, (even,

0q-3vg-3 + (1 — aq-2)tq—2 = 7q, q odd .

3.3 Modelling of aregular town.

A regular towniscomposed of blocksthat we can index withacouple (1, J) where | isthewest-east
(W-E) coordinate of the block and J the south-north (S-N) coordinate.
Then, the dynamics of a complete town can be written :

X1y = AXy @ AoXi41,3 ® A1X 341D AoXi—1,3 @ AzXi -1,

INRIA
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Figure4: A regular town.

where
¢ brlc e €] ¢ ¢ € €]
€ € € € € € brl% ¢
AO = ) Al = )
€ € € € € € € €
€ € € € € € € €
(¢ ¢ € € € € € €]
€ € € € € € € €
A = A =
2 € € € brlc| 77 € € € €
€ € € € br% ¢ € €

4 Decomposition of the traffic light control problem.

Aswe have seen inthefirst section, the previoustype of system can be solved efficiently. But for this
system we have to optimize some parameters. For example we have to decide the initial markings
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10 Cohen, Gaubert, Mancinelli, Quadrat & Rofman

in the places corresponding to the streets (the ones containing p in Figure 3), thelength of the green
and red phases of each light. When there is no saturation, by a good choice of these quantities, we
can achieve — a throughput only limited by the full occupation of the junctions— a system of green
waves which allows atravel between two points of the town while meeting, at most, one red light.

4.1 Throughput.

It is well known that the throughput of an event graph is the minimum, over al the circuits, of the
number of tokensin the circuit divided by the total amount of time that the tokens have to stay in the
places of the circuit.

For more general Petri net, for which we have a stochastic control interpretation, it exits [ 1] an
analogous result. In thisinterpretation the choice of a possible feedback corresponds to the choice
of a place upstream each transition in the Petri net. Each feedback defines a Markov chain as we
have seen in Theorem 2. This Markov chain has final classes with one invariant measure associated
to each fina class. These final classes play the role of the event graph circuits, but now we have to
average the timings and the tokens with respect to these invariant measures.

More precisely, the throughput A of a Petri net having the undiscounted stochastic control inter-
pretation is given by the expression :

ré.me
A =min
peF 1¢.79

bl

where F denotes the set of achievable final classes of the Markov chains obtained by choosing only
one place upstream each transition, r¢ the corresponding invariant measure and

mp if pisat orv place,
mp/v if pisap place arriving inan even transition,
mp/t if pisap place arriving inan odd transition .

= A
mp =

Among al the possible final classes there are the ones with only the two arcs representing the
two light phases of ajunction with a throughput equal to 1/(z + v). If we increase the number of
tokensin the places corresponding to the street, above some threshold, the optimal final classes will
be the ones associated with lights. If we have not put enough tokensin the street places, the effective
light cycle can be slowed down (two lights of the same junction may stay red simultaneously).

4.2 Travel time.

We have to design the system in such away that the throughput be maximal (collective objective).
There are many ways to achieve this objective. It is sufficient for that to have, everywhere and
always, cars waiting at a light. Thisis achieved easily by adding virtual carsin the streets. But we
may want to minimize the travel times of each virtual car (individual objectives).

The maximal flow by cycle at alight, let us say at an E-W street, is proportional to the amount
of green by unit of timekv/(v + t) (but we have choosen the units such that k/(v + t) = 1). Then

INRIA
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because the traveling time at maximal speed in a street is p the Little formulatells us the number of
cars mp, needed in the street too achieve the wanted flow is:

py =mMmp.

With this number of cars there is no waiting time, that is, there are green waves with the maximal
authorized speed.

An interpretation in manufacturing context would be the following: m, = pv is the minimal
number of pallets necessary in an E-W street to achieve the optimal speed given by the slowest
machines which are here the junctions seen as machines serving successively E-W and N-S streets.

Clearly for N-S street we have pt = my,.

4.3 Orthogonal system of green waves.

The green wave problem can be seen as compatibility conditions between systems of equations.
These compatibility conditions will determine the phase difference between the lights and the cycle
time of each light.

Itis easier to consider a continuous version of the problem. For that let us denote by c(t, X, y)
the color of a (x, y) point of atown at timet (each point is supposed to have alight and the light
colours belong to a subset of the real numbers). Let us suppose that there is a propagation of the
green color with speed v(X, y) aong the x axis; then ¢ would satisfy the equation :

otC+voyc=0. 4

Moreover if we suppose that there is another green wave along the y axis with speed w(x, y) thenc
would also satisfy the equation :

dC+wdyc=0. (5

Clearly the system of equations(4) and (5) has not alwaysanon trivial solution. In order to admit
a solution v and w must satisfy compatibility conditions. This kind of question is well studied. A
good reference is[5].

Theorem 3 The equations(4) and (5) are compatibleiff there exists a potential v (X, y) such that :

/v |
(/0] = oo ©

Proof: NECESSARY CONDITION. Let usdifferentiate Eq.4 (divided by v) withrespect to y and Eq.5
(divided by w) with respect to x, we obtain

(1/v)dtyC + OxyC + 9;Cy(1/v) = 0, (1/w)0txC + dxyC + 3 CIx(1/w) = 0.
Moreover differentiating Eq.(4) (divided by v) and Eq.(5) (divided by w) with respect to t, we obtain

oxtC+ (1/v)duC = 0, 8th + (1/w)diC = 0.

RR n° 0123456789



12 Cohen, Gaubert, Mancinelli, Quadrat & Rofman

It follows that
dy(1/v) = ox(/w) ,
which implies (6).

SUFFICIENT CONDITION. If (6) istrue, c(t,x,y) £ ¢(t — ¥ (x,y)) is solution of the two
equationsfor all ¢ differentiable and therefore the two equations are compatible. [J

The interpretation of this result is easy. A given stationary traffic light plan ¢ defines speeds
in the x and y direction by (6) a which one sees the light always green. These speeds are not
necessarily constant in x and y.

From these considerations, if we don't take into account of SN and W-E streets, the phase
difference of thelightsin N-S, E-W streets can be chosen to have a fixed speed green wave aong all
these streets. Clearly we can also redlize the green wave for the (S-N,W-E) streets. The coordination
between the (S-N,E-W) and (N-S,W-E) green waves impose the length of the time cycle of thelights.

4.4 Light cyclelength.

We have taken in the previous section a system of two orthogonal green waves. This can be gener-
alized to two non orthogonal fields of speeds. But when the two fields becomes dependent it does
not exist anymore compatibility conditions of the two partial differential equations. But it is possi-
ble that the solution of two equations coincide at some point of a mesh. Let us analyze this on the
simplest possible situation.

Let us consider atwo directions street. It is easy to see that thereis no nontrivial solutionto:

C+voyc =0, %c—voc=0.

But consider amesh of lightsof coordinates {X;} and let us denote p;" (respectively p;~) the time for
acar to go from x; to x;.1 (respectively from x; to xj_;) and let us denote by T; thei-th light cycle
length. As soon as

3k K e N:KTi = p" +p s KTi=p +p"4 .
there exists a green wave in the both directions. In the particular cases of a regular mesh and a
constant speed we obtain KT = 2p. In practice, the smallest k (k = 1) is acceptable (speed 26 km/h
square of side length 130 m givesfork =1, T = 365s).

For a 2D regular town we arrive at the same conclusion by considering two circuits having a
difference equal to the circuit around a block. Supposing the existence of green waves we can show
that KT = 2p by computing the difference of the time length to cover the two circuits.

Moreover, to have a cycle length long enough in practice, we have to choose k = 1 and the light
cycle length is determined and is equal to 2p.

With this light cycle length the four systems of green waves E-W, W-E, S-N and N-S are com-
patible. In thistown we can go from any point to any other point meeting at most onered light.

5 BahiaBlanca example.

The previous discussion has been inspired by the Bahia Blanca town which is a city of Argentina
with a very regular design. Clearly this town is enough regular to apply the previous results. The

INRIA
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Figure 5: The Bahia Blanca map.

flow of real cars in the street are always changing; therefore we propose to adapt the proportion

of green and red lengths according to the real flow without changing the light cycle length and the

difference of phase between the lightswhich can be seen as a coordination between all the lights.
We summarize our proposition of light plan.

1. Determine a reasonable speed v for the green wave in the town. It must be compatible with a
light cycle length equal to T = 2p, with p = d/v where d isthe average length of a square of
the town.

2. Using this ideal time p to cover a square length compute the initial starting time of each
light cycle. Practically, this means that two successive lights in the same street must have a
difference of phase of p.

RR n° 0123456789



14 Cohen, Gaubert, Mancinelli, Quadrat & Rofman

3. At each junction adapt the proportion of green and red length according to the flow in each
direction. If ¢ and v denote the two average flows arriving at the junctionandr and T — 7
the length of the corresponding green phase we must have

¢/(p+v)=1/T.

With such a policy, when there is no saturation the average speed of circulation is everywhere ap-
proximately v.

Thismodel isvalid only when there is no saturation.

The policy proposed here implies an observation of the flow of cars at al the junctions. This
observation isexpensive. Traffic assignment techniques, describe for example in[6], could be useful
to interpolate the traffic observed at some pointsand to avoid the installation of some sensors.
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