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ABSTRACT

. ' . . ) . u
Given a controled perturbed Markov chain of transition matrix m (e),
where ¢ is the perturbation scale and u the control, we study the solu-— °

. . . € . . .
tion expansion in e, w, of the dynamic programming equation :

min [m%(e) wo + ()] = (1+a(e))w’.
u

. . B e
m(e), c%(e), A(e) are polynomizls in e. The case A(e) = ¢ leads to
L
study Markov chains on 2 time scale of order 1/e . The state space and
the control set are finite. '
PLAN
1) Introduction
2) Notations and statement of the problem
3) Review of Markov chains
4) Perturbed Markov chains

5) Review of controlled Markov chains.

6) Control of perturbed Markov chains.
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1. - INTRODUCTION

Stochastic or deterministic control problems can be reduced after discre-
tization to the control of Markov chains. This approach leads to control
of Markov chains which have a large number of states. Anﬁatfémpt“tb solve
this difficulty is. to see the initial Markov chains as the perturbation

of a simpler one when this is possible. "Simple" Markov chains are Markov

chains which have several recurrent classes. Then the perturbation can be

seen as a small coupling between these recurrent classes. This coupling
cannot be neglected on time scale of order 53 £§3 where ¢ denotes the
amplitude of the perturbations. Nevertheless tﬁis point of view leads to
a hierarchy of more and more aggregated chains, each one being valid for
a particular time scale. Their states are the recurrent classes of the
faster time scale and their transition matrices can be computed expli-
citly. Then, in the control context, we can take advantage of this par-—
ticular structure to designa faster algorithm to solve the dynamic pro-

gramming equation.

Thié kind of problem has a long history. Gauss, for example; has stu&ied
such problems in celestian mechanics; there'the recurrent classes role
are played by the planet orbits. In the operations' research litérature
studies of two time scale Markov chainé has been done in Simon-Ando [1273,
Courtois [4], Gaitsgori-Pervozvanski [8]. The multitime scalé situation
can be found in Delebecque [5], Coderch—Sastry_Willsky~Castanon {23,03].
The two time scale control problem (actualization:rate'pf order ¢) 1is
solved in‘Deiebecque—Quadrat [6],(7]. The ergodie control problem when
the unperturbed chain has no transient classes has been studied in

Philips-Kékotovic [19]. In this paper we give the comstruction of the

complete expansion of the optimal cost of the control problem in the

general multi-time scale situation. For that we use three kinds of

results
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- the Delebecque [5] result describing the reduction process of Kato [9]
in the Markov chain situation.

- the realization theory of implicit systems developed by Bernhard [13.
This gives a recursive mean of computing all the cost expansion in the
uncontrolled case. h

= the Miller—Veinott [10] way of constructing the optimal cost expamsion

of an unperturbed Markov chain having a small actualization rate.

2. - NOTATIONS AND STATEMENT OF THE PROBLEM

We study the evaluation of a cost associated to the trajectory of a
discrete Markov chain in four situations (unperturbed-perturbed), (con-
troled-uncontroled)} for this let us introduce some n-tuple defining com-

pletely the data of each problem,and some related notations.

2.1. - (T,%m,c,)) is associated to the unperturbed uncontroled case and

shall be called the Markov chain n-uple.

- T is the time set isomorphic to N ;

- % is the state spaceiof the Markov chain, is a finite discrete space.
|&:| denotes card(®) that is the number of elements of X. x will be the

generic element of € ;

- m is the transition matrix of the Markov chain,that is a (|, |%) -

matrix with positive entries such that I m =1 3
x'ed o ;
- ¢ is the instantaneous cost that is a [|-vector with positive entries;

-~ X is an actualization rate that is, A ¢ R.and X > O:

The set of possible trajectories. is denoted by =2, a trajectory by
w e 2, the position of the process at time t if the trajectory is w by

X(t,w). The conditional probability of the cylinder :

B={w: Xg(w) = x¢, £t = 0,1,...,n}
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knowing X(O,w) is
PXO(B) ) n]~I-1 -
t=0 te+l
To the trajectory w is associated the cost :
. s 1 , ,
j(w) = tEO m °X(t ) (2.1)

The conditional expected cost knowing X(0,w) is a |%|-vector denoted w

defined by :

wx := E[j(w) | X(0,0) = x],Vx e & - (2.2)

The Hamiltonian is the operator :

h :IRI'EI N ]Rlx] (2.3)
w [m=(1+))iJwtc : o

where i denotes the identityof the set of (lasi , |$[)—matrices .

Then w defined by (2.2) is the unique solution of the Kolmogorov equa-—

tion :

h(w) = 0 o o (2.4)

2.2. - In the perturbed situation the n-tuple defining the perturbed

Markov chain is :
(T, %, &, m(e), cle), Ale))

- E is now the space of the perturbations.; in all the following it

4
R ;

- m(e), c(e), A(e) have the same definition as previously but depends on

bfhe parameter eeE,and we suppose thatithey are pplynomials in this vari-
able. » .



219

Perturbed Markov Chains

We denote by d° the degree of a polynomial and by v its valuation (the
smallest non zero power of the polynominal). In the following a° (m) =1,

v(m)=0, v(1) = v(c) = L.
The Hamiltonian of the perturbed problem is denoted by :
h(w,e) = [m(e) — (1+r(e))ilW + c(e) (2.5)

.. . € . .
The expected conditional cost is denoted w and is solution of the

Kolmogorov equation :
h(w,e) = 0 (2.6)

We shall prove that w® admits an expansion in € that we shall denote by

We) = 3 e w where W, are |%|-vectors; then we have :
n=0 .
m(e) W(e) = £ e (MW) (2.7)
=0 n
with :
- -
° 0
m m
1
M = ° (2.8)

an infinite block matrix.
For the Hamiltonian we can introduce .the same notation :

B(W(e),e) = 2 " H (W) | (2.9)

8™ 8

where Hn(W) are the lae\ —yectoi‘s defined iﬁ (2.9 by‘ id‘entvification of

i : .
the ¢~ termsjthat is
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HO(W) = (mo-i)wo

Hy (W)

m Wy + (mo—iv)w

Hy (W)

-AQ L + m v

(2.10) can written H(W) with :

H(W)

M- (I+M)IW + C,

where :

/Q/_

1

1

+ (rgo—i)wl + c

C = (cn, n ¢lN, c are |33|—vectors)

I : the identity operator

e O O e

A : the operator g R |%] -block

0

e s O He

An expansion of the cost is obtained by solving :

H(W) = 0

(2.10)
2
C(2.11)
0 0 ...
0 0 ..
i .
0
i>‘£
SN
(2.12)

- Moreover the sequence (Wi, i € IN) can be computed recursively. These two

results will be shown in part 4§

2.3. - For the control problem we need the introduction of. the n-tuple:

(T9$:u, mui cu’ A)

~ Uis the set of control which is here a finite set ; |U|' denotes the

cardinal of U ; its generic element is denoted by u ;

- m denotes the (|U|,|¥]|,|X]) tensor of entries m:)'{, the probability to .
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o in x', starting from X, the ‘control being u.
8 g g

- ¢ denotes the (|U|,|®|) matrix of entries ¢, ,the cost to be in x, the

control being u.
" A policy‘i‘s an application :
s £ ~U.

The set of policies is P .= le

For a policy s, mos denotes the (|¥|,E|) transition matrix of entries :

s

(mos) . =.m X, ; o S (2.13)

cos denotes the |¥|-vector :
(cos) =c " o | | (2.14)

‘We associate to a policy s ¢ @and a trajectory w, the cost

s +o 1
Pl = I = (e0%)y(e,u)

| t=0 (1+1)

(2.15)

and the optimal conditional expected cost knowing the initial-condition

is -

'w:; = Min EG%w) | X(0,0) = x) _ . (2.16)
se . .

The Hamiltonian is defined as the operator :

h: Ux Ro»> RE (2.17)

(u,w) h(w) = [m*-(1+x)idw+c”.

s
The notation (}nos)x for hxx will be ‘used.’
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' Then the optimal Hamiltonian is the operator :

v r%E r®
w

h;(w) =min h‘;(w) Vxe® (2.18)
u .

: . *, . . .
The optimal expected cost w is the unique solution of the dynamic pro-

gramming equation :
W) =0 : : (2.19)

An optimal policy is given by :

L XESU

x s;eargmin hi(w*)JVerE.

2.4. - The perturbed control problem is defined by the n-tuple:

(T,%2,U, &, u’E), c*E), rAe).

Its interpretation is clear from the previous paragraphs.

" By analogy the notations H“(w,e), h™(w,e), w*e, HF(W) are clear,
but we need a definition of H*(W). For that let us introduce the lexico-

graphic order, p , for sequences of real numbers, that is :

(¥gsY1s+++) 7 (30sY]5¥)s-++) is true <=> - (2.20)
(if y, = yt'l,Vn < m then y 2 y1;1) Vm e IN. .

We denote by min the minimum for this order. Then we define H™ by :

HTX(W) = min H‘fX(W) | (2.21)

(indeed HuX(W) is a sequence of real numbers).

We shall prove that w C admits an expansion in € depbted by W*(e) which

satisfies :
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H*(W*) -0 (2.22)

The purpose of this paper is to prove this last result and to show that
W* can be computed recursively. By thlS way we can des:.gn faster algo—
rithm than the ones obtained by a direct solution of h* (™€ ,€) = 0.

'

"3, — REVIEW OF MARKOV CHAINS

Let us recall some facts on Markov chains., We consider the Markov chain

defined by (T,%, m, c, A).

The matrix m defines a connexity in the state space X,that is : x ¢ & and
x'" ¢ 36 are connected if there exists a non zero probability path between x
and x'. Moreover if x' and x are also connected we say that.x and x' afe
stronigly—connected. The equivalence classes of the strongly—-connexity
relation defines a partition on.The comnexity relation defines a par-
tial order on these classes. The final classes for this order are the
recurrent classes of ’the Markov chain. Their set is denoted by

&,

‘-

= {;El,?cz,...,; }.The other states are called transient and their
_r - »
set is denoted by X, - Thus we have defined:a partition & ofd,

x = }Zt u&é‘ . Let us consider the natural numerotatlon of the states of x

after the grouping defined by the partltlonx With this numeratlon the

transition matrix has the f0110w1ng block structure .:
X x
t

Jx |
X m m t. r
xt tt/ // ty /// m . has at least a non .ze o

erm by row
/m / t y

1 o @)
f/}“;/ . (3.1

- ' /7

% z
&L x|
m admits the eigenvalue 1 because I m__, = l. This eigenvalue is semi-

x'ek
simple (the eigen-space assoc1ated to the eigenvalue | admits a base of
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eigenvectors). This can be provedeasily. by remarking that ]m|; m‘ = 1
H

. n . : .
which proves that |m | =1, where |m! denotes the norm of matrices
oo,co ) oo’oo .

seen as operators on ]Rla?l with the sup norm. Now if the eigenvalue 1 was

not semi-simple, in an appropriate basis m would have a Jordan block :
11_0 : ‘ _ .
1.1 { and we should have lmn|w ——> o which is a contradiction. From

0\1 9§ N0

this property we see that we have the decomposition :

RE-Ma) eR(a) - (.2)
where 3
a‘.'—:m—i . | ,'(3.3.)

J/(a) denotes the kernel of .?,(é)’ the range of the operator a.

To define the projector. ao onH(a) paraliel toR(a) we need to know a

base. of H(a) ‘and Ma') where ' denotes the transposition.

The set {p_, x e.i‘r} of the extremal invariant probability measures of m
X, ) p ,
defines a base ofella'). p_ has: for support x and the restriction to x

- ES
of p_: denoted by p_ satisfies :
X, X

p_m_=rp_ : : : , (3.4)
X X X

This result is clear from (3;1).

The set {q _; X ef*_?r} where q _ denotes the probability starting from x

X XX .
. to end in x defines a base of cH(a). Indeed q_.satisfies :’
X
0 ifxg¢gxu X,
q _=¢1 if x e x (3.5)
XX - -, - S
q 1f xex '

= t
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with a_ solution of the Dirichlet problem :
m,q_=-m_]I (3.6)

From (3.5) and (3.6) it is clear that q_ sc}f(a), (q_, x e.fr) are linearly
x x
independent and from (3,1) that they form a base quf(a) .

If we see p as (]@l , |®|) matrix and q as a (.|9€l,lf.%|)—matrix the projector

oncMa)//Ra) is :

0
a = q p' . (3.7)

We have :
'aao = aoa =0 ‘ (3.8)

; + : . . .
There exists a pseudo inverse a of -a which is the inverse of -a, re-

stricted tog (a), defined precisely by the relations:

+ + 0.
aa=aa=a -1

+ 0 :
aaq=aa+=0 ‘

(3.9)

T is a random time, that is a random variable on T, independent of the

Markov chain Xf’ of exponentiel probability law of parameter X that is :

X v
P(ret) = — > (3.10)
(e B
We have : .
E(D) = - (3.11)

On the new probability 'spaée Q=0 ®T we have :

* 1 denotes the ‘)—;|-vectof : 1 =1, Vx € x.
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. +oo
A
Aw. =E[L I —S—— ¢, | X(0,w) = xJ
* e=0 (et X(E0)
(3.12)
=E&[c - _ | X(0,w)=x] '
X(t(w) ,w)
The operator :
x x
rA(a) : R R (3.13)
c w .
is called the resolvent of a.
From (3.12) we see that XrA defines a transition matrix :
RENORIEY {(X[t(@),0] = x' | X(0,0) = x}, Vx,x'e3X (3.14)

which correspondsto the initial Markov seen at random time TpsTos »+esTy

with Tial T4 independent of s and having the same probability law as

T .

From the Jordan form of a and the previous discussion on the semi-simple

nature of the eigenvalue | of m, we can show the ergodic theorem :

lin r (a) = a0, . (3.15)
A0

4, - PERTURBED MARKOV CHAIN
’ We study the perturbed Markov chain (T,X,&, m(e), c(e), A(e)), in the
case ) = elu, v(c) = fjthat is,we study the transfer function
szu(€2u+i - m(e:'))“1 in e. With the interpretation (3.14) this means that
we look at the Markov chain on the time scale EE-; for time scale inter-
pretation in time domain see also Coderch—Sast%y—willsky—Castanon L21,C3].
We have seen in (2.11) that when the optimal conditional expected cost Wt

admits an expansion, W(g), in ¢ this expansion satisfies :
H(W) = (M=I-MDW + C =0 : (4.1)

(4.1) is an infinite set of linear equations. Conversely if a solution of
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(4.1) exists with for example (wi, i € IN) bounded then W(g) converges,

for ¢ < 1, and is a solution of
h(w,e) = 0
Let us show now that (4.1) can be computed recursively.

For that we build the implicit realization of W :

{ = .
E¥ne1 = F ¥, =6 Chipn

= vy, =0
L Byl !
with :
ao = mQ - 1
r "
o)
m
E = \s\\\g (2+1) blocks
5 .
v - m a
L 1 O.J

(2+1) blocks

3o
0 0
L A
o
G = g (2+1) blocks
i
H= [i 0 — 0]
| S —_
(9+1)Yblocks

Indeed if W is a solution of (4.1) :

(4.2)

(4.3)

(4.4)

- (4.5)

(4.6)

4.7

(4.8)
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y, = (W, W

n h? Wnepoe ooV )

n+l”

is a solution of (4.3).

Conversely if W is a solution of (4.3),by elimination of the variables'y

we see that W satisfies (4.1).

To pfove the existence of a solution of (4.3), following Bernhard [1] we

. | % +1
have to show that there exists # CIB.%1 quﬁic?x satisfies .

FZ < EZ, 4.9
G cEZ (4.10)
We can take Z =‘IRIKIX('Q"H). Indeed (4.9) is equivalent to finding a
F +
z e R %+ D such that:

Ez = Fy 5 Vy ¢ IRlxlx('Q'H). (4.1

But by the change of variables z'k = zk - yk+l, (4.11) becomes :

Ez' = Gc with ¢ = -y y2+al yg'e]Rx ‘ (4.12)

which is a relation of (4.10) kind.

Delebecque [5] has proved that (4.10) has a solution. Let us show this
result in two cases & = | and & = 2;then the general proof can be induced

easily.

L =1

We have to solve :

a,. W, =0 : )
S 00 , (4.13)
( (m - Wy + ay Wy = = Cp.

(4.13) implies :
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Qw o= . C(418)

whére_ag denotes the projector dnchao) //j%(ao).

Then left multiplying (4:13). by ag gives :

0, 0., _ .0, '
ao(u—ml)ao o = 3 CI . o | (4.15)
Using the factorization of ag = qp where q and.p are defined as in (3.4)

. and (3.5) for m = m, we have :-

o
; -1 ’ S
Wy =q(up m q " pC Vu é Spect.(p m; @) . (4.16)
Thus :
'w=a+t(m—)w +C1+W, VG :wW, =adW S (4.17)
1.~ % S TW R T M 1 1% % :

+ -
where a denotes the pseudo inverse of -a, defined in (3.9).

Then we have proved that_wo is defined uniquely -and W, up to an element

ochYab).

From the stochastic interpretation :

Wo = lim p e(l + y e- m(e:))—1 C(E)., : : u_-‘ (4.18)
e-0 ME Do

it follows that p m q is 'a generator of a Markov chain and thus that
(w-p m q)_1 exists Vu > 0. ‘ .
Example

Consider the Markov chain :
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where the dotted linescorresponds to probabilities.of order €, the other

lines to.order—1 ones.

)

|

7ol

K

The dimension of<ﬂ?ao) is 2.

02

~owoN
N

1 0
{1 0
1910 1
LO 1
-1
Py p1 0 O
P = -1 =2
0 o - p2 p2
with
P mOl = Pl
Py Mo2 = P2

The aggregated chain of gener?tor Po ™ 9, is :
Pl My13

2
o =2 P7 ™1,41
We have to solve :
[ 3 WO =0
my wo + a, w1 =0
HWy hmp WAy Wy = -G

has the following block structure :

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)
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Left multiplying (4.23) by ag we have :

0
a, W = ¥y
0 0.
a5 m; aO WO =0 W1
0 ‘ 0. __
ao my Wl uvao WO =
which gives using the formula
0
ao WO = WO
o . 0. _
ao m; ?O 0" (0]
0 0 .- 0 +
ag By 8y Wy *ag my &
Using the notations :
aO=Pm1q
- a*
mp =P mp ;M9
0 =P W
Wp=pW
= 0
C1 = ao C2

(4.25) becomes:

a, WO =0 ’

(m-Wy + a5 Wy = =G

(4.26) is a problem of kind %

= 5 a which exists because

= Jd

= 1 case), we obtain :

Mo = ad Gimb D

-] - - -
q9qC, Vu¢ Spect.(p m )

ag m wo + ag W1 C(4.24)
0
3,
of w1 :
(4.25)
0 0, __0 . I
m a, WO - U oay WO = —a, C2
(4.26)
(4.27)

1. Thus using the factorization of

a, is a generator of a Markov chain (see

(4.28)
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Then from (4.27) and (4.24) we can compute W, and W2. W is defined up to

an element of qdf(gb), W, up to an element ofcf/,(ao).

2

The stochastic interpretation of Wy ¢

Wy = 1im 'uez (1+szu'a:- m(e:))_l C(;%

e~>0 u €

(4.29)

shows that p IEI qis a generator of a Markov chain. Thus we have the

existence of (4.21),Vu > O. R

This procedure can be reiterated and gives the general case(Delebecque
[5]}) In this reference we find the relation of this method and the reduc~-

tion process of Kato [9]. | |

The reiteratien of the reduction process finishes when the aggregate chain
obtained has ‘the same number of recurrent classes as the one of the ini-

tial chain (m(e)). [ |

Bernhard [1] has proved that the solution of the implicit system is unique

if cf/’(E) n#Z = @. The discussion of the two cases % = 1 and % = 2 shows
|f£|x"(£+1)

that ME) n IRI™I £ 0

in the case g =1 :
NE) nIijLJf([(i) g]), ' (4.30)
) (0]

In the case % = 2, on an appropriate basis :
i 0]
s ' 7(4.31)

HNE) o Il
where io denotes the identity on ﬁ(ao).
But we see that the non unicity part of the implicit system is imobserva-

ble in the output; indeedcl(H) >c(E). This property is true in the gene-

ral situation because we can prove that Wo is always defined uniquely.
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We have proved the :

Theorem 1 : The solution W° of :

h(W,e): = (m(e) -‘i - Ale)IW + cle) =0, (4.32)

admits an expansion W(e) which is the unique solution of 1

CHW): = (M—I—A)W +C=0 , ' (4.33)

Moreover W can becomputed recursively by solving the implicifISystem

realization of (4.36). :

Fy_ - GC =0,

Ey s Y_1 = : .
Y+l n n+2+1 1 ’ (4.34)

.wn+l ,= Hyn+1,

where E,F,G,H are defined in (4.5) to (4.8).

This implicit system has'an,outpﬁt uniquely defined and it admits a

strictly causal realization.

The first term of the expansion has the interpretation of the conditional

expected cost of an aggregated Markov chain obtained by reiteration of an ’

aggregation procedure which consists in aggregating the recurrent classes

" of the order | transition matrix, in one state, and computing the transi-

- tion matrix of the new aggregate chain..

5,‘— REVIEW OF CONTROLLED MARKOV CHAINS

Given the controlled Markov chain n-tuple: (T,%,U, mu,,cu, A2). The
optimal conditional-expected3w* cost isthe unique solution in w of the

_dynamic programming equation :

:h;(W)

m

min [(mu-l-}\)w + cu]X =0,Vx €& ' . (5.1
u ‘

This result can.be proved using the Howard algorithm :



234 ' J.P. Quadrat

Step 1 : Given a policy s ¢ U", let us compute w, solving, in- w, the

linear equation :
hos(w) =0 (5.2)

Step 2 : Given a conditional expected cost w, let us improve the policy

by computing :
. u :
min hx(w) (5.3)
u

We change s(x) only if h;(w) < 0. Then we return to step 1.

By this way we generate a sequence :

((s™,w™) 3 n eIN)

o . . n
which converges after a finite number of steps. The sequence (w , n ¢IN)

is decreasing.

Indeed :
hos (W) = 0 ‘ v (5.4)
hoan(WnH) -0 ) ’ v(5.5)

Then (4.4)—(4.5) gives :

o o @ =™ hos PP = hos THH™ =0 (5.6)

(mos
But by (4.3) we have :
‘ 1
host (V) ~hos (W) 20 (5.7)
Then (5.6) and (5.7) proves that :
Vo T Vpel 2 0 - (.8)

Indeed, (5.6) can be seen as a Kolmogorov equation in- (wn-wn+l), with

a positive instantaneous cost.
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' The existence and the uniqueness of a solution in w of (4.1) follows easi-

ly from this result.

6. — CONTROL OF PERTURBED MARKOV CHAINS

Given the perturbed conttrolled. Markov chainn-tuple (T,3%,U,E, " (e),
cu(a), A(e)). The optimal cost is the unique solution in w of the dyna-

mic programming equation :

1

minf (m(e) -1-A(e))w + c"(e)1, = 0, Vx ¢ & 6.1)

u B

*
hx(w,e)
We' have the :

Theorem 2 : The solution of (6.1) denoted.by w'€ admits an expansion in ¢

‘denoted by W'(e) which is the unique solution in W of the vectorigl dyna-

mic programming equation :

H*X(W) = mial °-T-0)W + ¢'] = 0,Vx ¢ X ' (6.2)
u ‘ * h

— ‘ ‘.. . .
Let us remember that min means the minimum for the lexicographic order on

the sequence of real numbers.
The solution W can be computed by the vectoriel Howard algorithm :

Step 1 : Given a policy s ¢ Uaa let us compute W using the results of

part 4 1 -

. AUERCIL o
* " Hos (w) =0 - , (6.3)
Step 2 : Given a conditional expected cost W, let us improve the policy

by computing :

Min H“X(W) . (6.4)
u

We change s(x) only if HUX(W)%O. Then we return to step 1.
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By this way we generate a sequence }

("W 5 n el

which converges after a finite number of steps. The sequenée W, n e IN)

is decreasing for the lexicographic order)‘,

This decreasing property can be proved easily using the corresponding

proof - in the unperturbed case parts, and the following equivalence :
u u' u ‘ u' ,
hX(W(e),e) > hX W(e),e) <=> H.XGD ; H.X(W). (6.5)
From this property the theorem can be proved easily.

A priori it is not clear if we may restrict the minimization to finite

part of the infinite sequence.
The following result shows that this is possible and gives an estimate on
the length of the sequence part on which we have to apply the 1ex1cogra—

phic order minimization.

Theorem 3 : The vectoriel minimization (in 6.4) may be applied on the

n=(d%cy (v(d) + 2)[¥]) first terms of the sequence only without chan-

ging the convergence to the solution of th: 2.

Proof : Let us show that :
u u' . 0 : u u' . 0
Hn(w) = Hn (W, vi =d (c)+l,...,n => Hn(w) = Hn (W),Vn>d (c) (6.6)

By theorem !, W admits a strictly causal realization that is there exists

E,‘f, ¢ such that :-

z = E zZ  + % C_ ..
. “n+l n T onHa+d ‘ S (6.7)
W =c

n+l = € Zpe1
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For that we have equal to zero the control corresponding' to the non-
unicity of the implicit system (4.34) because this non-unicity is not
observable. By (4.34) we knowthat the order of the matrix E is smaller

than (v(A)+1) |$| . The entry C

441 1S equal to zero for m 2 do(c)—'V(C)-

We add |%| new states to z, demoted by z with :
o+l = Vg (6.8)
With the new state \é = (z,;) the second part of (6.6) can be written :
u_u'_ v u u' . Voo : '
([ao a, 106,0] + [m)-m;" JL0,1i]) z =0 . (6.9)

€6.9) has the form :

Jz =0 | - , (6.10)

with J an observation matrix of the dynamical system of state %n. It
follows by the Cayley-Hamilton theorem that if (6.10) is true
Yn:nzn> do(c)‘then (6.10). is true Vn > do(c). The theorem 3 is

deduced eaéily from this result.

Remark :

The order of E in 4.34 is (V(A)+1) |36[ but the order of E is mﬁ.ch smaller.
It is certainly of order |¥

. Moreover it is certainly not necessary to
memorize completély v, in. (6.8) to be able to. compute it from Z e thus

the value of n is much smaller than the value given in the theorem 3.

Stochastic interpretation of the first term of the expansion can be
found in Delebecque — Quadrat [61, [71].
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