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Abstract

In general semimodules, we say that the image of a linear
operatorB and the kernel of a linear operatGrare direct
factors if every equivalence class mod@ocrosses the
image ofB at a unique point. For linear maps represented
by matrices over certain idempotent semifields such as the
(max, +)-semiring, we give necessary and sufficient con-
ditions for an image and a kernel to be direct factors. We
characterize the semimodules that admit a direct factor (or
equivalently, the semimodules that are the image of a lin-
ear projector): their matrices have a g-inverse. We give
simple effective tests for all these properties, in terms of
matrix residuation.

1 Introduction

Classical linear control theory is built on a firm algebraic
ground: vector spaces, and modules. There is some evi-
dence that the construction of a ‘geometric approach’ of
(max +)-linear discrete event systems, in the spirit of
Wonham [14], requires the analogue of module theory,
for semimodules over idempotent semirings, such as the
‘(max +) semiring’ Rmax = (R U {—o0}, max +). By
comparison with modules, the theory of semimodules over
idempotent semirings is an essentially fresh subject, in
which even the most basic questions are yet unsolved.

Clearly, theimage of a linear mapF : X — Y
should be defined as usual: Ffn={F(x) | x € X'}. But
what is thekernelof F? Some authors [7, 12] define
kerF = {x e X | F(X) = ¢}, wheree¢ is the zero ele-
ment of ). This notion is essentially non pertinent for
Rmax-linear maps, since ket is in general trivial, even for
‘strongly’ non injective maps.

Consider now the following alternative definition

kerF ={(x,X) e X* |[F)=F(x)} . (1)

Clearly, kerF is a semimodule congruence, and we can de-
fine the quotient semimodulg/ ker F. Now, trivially, the
canonical isomorphism theorenolds: imF >~ X'/ kerF.
Thus, in general semimodules, (1) seems to be the ap-
propriate definition. For control applications, it is indeed
appropriate, sincé typically represents an observation
map, by which we wish to quotient some state space.
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In this paper, we consider the linear projection problem.
Consider three semimodul&s X', ) and two linear maps
B, C:

usx Sy, @)

We say that inB and keIC aredirect factorsif for all x

X, there is a uniqué € im B such thaCx = C&. When

it is the case: 1. the mafi§ : X — X, X — z, which

is linear, satisfiesI15)? = 11§, I§B = B, CI§ = C
(1§ is theprojector ontoim B, parallel tokerC); 2. we
have the isomorphism®’/ kerC ~ im B; in particular, if

U andX are free finitely generated semimodules, then the
linear mapB, which can be identified with a matrix, yields

a parametrization of the ‘abstract’ objety kerC.

In[5], afirstanswer to the projection problem was given,
inanonlinear setting. i, X', Y are complete lattices, and
if B, C are (possiblyonlinea)) residuated mapees; 2.2
below), it was shown that irB and keiC are direct fac-
tors iff, settingll = B (C . B)* C, (whereF*? denotes
the residuated map of a m&j), we haveC - I1 = C and
I1. B = B. Even inthe simplest case&f,a«-linear oper-
ators over free finitely generat@®j,.x-semimodules (that
is, whenB andC are matrices with entries Ry, the op-
eratorfll = B (C - B)* - Cis acomplicated object (a min-
max function in the sense of Olsder and Gunawardena —
see e.g.[10]), and theteBt- [T = C, [1- B = B, is com-
putationally difficult (an example of non trivial direct fac-
torswas givenin[5], fot/ = Y = Rma?, X = Rmax>,
the proof that imB and keIC are direct factors involved a
tedious computation of equivalence classes, together with
a geometrical argument).

In this paper, we give a much simpler test for matrices:
im B and kerC are direct factors iff there exist two matri-
cesL, K such thaB = LCB andC = CBK (we denote
with the same symbdB the matrixB and the linear map
X — BX). Then,II§ = LC = BK. The existence of
the matriceX, L can be checked very simply (in polyno-
mial time) using residuation ehatrices(and not of linear
maps).

As a by-product, we solve the following problem, which
was left open in [5]:given a matrix B, does there exist
a projector ontoim B?; or, equivalentlydoes there exist
a matrix C such thatm B andkerC are direct factors?
The answer is positive ifB admits a g-inverse, that is,
iff B = BXB, for some matrixX. The existence of a



g-inverse can also be checked (simply) in polynomial time
using matrix residuation.

The proofs are critically based onlimear extension
theorem, which states that a linear fofnon a finitely
generated subsemimodule @a0" can be represented
by a row vectorG: F(x) = Gx. This result was
proved by Kim [8, Lemma 1.3.2] for matrices with en-
tries in the Boolean semiring. Cao, Kim and Roush [4,
Th. 4.7.4] proved a variant of this result for the semiring
([0, 1], max x). As in the case of [8, 4], the proof con-

sists in proving that the maximal linear subextension is an
extension. This seems to require very strong properties on

the dioid (lattice distributivity, invertibility of product).
Note that certain results pertaining to kernels rely upon

a linear extension theorem whereas this theorem is not

required to prove dual results on images

In §2, we introduce the algebraic notions used in the
paper. In§3, we prove the linear extension theorem, and
derive factorization theorems for linear maps. §#h we
characterize direct factors. Bb, we relate the existence
of projectors to the existence of g-inverses.

2 Algebraic Preliminaries

We briefly and informally recall the few algebraic results
needed here. More details can be found in [1] for dioids

and ordered sets, and in [7]for semirings and semimodules.
A seminal reference in residuation theory is [3]. See also

[6].

A semiringis a setS equipped with two lawsp, ®,
such thati(S, &) is a commutative monoid (the zero is de-
notede); (S, ®) is a (possibly noncommutative) monoid
(the unit is denoted); ® is right and left distributive over
@; and the zero is absorbing. A semiring in which non
zero elements have an inverse isamifield A semiring
S isidempotentf Va € S, a @ a = a. Idempotent semir-
ings are also calledioids In this paper, we will mostly
consider dioids such & Which is also a semifield.

2.1 Order properties of dioids

A dioid (or more generally, an idempotent additive
monoid) is equipped with theatural order relation:

a<b < adb=h. 3

Then,a @ b coincides with the upper bouradv b for the
natural order<. Note thate is the bottom element db:
VX e D, ¢ <X.

Moreover, ifD is a semifield(D, <) isalattice. Indeed,
for all non zeroa,b,anb=(@vbH1l=@?le
b~1)~1: if a or b is zero,a A b = ¢. This shows that
(D, <) is alattice. We say that the idempotent semifild
is distributive if the latticeD, <) is distributive [1].

For the sake of symmetry, we will complete an idem-
potent semifield with a maximal element (for “top”),

which satisflea @ T =T,Vae DU({T},anda® T =
Ta=T,vae (DU{T}H\{e}. We denoté® = DU{T}
this dioid, and we will call it theop completiorof D.

In D, the product also distributes with respectto

a(cnd) = acaad,

¥a,b,ceD, (cand)a canda

“4)

(this property does not hold in general dioids).

2.2 Residuation
Definition 1. We say that a dioi® is residuatedf

1. forallaandbin D, {x € D | ax < b} admits a maxi-
mal element denoteal\b;

2. {xe D | xa<bh} admits a maximal element de-
notedb/a;

3. (D, <) is a lattice.

Then, the maximal elementpf € D | axc < b} exists
and can be denotetd b/c which can be read indifferently
as(a\b)/cora\(b/c).

The top completiorsS of an idempotent semifield is
residuated, witta\x = a~x if a is invertible,s\x = T,
andT\x = ¢if x # T, T\T = T (similar formulae for/).

Consider the following linear equations Xt

AX =B, (5a)
XC=D, (5b)
AXC=F, (5¢)

whereX, A, ... are (possibly rectangular) matrices with
entries in a residuated diofd.
We extend the\- and-/- notation to matrices:

A\B dzef\/{x | AX < B}, (6a)
D/CE\/{X | XC< D}, (6b)
AVF/CE\/{X | AXC<F} . (6¢)

Explicitly, we have the following formulee, which relate
the residuation of matrices to the residuation of scalars:

(A\B)ij = /\ Adi\Byj , (7a)
k

(D/C)ij = /\ Di/Cy (7b)
|

(A\F/C)ij = /\ A\Fu/Cji . (70)
ki

To decide whether the matrix equations (5) have a so-
lution, it suffices to check that the maximal subsolution
satisfies the equality.



Proposition 2. Take five matrices M,C,D,F as
above, with entries in a residuated dioid. Then:

IX, AX=B <= A(A\B)=B, (8a)
3X, XC=D «= (D/C)C =D, (8b)
IX, AXC=F <= A(A\F/C)C=F. (8c)

2.3 Semimodules

In this sectionS denotes an arbitrary semiring. ght
S-semimoduleor aright semimodule ove§, is a com-
mutative monoid(&, @), together with an external law
ExS — £, (u,s) — u.s, which satisfies, forall, v € &£,
s,t € S, u.(st) = (Us).t, (UB v).Ss = USD v.S,
u.(set)=usput,es=¢Ue =¢,Uue=LuU.

Left S-semimodules are defined dually. For simplicity,
we will simply speak obemimodulevhen the underlying
semiringS and the side (right vs. left) are clear from the
context.

In a semimodule over a dioid, addition is idempotent.
Indeedada=aedae=a.(ede) =ae=a.

A map F from a (rightS-) semimodule€ to a (right
S-) semimoduleF is linear if it is additive (Vu,v €
g, Fu®v) = Fu) @ F(v) and right-homogeneous
(Vue &,se S, F(u.s) = F(u).s). The set of linear maps
& — Fis denoted Hongg, F).

A generating familyof a semimodulef is a family
{ui}ie) Of elements of€ such that each elemente &
writes as a finite linear combinatian= p, _, u;.s, with
s € S (finite’ means thatli € | | 5§ # ¢} is finite, even
if 1 is infinite). A generating family{u; }ic, is a ba-
sisif @, ui.s = P uiti,with{i el |s #e}and
{i el |t ¢} finite, impliess = t, foralli € 1. A
semimodule idinitely generatedf.g., for short) if it has a
finite generating family. A semimodule feeeif it has a
basis.

The termfreefor £ arises from the following universal
property: given an arbitrary famil{g; }i<; of elements of
a semimoduleF, there is a unique linear mdp: £ — F
such that~(u;j) = gj, Vi € I.

All semimodules with a basis of elements are isomor-
phic toS", equipped with the lawsYu, v € S",s € S,
U v)y = U & v, (US)j = up.s. A linear map
F:SP - S"writes F(X) = Ax, whereAisan x p
matrix with entries inS.

We will use the following notation, for matrices:

transpose: (AT)jj = Aji ,
kernel: kerA={(x,y) € (S"? | Ax= Ay} ,
image: imA={Ax | xeS"}.

Thatis, matrixAis identified with the linear mayp — AX.
We will use this convention systematically in the sequel.

3 Linear Extension Theorem and
Factorization of Linear Maps

Let us begin with an elementary and apparently innocent
property.

Proposition 3. LetS denote an arbitrary semiring. Con-
sider a freeS-semimoduleF, two S-semimoduleg;, H,

and two linear maps F F - H, G : G — H. The
following assertions are equivalent:

1. imF CcimG;

2. there exists a linear map HF — G such that F=
GoH.

Proof. Clearly, (2) implies (1). Conversely, taking a basis
of F, {ui}iel, foralli e I, there existd; € imG such
thatF (uj) = G(h;). SinceF is free, settingH (uj) = h;,
foralli € I, we define a linear mapl : 7 — G, which
satisfiesF = Go H. O

The dual of Prop. 3 requires some conditions on the
semiring, as shown by the following counterexample.

Example 4. Let F, G, H denote three free semimodules,
and considertwo maps : H - F, G : H — G. The
inclusion keiG c ker F need not imply the existence of a
linear mapH : G — F such thatFr = H - G. Consider
the semiringNmax = (N U {—o0}, max +) equipped with
the laws® = max,® = +, F = G = H = Nmax
GX) = x4+ 2, F(x) = x+ 1. We have ke6G C kerF
(in fact, kerG = kerF = {(X, X) | X € Nnax}) but there
exists no linear mapl such that- = H - G. Indeed, any
linear mapH : Nyax — NpaxWritesH (X) = x +awhere

a = H(@O € Npax. We obtainF(0) =1=2+a: a
contradiction.

We will derive the dual of Prop. 3 from the following
semimodule version of the Hahn-Banach theorem.

Theorem 5 (Linear Extension). Let S be a distributive
idempotent semifield. L&k, G denote two free f.g.5-
semimodules, and 16 c G be a f.g. subsemimodule.
For all F € Hom(H, F), there exists Ge Hom(G, F)
such thatyx € H, G(X) = F(x).

Proof. It suffices to prove the result wheh = S" and
F = S. SinceH c G isf.g., we haveH = imH, for
someH € S"*P. Clearly, we can assume thdt has no
zero row. In this case, forall X i <n,

Liy={j|1<j<p Hj#e}#02.

Let H.; denote the -th column ofH, and letF (H) denote
the row-vector whosg-th entry isF(H.;). We have to
prove the existence of a row-vect@re S™*" such that

F(H)=GH. (9)



Using (8b), this is equivalent to
F(H)=(F(H)/H)H . (10)

Using (7b), we get:

((Fery/HH) =EB</\ F(H)lHkll) Hy

k leL (k)

Using the distributivity of product with respect ta
(see (4)), we obtain:

((F(H)/H)H)j =@ A FHyH'Hg. (A1)

k leLk)

Let ® denote the set of maps: {1,...,n} — UcL(k),
such thatp(k) € L(Kk), for all k. Since the lattic&S, <)
is distributive, we have:

((F(H)/H)H)j = \ D F(H)uu0Hgho Hii

ped k

= /\ D F (Hup0) it Hig

ped Kk

= /\F (@ H.y0 Higig Hki)
k

ped

(the last equality is by linearity of on imH). To show
that(F(H)/H)H > F(H) (the other inequality is trivial),
it remains to check that for aff andj,

@ H.g0 Hepo Hikj = Hj - (12)
k

If Hij = ¢, then the inequality (12) is plain. Hi; # ¢,
we choosé = i, and obtairHi,,H; ¢, Hij = Hij, which
shows that (12) holds and the proof is complete. [

Corollary 6. Let S be an idempotent distributive semi-
field. LetF, G, H denote three free f.gS-semimodules,
and considertwo maps FH — F,G: H — G. The
following assertions are equivalent:

1. kerG c kerF;

2. there exists a linear map HG — F such that F=
H.G.

Proof. Clearly, 2 implies 1. Conversely, assume that
kerG < kerF. Then, there exists a magK ¢
Hom(im G, F) such thaK (G(x)) = F(x), forallx € H.
Indeed, for anyy = G(x) € imG, defineK(y) = F(x).
Since keilG C kerF, the valueK(y) is independent
of the choice ofx such thaty = F(x). Clearly, the
map K is linear. By Theorem 5K admits a linear ex-
tensionH € Hom(g, 7). For allx € H, we have
HoG(X) = K(G(x)) = F(x), henceH .G = F. O

4 Direct Factors in Semimodules
and Linear Projectors

Definition 7. Let X be a subset in a semimodulé and
& be an equivalence relation.iti. We say thak in X has
aprojection on X parallel to€ if there exists in X such
thaté € x. We say thaiX crossesc¢ if there exists such
a projection for allx in X'. We say thaiX is transverse to
& if the projection of any is unique whenever it exists.
Finally, we say thaX and & aredirectfactors if existence
and uniqueness of the projection is ensured fox &l X.

In the previous definition, considet = imB for B €
HomU, X) and & = kerC for C € Hom(X,)),
wherel{, X and) are semimodules over a semirisg

If im B and keIC are direct factors[1§ denotes the cor-
responding projector. It is straightforward to check that
l‘[g € Hom(X, X). Also, from the very definition, it
comes that

B=TM5B; C=CI§. (13)

However, the existence of alinear projedibthat is, such
thatI1? = I1) satisfying (13) is not a sufficient condition
for im B and kerC to be direct factors. Indeed, fany B
andC, the identity overt’ satisfies (13).

Theorem 8 (Existence).LetS denote an arbitrary semir-
ing. Let Be Hom(/, X') and C € Hom (X, ))) whereld,
X, Y are free f.g. S-semimodules. The following state-
ments are equivalent:

1. there exists Ke Hom (X', /) such that

C=CBK; (14)

2. i mC =imCB;
3. im B crossekerC.

Moreover, ifS is a residuated dioid, a practical test for
checking that the above conditions hold true is by trying
the equality

C =CB((CB)\C). (15)

Proof.

1 = 2 The assumption implies that &y ¢ im CB but
the converse inclusion s trivial. Hence equality holds true.

2 = 3 From the assumption, it follows that for alle X,
there existal € U such thalCx = CBu. The projection
of x we are looking for i = Bu.

3 =1 By assumption, for akk € X, there existsI € U
such thatCx = CBu. That is to say, in€C c imCB.
From Prop. 3, it follows that there exidts € Hom (X, i)
such thalC = CBK.



The practical test follows from statement 1, together
with (8a). O

Theorem 9 (Uniqueness).The mappings B and C are as
in the previous theorem. But natvis an idempotent dis-
tributive semifield. The following statements are equiva-
lent:

1. im B is transverse t&erC;
2. kerB = kerCB;
3. there exists le Hom (), X) such that
B=LCB. (16)

A practical test for checking that they hold true is by trying
the equality

B = (B/(CB))CB. a7
Proof.

1 = 2 By assumption, if there exist andu’ such that
CBu = CBuU, sincex = Bu has a unique projection on
im B parallel to kelC, it should be thaBu = Bu'. This
means that ke€ B C ker B. But the converse inclusion is
trivial, hence equality holds true.

2 = 3 If kerB = kerCB, from Cor. 6, there existk <
Hom (), X) such thaB = LCB.

3 = 1 For somex, suppose there exist two projections
Bu and Bu on imB parallel to kelC. ThenCBu =
CBU, henceLCBu = LCBU, thusBu = Bu and the
projection is unique.

The practical test follows from statement 1, together
with (8b). O

Corollary 10. If im B andkerC are direct factors, then
M§ =LC =BK = (B/(CB))C =B((CB)\C). (18)

Proof. If BandC are direct factors, then (14) and (16) both
hold true. Considefl = BK. From (16),IT = LCBK,
and then from (14)[T = LC. Thus,IT = BK = LC =
I1°. In addition, this shows that, for amy ITx belongs to
im B and, moreover, (14) shows th@f1x = Cx, which
means that the projection on iBis parallel to keC. Thus
this projectorl is indeedl‘[g. The last two expressions in
(18) result from the choice of maximhlandK previously
mentioned. O

Remark 11. Gathering the results in (15) on the one hand,
of (13) and (18) on the other hand, one has that

C =CB((CB)\C) =C(B/(CB))C. (19a)

Similarly, with (17) on the one hand, (13) and (18) again
on the other hand, one obtains

B = (B/(CB))CB = B((CB)\C)B. (19b)

However, while the pair of leftmost equations have been
proved to be a test that iB and keIC are direct factors,
there is no evidence at this moment that the other pairs of
equations can play the same role.

Remark 12 (Duality). If S is an idempotent distributive
semifield, by transposition, it is straightforward to check
that imB crosses ke€ if, and only if, inCT is transverse
tokerBT. Likewise, imBistransverse to ket if, and only
if,im CT crosses keB'. Finally,im B and keIC are direct
factorsif, and onlyif, inCT and kerBT are so. Inthis case,

T

(1‘[‘53)T = T1&; (in general(M/N)T = NT\MT).
5 Direct Factors and g-Inverses

In this section, we answer the question of when a semi-
module imB admits a direct factor k2. Unlike in the
case of usual linear spaces, this question cannot receive a
positive answer for any linear operat®r An explicit test

is given to characterize homomorphisms such that their
images admit a direct factor.

Definition 13. Letl/, X denote two semimodules over an
arbitrary semiringS. Let B € Hom(U, X).

1. An elementr € Hom (X', U/) such thatBFB = B is
called ag-inverseof B;

2. whenB admits a g-inverse, it is calladgular,

3. a g-inverseF which satisfiesFBF = F is called a
reflexive g-inverse

4. whenS is a dioid, an elemenE € Hom (X, i) such
thatBFB < B is called ag-subinversef B.

Theorem 14. Leti/, X denote free f.g. semimodules over
a residuated dioid. Then:

1. Any Be Hom(U, X’) admits a maximal g-subinverse.
Itis denoted B. In matrix terms: B = B\B/B.

2. When B is regular, Bis the greatest g-inverse and,B
defined by BB BY, is the greatest reflexive g-inverse of B.

Proof.
1. Thisis an immediate consequence of (8c).

2. If BYis a g-inverse, the®' is the maximal reflexive
g-inverse: indeedB' is a reflexive g-inverse since

BB'B = (BBYB)BYB = BBYB = B,
B'BB' = BY(BBYB)BYBBY — BY(BBIB)BY
— BYBBY = B'.

1In this case, the monoitHom /4, X), @) is naturally ordered by
F<Giff F&G=G.



It is maximal since, ifF is another reflexive g-inverse,
then F < B9 becauseB9 is the maximal g-inverse. It
follows that

F=FBF <BYBB=RB".

Finally, if B is regular, therBB'B = B andB'BB" =
B". O

Theorem 15. Let S be a distributive semifield{, X be
free f.g.S-semimodules, and B Hom U/, X). This B is
regular iff im B admits a direct factokerC, where Ce
Hom (X, Y) and) is a free f.g.S-semimodule. One can
take for C any reflexive g-inverse of B.

Proof. Let B” be any reflexive g-inverse @&. Then the
statements of Theorems 8 and 9 are satisfied Wita U/,
C = B”*,L = B, K = B”, and kerB” is the direct factor
we are looking for.

Conversely, ifimB admits a direct factor keZ, by (16),
B = LCB, and then by (18)B = BK B, which shows
thatB is regular. O

Remark 16. WhenB is put in the form

D ¢
P(2 2)e.

where P and Q are permutation matrices arigl has no
zero rows and columns, it is easy to check that— and a
fortiori D' < D9 — have noT entries and that a particular
reflexive g-inverse oB is

D" ¢
r _ -1 -1
B'=Q ( e 8> P~

Remark 17. The maximal reflexive g-inverse does not al-

ways coincides with the maximal g-inverse. For example,

takeS = Rmax, and consider

o= (339 o0= (13 4= (33Y).

Example 18. The following matrix with entries ifRmax,

ono
B:(OOn),
no0O

is regular wheneven > 0 and not regular otherwise:

—-2n =2n —-n
Bg— —n —2n 2n |fn>0and nnn) ifn<O.
2n —n 72n
)\ A
)
regular case nonregular case

Observe that the image of any homomorphism being in-
variant by translation along the first diagonal, it is enough
to represent inB by its projection on any plane orthogonal
to that diagonal (see figure).
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