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Abstract

In general semimodules, we say that the image of a lin
operatorB and the kernel of a linear operatorC are direct
factors if every equivalence class moduloC crosses the
image ofB at a unique point. For linear maps represent
by matrices over certain idempotent semifields such as
(max,+)-semiring, we give necessary and sufficient co
ditions for an image and a kernel to be direct factors. W
characterize the semimodules that admit a direct factor
equivalently, the semimodules that are the image of a
ear projector): their matrices have a g-inverse. We g
simple effective tests for all these properties, in terms
matrix residuation.

1 Introduction

Classical linear control theory is built on a firm algebra
ground: vector spaces, and modules. There is some
dence that the construction of a ‘geometric approach’
(max,+)-linear discrete event systems, in the spirit
Wonham [14], requires the analogue of module theo
for semimodules over idempotent semirings, such as
‘(max,+) semiring’Rmax = (R ∪ {−∞},max,+). By
comparison with modules, the theory of semimodules o
idempotent semirings is an essentially fresh subject,
which even the most basic questions are yet unsolved.

Clearly, the image of a linear mapF : X → Y
should be defined as usual: imF = {F(x) | x ∈ X }. But
what is thekernel of F? Some authors [7, 12] define
kerF = {x ∈ X | F(x) = ε }, whereε is the zero ele-
ment ofY. This notion is essentially non pertinent fo
Rmax-linear maps, since kerF is in general trivial, even for
‘strongly’ non injective maps.

Consider now the following alternative definition

kerF = {(x, x′) ∈ X 2
∣∣ F(x) = F(x′)

}
. (1)

Clearly, kerF is a semimodule congruence, and we can d
fine the quotient semimoduleX / kerF . Now, trivially, the
canonical isomorphism theoremholds: imF ' X / kerF .
Thus, in general semimodules, (1) seems to be the
propriate definition. For control applications, it is indee
appropriate, sinceF typically represents an observatio
map, by which we wish to quotient some state space.
In this paper, we consider the linear projection problem
Consider three semimodulesU,X ,Y and two linear maps
B,C:

U B−→ X C−→ Y . (2)

We say that imB and kerC aredirect factorsif for all x ∈
X , there is a uniqueξ ∈ im B such thatCx = Cξ . When
it is the case: 1. the map5C

B : X → X , x 7→ z, which
is linear, satisfies(5C

B)
2 = 5C

B, 5C
B B = B, C5C

B = C
(5C

B is theprojector ontoim B, parallel tokerC); 2. we
have the isomorphismX / kerC ' im B; in particular, if
U andX are free finitely generated semimodules, then th
linear mapB, which can be identified with a matrix, yields
a parametrization of the ‘abstract’ objectX / kerC.

In [5], a first answer to the projection problem was given
in a nonlinear setting. IfU,X ,Y are complete lattices, and
if B,C are (possiblynonlinear) residuated maps(see§ 2.2
below), it was shown that imB and kerC are direct fac-
tors iff, setting5 = B ◦ (C ◦ B)] ◦C, (whereF] denotes
the residuated map of a mapF), we haveC ◦5 = C and
5 ◦ B = B. Even in the simplest case ofRmax-linear oper-
ators over free finitely generatedRmax-semimodules (that
is, whenB andC are matrices with entries inRmax), the op-
erator5 = B ◦ (C ◦ B)] ◦C is a complicated object (a min-
max function in the sense of Olsder and Gunawardena
see e.g. [10]), and the testC ◦5 = C,5 ◦ B = B, is com-
putationally difficult (an example of non trivial direct fac-
tors was given in [5], forU = Y = (Rmax)

2,X = (Rmax)
3,

the proof that imB and kerC are direct factors involved a
tedious computation of equivalence classes, together w
a geometrical argument).

In this paper, we give a much simpler test for matrice
im B and kerC are direct factors iff there exist two matri-
cesL , K such thatB = LC B andC = C BK (we denote
with the same symbolB the matrixB and the linear map
x 7→ Bx). Then,5C

B = LC = BK. The existence of
the matricesK , L can be checked very simply (in polyno-
mial time) using residuation ofmatrices(and not of linear
maps).

As a by-product, we solve the following problem, which
was left open in [5]:given a matrix B, does there exis
a projector ontoim B?; or, equivalentlydoes there exist
a matrix C such thatim B andkerC are direct factors?
The answer is positive iffB admits a g-inverse, that is,
iff B = B X B, for some matrixX. The existence of a
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g-inverse can also be checked (simply) in polynomial tim
using matrix residuation.

The proofs are critically based on alinear extension
theorem, which states that a linear formF on a finitely
generated subsemimodule of(Rmax)

n can be represented
by a row vectorG: F(x) = Gx. This result was
proved by Kim [8, Lemma 1.3.2] for matrices with en-
tries in the Boolean semiring. Cao, Kim and Roush [4
Th. 4.7.4] proved a variant of this result for the semiring
([0, 1],max,×). As in the case of [8, 4], the proof con-
sists in proving that the maximal linear subextension is a
extension. This seems to require very strong properties o
the dioid (lattice distributivity, invertibility of product).

Note that certain results pertaining to kernels rely upo
a linear extension theorem whereas this theorem is n
required to prove dual results on images

In §2, we introduce the algebraic notions used in th
paper. In§3, we prove the linear extension theorem, and
derive factorization theorems for linear maps. In§4, we
characterize direct factors. In§5, we relate the existence
of projectors to the existence of g-inverses.

2 Algebraic Preliminaries

We briefly and informally recall the few algebraic results
needed here. More details can be found in [1] for dioid
and ordered sets, and in [7] for semirings and semimodule
A seminal reference in residuation theory is [3]. See als
[6].

A semiring is a setS equipped with two laws⊕, ⊗,
such that:(S,⊕) is a commutative monoid (the zero is de-
notedε); (S,⊗) is a (possibly noncommutative) monoid
(the unit is denotede); ⊗ is right and left distributive over
⊕; and the zero is absorbing. A semiring in which non
zero elements have an inverse is asemifield. A semiring
S is idempotentif ∀a ∈ S,a⊕ a = a. Idempotent semir-
ings are also calleddioids. In this paper, we will mostly
consider dioids such asRmax, which is also a semifield.

2.1 Order properties of dioids

A dioid (or more generally, an idempotent additive
monoid) is equipped with thenaturalorder relation:

a ≤ b ⇐⇒ a⊕ b = b . (3)

Then,a⊕ b coincides with the upper bounda ∨ b for the
natural order≤. Note thatε is the bottom element ofD:
∀x ∈ D, ε ≤ x.

Moreover, ifD is a semifield,(D,≤) is a lattice. Indeed,
for all non zeroa, b, a ∧ b = (a−1 ∨ b−1)−1 = (a−1 ⊕
b−1)−1; if a or b is zero,a ∧ b = ε. This shows that
(D,≤) is a lattice. We say that the idempotent semifieldD
is distributive if the lattice(D,≤) is distributive [1].

For the sake of symmetry, we will complete an idem
potent semifieldD with a maximal element> (for “top”),
which satisfiesa⊕> = >, ∀a ∈ D ∪ {>}, anda⊗> =
>⊗a = >,∀a ∈ (D∪{>})\{ε}. We denoteD = D∪{>}
this dioid, and we will call it thetop completionof D.

In D, the product also distributes with respect to∧:

∀a, b, c ∈ D, a(c∧ d) = ac∧ ad ,
(c∧ d)a = ca∧ da

(4)

(this property does not hold in general dioids).

2.2 Residuation

Definition 1. We say that a dioidD is residuatedif

1. for all a andb in D, {x ∈ D | ax ≤ b} admits a maxi-
mal element denoteda\b;

2. {x ∈ D | xa≤ b} admits a maximal element de-
notedb/a;

3. (D,≤) is a lattice.

Then, the maximal element of{x ∈ D | axc≤ b}exists
and can be denoteda\b/c which can be read indifferently
as(a\b)/c or a\(b/c).

The top completionS of an idempotent semifieldS is
residuated, witha\x = a−1x if a is invertible,ε\x = >,
and>\x = ε if x 6= >,>\> = > (similar formulæ for/).

Consider the following linear equations inX:

AX = B , (5a)

XC = D , (5b)

AXC= F , (5c)

whereX, A, . . . are (possibly rectangular) matrices with
entries in a residuated dioidD.

We extend the·\· and·/· notation to matrices:

A\B def=
∨
{X | AX ≤ B } , (6a)

D/C
def=
∨
{X | XC ≤ D } , (6b)

A\F/C def=
∨
{X | AXC≤ F } . (6c)

Explicitly, we have the following formulæ, which relate
the residuation of matrices to the residuation of scalars:

(A\B)i j =
∧

k

Aki\Bkj , (7a)

(D/C)i j =
∧

l

Dil /Cjl , (7b)

(A\F/C)i j =
∧
kl

Aki\Fkl/Cjl . (7c)

To decide whether the matrix equations (5) have a so
lution, it suffices to check that the maximal subsolution
satisfies the equality.
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Proposition 2. Take five matrices A, B,C, D, F as
above, with entries in a residuated dioid. Then:

∃X, AX = B ⇐⇒ A(A\B) = B , (8a)

∃X, XC = D ⇐⇒ (D/C)C = D , (8b)

∃X, AXC= F ⇐⇒ A(A\F/C)C = F . (8c)

2.3 Semimodules

In this section,S denotes an arbitrary semiring. Aright
S-semimodule, or a right semimodule overS, is a com-
mutative monoid(E,⊕), together with an external law
E×S → E , (u, s) 7→ u.s, which satisfies, for allu, v ∈ E ,
s, t ∈ S, u.(st) = (u.s).t , (u ⊕ v).s = u.s ⊕ v.s,
u.(s⊕ t) = u.s⊕ u.t , ε.s= ε, u.ε = ε, u.e= u.

Left S-semimodules are defined dually. For simplicity
we will simply speak ofsemimodulewhen the underlying
semiringS and the side (right vs. left) are clear from th
context.

In a semimodule over a dioid, addition is idempoten
Indeed,a⊕ a = a.e⊕ a.e= a.(e⊕ e) = a.e= a.

A map F from a (rightS-) semimoduleE to a (right
S-) semimoduleF is linear if it is additive (∀u, v ∈
E, F(u ⊕ v) = F(u) ⊕ F(v)) and right-homogeneous
(∀u ∈ E, s ∈ S, F(u.s) = F(u).s). The set of linear maps
E → F is denoted Hom(E,F).

A generating familyof a semimoduleE is a family
{ui }i∈I of elements ofE such that each elementv ∈ E
writes as a finite linear combinationv =⊕i∈I ui .si , with
si ∈ S (‘finite’ means that{i ∈ I | si 6= ε } is finite, even
if I is infinite). A generating family{ui }i∈I is a ba-
sis if

⊕
i∈I ui .si =

⊕
i∈I ui .ti , with {i ∈ I | si 6= ε } and

{i ∈ I | ti 6= ε } finite, impliessi = ti , for all i ∈ I . A
semimodule isfinitely generated(f.g., for short) if it has a
finite generating family. A semimodule isfree if it has a
basis.

The termfree for E arises from the following universal
property: given an arbitrary family{gi }i∈I of elements of
a semimoduleF , there is a unique linear mapF : E → F
such thatF(ui ) = gi , ∀i ∈ I .

All semimodules with a basis ofn elements are isomor-
phic toSn, equipped with the laws:∀u, v ∈ Sn, s ∈ S,
(u ⊕ v)i = ui ⊕ vi , (u.s)i = ui .s. A linear map
F : S p → Sn writes F(x) = Ax, whereA is a n × p
matrix with entries inS.

We will use the following notation, for matrices:

transpose: (AT )i j = Aji ,

kernel: kerA= {(x, y) ∈ (Sn)2 | Ax = Ay
}
,

image: imA= {Ax | x ∈ Sn } .
That is, matrixA is identified with the linear mapx 7→ Ax.
We will use this convention systematically in the sequel
3 Linear Extension Theorem and
Factorization of Linear Maps

Let us begin with an elementary and apparently innoce
property.
Proposition 3. LetS denote an arbitrary semiring. Con-
sider a freeS-semimoduleF , twoS-semimodulesG, H,
and two linear maps F: F → H, G : G → H. The
following assertions are equivalent:

1. im F ⊂ im G;

2. there exists a linear map H: F → G such that F=
G ◦ H.

Proof. Clearly, (2) implies (1). Conversely, taking a basi
of F , {ui }i∈I , for all i ∈ I , there existshi ∈ im G such
that F(ui ) = G(hi ). SinceF is free, settingH(ui ) = hi ,
for all i ∈ I , we define a linear mapH : F → G, which
satisfiesF = G ◦ H .

The dual of Prop. 3 requires some conditions on th
semiring, as shown by the following counterexample.

Example 4. LetF,G,H denote three free semimodules
and consider two mapsF : H → F , G : H → G. The
inclusion kerG ⊂ kerF need not imply the existence of a
linear mapH : G → F such thatF = H ◦G. Consider
the semiringNmax= (N ∪ {−∞},max,+) equipped with
the laws⊕ = max, ⊗ = +, F = G = H = Nmax,
G(x) = x + 2, F(x) = x + 1. We have kerG ⊂ kerF
(in fact, kerG = kerF = {(x, x) | x ∈ Nmax}) but there
exists no linear mapH such thatF = H ◦G. Indeed, any
linear mapH : Nmax→ Nmax writesH(x) = x+a where
a = H(0) ∈ Nmax. We obtainF(0) = 1 = 2 + a: a
contradiction.

We will derive the dual of Prop. 3 from the following
semimodule version of the Hahn-Banach theorem.

Theorem 5 (Linear Extension). Let S be a distributive
idempotent semifield. LetF,G denote two free f.g.S-
semimodules, and letH ⊂ G be a f.g. subsemimodule.
For all F ∈ Hom(H,F), there exists G∈ Hom(G,F)
such that∀x ∈ H, G(x) = F(x).

Proof. It suffices to prove the result whenG = Sn and
F = S. SinceH ⊂ G is f.g., we haveH = im H , for
someH ∈ Sn×p. Clearly, we can assume thatH has no
zero row. In this case, for all 1≤ i ≤ n,

L(i ) = { j
∣∣ 1≤ j ≤ p, Hi j 6= ε

} 6= ∅ .
Let H· j denote thej -th column ofH , and letF(H) denote
the row-vector whosej -th entry isF(H· j ). We have to
prove the existence of a row-vectorG ∈ S1×n such that

F(H) = G H . (9)
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F(H) = (F(H)/H
)
H . (10)

Using (7b), we get:

((
F(H)/H

)
H
)

j
=
⊕

k

( ∧
l∈L(k)

F(H)l H
−1
kl

)
Hkj .

Using the distributivity of product with respect to∧
(see (4)), we obtain:((

F(H)/H
)
H
)

j
=
⊕

k

∧
l∈L(k)

F(H)l H
−1
kl Hk j . (11)

Let8 denote the set of mapsϕ : {1, . . . ,n} → ∪kL(k),
such thatϕ(k) ∈ L(k), for all k. Since the lattice(S,≤)
is distributive, we have:((

F(H)/H
)
H
)

j
=
∧
ϕ∈8

⊕
k

F(H)ϕ(k)H
−1
kϕ(k)Hkj

=
∧
ϕ∈8

⊕
k

F(H·ϕ(k))H−1
kϕ(k)Hkj

=
∧
ϕ∈8

F

(⊕
k

H·ϕ(k)H−1
kϕ(k)Hkj

)

(the last equality is by linearity ofF on imH ). To show
that(F(H)/H)H ≥ F(H) (the other inequality is trivial),
it remains to check that for allϕ and j ,⊕

k

H·ϕ(k)H−1
kϕ(k)Hkj ≥ H· j . (12)

If Hi j = ε, then the inequality (12) is plain. IfHi j 6= ε,
we choosek = i , and obtainHiϕ(i )H

−1
iϕ(i )Hi j = Hi j , which

shows that (12) holds and the proof is complete.

Corollary 6. Let S be an idempotent distributive semi
field. LetF,G,H denote three free f.g.S-semimodules,
and consider two maps F: H → F , G : H → G. The
following assertions are equivalent:

1. kerG ⊂ kerF;

2. there exists a linear map H: G → F such that F=
H ◦G.

Proof. Clearly, 2 implies 1. Conversely, assume tha
kerG ⊂ kerF . Then, there exists a mapK ∈
Hom(im G,F) such thatK (G(x)) = F(x), for all x ∈ H.
Indeed, for anyy = G(x) ∈ im G, defineK (y) = F(x).
Since kerG ⊂ kerF , the valueK (y) is independent
of the choice ofx such thaty = F(x). Clearly, the
map K is linear. By Theorem 5,K admits a linear ex-
tension H ∈ Hom(G,F). For all x ∈ H, we have
H ◦G(x) = K (G(x)) = F(x), henceH ◦G = F .
4 Direct Factors in Semimodules
and Linear Projectors

Definition 7. Let X be a subset in a semimoduleX and
E be an equivalence relation inX . We say thatx inX has
aprojection on X parallel toE if there existsξ in X such
thatξ E x. We say thatX crossesE if there exists such
a projection for allx in X . We say thatX is transverse to
E if the projection of anyx is unique whenever it exists.
Finally, we say thatX and E aredirect factors if existence
and uniqueness of the projection is ensured for allx in X .

In the previous definition, considerX = im B for B ∈
Hom(U,X ) and E = kerC for C ∈ Hom(X ,Y),
whereU , X andY are semimodules over a semiringS.
If im B and kerC are direct factors,5C

B denotes the cor-
responding projector. It is straightforward to check tha
5C

B ∈ Hom(X ,X ). Also, from the very definition, it
comes that

B = 5C
B B ; C = C5C

B . (13)

However, the existence of a linear projector5 (that is, such
that52 = 5) satisfying (13) is not a sufficient condition
for im B and kerC to be direct factors. Indeed, forany B
andC, the identity overX satisfies (13).

Theorem 8 (Existence).LetS denote an arbitrary semir-
ing. Let B∈ Hom(U,X ) and C∈ Hom(X ,Y) whereU ,
X , Y are free f.g. S-semimodules. The following state
ments are equivalent:

1. there exists K∈ Hom(X ,U) such that

C = C BK ; (14)

2. im C = im C B;

3. im B crosseskerC.

Moreover, ifS is a residuated dioid, a practical test for
checking that the above conditions hold true is by tryin
the equality

C = C B
(
(C B)\C) . (15)

Proof.

1⇒ 2 The assumption implies that imC ⊂ im C B but
the converse inclusion is trivial. Hence equality holds tru

2⇒ 3 From the assumption, it follows that for allx ∈ X ,
there existsu ∈ U such thatCx = C Bu. The projection
of x we are looking for isξ = Bu.

3⇒ 1 By assumption, for allx ∈ X , there existsu ∈ U
such thatCx = C Bu. That is to say, imC ⊂ im C B.
From Prop. 3, it follows that there existsK ∈ Hom(X ,U)
such thatC = C BK.
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The practical test follows from statement 1, togethe
with (8a).

Theorem 9 (Uniqueness).The mappings B and C are as
in the previous theorem. But nowS is an idempotent dis-
tributive semifield. The following statements are equiva
lent:

1. im B is transverse tokerC;

2. kerB = kerC B;

3. there exists L∈ Hom(Y,X ) such that

B = LC B . (16)

A practical test for checking that they hold true is by trying
the equality

B = (B/(C B)
)
C B . (17)

Proof.

1 ⇒ 2 By assumption, if there existu andu′ such that
C Bu= C Bu′, sincex = Bu has a unique projection on
im B parallel to kerC, it should be thatBu = Bu′. This
means that kerC B⊂ kerB. But the converse inclusion is
trivial, hence equality holds true.

2⇒ 3 If ker B = kerC B, from Cor. 6, there existsL ∈
Hom(Y,X ) such thatB = LC B.

3 ⇒ 1 For somex, suppose there exist two projections
Bu and Bu′ on imB parallel to kerC. Then C Bu =
C Bu′, henceLC Bu = LC Bu′, thusBu = Bu′ and the
projection is unique.

The practical test follows from statement 1, togethe
with (8b).

Corollary 10. If im B andkerC are direct factors, then

5C
B = LC = BK = (B/(C B)

)
C = B

(
(C B)\C) . (18)

Proof. If B andC are direct factors, then (14) and (16) both
hold true. Consider5 = BK. From (16),5 = LC BK,
and then from (14),5 = LC. Thus,5 = BK = LC =
52. In addition, this shows that, for anyx,5x belongs to
im B and, moreover, (14) shows thatC5x = Cx, which
means that the projection on imB is parallel to kerC. Thus
this projector5 is indeed5C

B. The last two expressions in
(18) result from the choice of maximalL andK previously
mentioned.

Remark 11. Gathering the results in (15) on the one hand
of (13) and (18) on the other hand, one has that

C = C B
(
(C B)\C) = C

(
B/(C B)

)
C . (19a)

Similarly, with (17) on the one hand, (13) and (18) again
on the other hand, one obtains

B = (B/(C B)
)
C B= B

(
(C B)\C)B . (19b)
However, while the pair of leftmost equations have be
proved to be a test that imB and kerC are direct factors,
there is no evidence at this moment that the other pairs
equations can play the same role.

Remark 12 (Duality). If S is an idempotent distributive
semifield, by transposition, it is straightforward to chec
that imB crosses kerC if, and only if, imCT is transverse
to kerBT . Likewise, imB is transverse to kerC if, and only
if, im CT crosses kerBT . Finally, imB and kerC are direct
factors if, and only if, imCT and kerBT are so. In this case,(
5C

B

)T = 5BT

CT (in general,(M/N)T = NT\MT ).

5 Direct Factors and g-Inverses

In this section, we answer the question of when a sem
module imB admits a direct factor kerC. Unlike in the
case of usual linear spaces, this question cannot recei
positive answer for any linear operatorB. An explicit test
is given to characterize homomorphisms such that th
images admit a direct factor.
Definition 13. LetU,X denote two semimodules over a
arbitrary semiringS. Let B ∈ Hom(U,X ).

1. An elementF ∈ Hom(X ,U) such thatBFB = B is
called ag-inverseof B;

2. whenB admits a g-inverse, it is calledregular;

3. a g-inverseF which satisfiesFBF = F is called a
reflexive g-inverse;

4. whenS is a dioid1, an elementF ∈ Hom(X ,U) such
that BFB ≤ B is called ag-subinverseof B.

Theorem 14. LetU,X denote free f.g. semimodules ove
a residuated dioidD. Then:

1. Any B∈ Hom(U,X ) admits a maximal g-subinverse
It is denoted Bg. In matrix terms: Bg = B\B/B.

2. When B is regular, Bg is the greatest g-inverse and Br,
defined by BgB Bg, is the greatest reflexive g-inverse of B

Proof.

1. This is an immediate consequence of (8c).

2. If Bg is a g-inverse, thenBr is the maximal reflexive
g-inverse: indeed,Br is a reflexive g-inverse since

B Br B = (B BgB)BgB = B BgB = B ,

Br B Br = Bg(B BgB)BgB Bg = Bg(B BgB)Bg

= BgB Bg = Br .

1In this case, the monoid(Hom(U ,X ),⊕) is naturally ordered by
F ≤ G iff F ⊕ G = G.
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It is maximal since, ifF is another reflexive g-inverse,
then F ≤ Bg becauseBg is the maximal g-inverse. It
follows that

F = FBF ≤ BgB Bg = Br .

Finally, if B is regular, thenB Br B = B and Br B Br =
Br.

Theorem 15. Let S be a distributive semifield,U , X be
free f.g.S-semimodules, and B∈ Hom(U,X ). This B is
regular iff im B admits a direct factorkerC, where C∈
Hom(X ,Y) andY is a free f.g.S-semimodule. One can
take for C any reflexive g-inverse of B.

Proof. Let Bρ be any reflexive g-inverse ofB. Then the
statements of Theorems 8 and 9 are satisfied withY = U ,
C = Bρ , L = B, K = Bρ , and kerBρ is the direct factor
we are looking for.

Conversely, if imB admits a direct factor kerC, by (16),
B = LC B, and then by (18),B = BK B, which shows
that B is regular.

Remark 16. WhenB is put in the form

P

(
D ε

ε ε

)
Q ,

where P and Q are permutation matrices andD has no
zero rows and columns, it is easy to check thatDg — and a
fortiori Dr ≤ Dg — have no> entries and that a particular
reflexive g-inverse ofB is

B′ = Q−1

(
Dr ε

ε ε

)
P−1 .

Remark 17. The maximal reflexive g-inverse does not al
ways coincides with the maximal g-inverse. For exampl
takeS = Rmax, and consider

B =
(

0 1 0
0 2 1
0 0 0

)
, Bg =

( −1 −2 0
−2 −2 −2
−1 −2 −1

)
6= Br =

( −1 −2 0
−2 −2 −2
−2 −2 −1

)
.

Example 18. The following matrix with entries inRmax,

B =
(

0 n 0
0 0 n
n 0 0

)
,

is regular whenevern ≥ 0 and not regular otherwise:

Bg =
( −2n −2n −n
−n −2n −2n
−2n −n −2n

)
if n ≥ 0 and

(
n n n
n n n
n n n

)
if n < 0 .

regular case nonregular case
Observe that the image of any homomorphism being i
variant by translation along the first diagonal, it is enoug
to represent imB by its projection on any plane orthogona
to that diagonal (see figure).
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