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ABSTRACT For a network of queues of Jackson type, with derivation from the
entry to the exit when the capacity of storage of a mean is satu-
rated, we proVve the product form property for the equilibrium
probability law. We give an algorithm to compute the optimal lo-
cal feedback for the controled system in the case where the con-
trol is the service rate of each individual queue. We prove the
convergence of the algorithm to a strategy optimal player by
player.

INTRODUCTION

When we want to compute the optimal feedback for a large scale stochastic
control problem we meet the "curse of dimensionality" difficulty which indicates
that the number of parameters to compute grows exponentially with the di-
mension of the system. gne way to avoid this dif-
ficulty is to limit our ambition @1d compute the optimum only fora subclass
of feedbacks for example forthe class of local feedbacks. It appears very
quickly that in general this last problem is more difficult than the former
one. But for some particular systems there is again to impose this limita-
tion on the admissible strategies. For example when the dynamic of the sys-
tem is decoupled, with perhaps a coupling criterion we can see that a player

by player optimum strategy . . is reachable when the global optimum.is
not computable. The purpose of this paper is to generalize this situation
to system for which the equilibrium probability has the product form, that
is this equilibrium probability can be written as a product of independant
marginal lawsof probability. In thdirst part we describe some finite valued
Markov chain with this property. They are of Jackson type (Jackson [1],
B.C.M.P. [ 21, Relly [ 3], F.K.A.S[ 41, Schassberger K171) with a derivation
of the input of customer,to the output whenever the queue is full. -
Then we suppose that the output of.each queue is a control variable. We gi-
ve a necessary and sufficient condition for a control to be optimum player
by player where a player is a server of a queue. And we give an iteration
policy algorithm (Howard [8], Miller,Veinott [7]) to compute this control.

I. A FINITE VALUED MARKOV CHAIN WITH THE PRODUCT FORM PROPERTY (Fig. 2)

We consider a set of interconnected queues, with finite capacities,
and derivation of the input to the output when a queue is full. We suppose
that the output rate is exponentially distributed and that the input of the
system depends of the total number of customers. This system is of Jackson
type with derivation. First we give a precise model and then give the equi-
librium probability law.

I.1. The model



We denote by E = {1, 2, ..., m} the set of the index of the queues.
The index {o} represents the exterior considered as a special queue and

E=EuU {o}.

If n,, i € E is the number of customers in the queue i we denote by

m
v . . . .
n(no =7 Doy Ty eees n).n, ie E is the capacity of the queue i. We use
i=1
. v v vV VvV Vv v v
the notations n=(m =2Z%2n., n,, n,, ..., n ) and N={n, o < n, < n,
i e E} o) P 1 2 m i

The service rate is denoted by u:

~-

Y + .
(1) uy ¢ [o, ni]-+ R, i¢€E.
v . . M
We suppose that ui(ni) > U ¥i, ¥n € N, and pi(o) = 0, VleE,uo(no)=Q
We call r the routage matrix

(ii) r: ExE + [0, 1] r, being a stochastic matrix associated to an irreduc-
i ] T, tible markov chain. rij indicates the proportion

of customers leaving the queue i going into the
queue j. roj is the proportion of the input going into the queue j and

r. the proportion of the output of the queue j leaving the system.
When a queue is full the input of the queue is derived to the output of

the queue and the corresponding customer should been trying to enter in a queue un-—

til it finds a place free. If F(n) c E, is a set of queues which have a place
free,when the state of the system is n, we can describe this phenomenon using

the routage matrix (rgj = the probability starting from a queue belonging

to 1 ¢ E ‘ending in the queue j € F (the first queue with a free place))

fF : ExF > [0,1].

1 R} rF
ij - -
j F F F°
Using the notations : F = Fy {o}, F* = Cg, = F rf r=F r, T,
+00 i C F C
. rl F r2 F r3 r4
Lo 4°
i=o0
F F
. = + =
We have : L T, T,STq, r2 sT3.
We remark that s is meaningfull because the chain is irreducti-
ble, so there is a path connectiag FC¢ to F}therefore r, has no eigenvalue of

modulus 1.

We need the introduction of the following operators :
T.. : N+ N
1]

(no, n "".nm)ﬁhTij(n)

]’

with



T..(n) = (n, Ny oeees n.~1, ..., nj+l, vy nm) for i ¢ E, j ¢ E ;

ij o i
Tio(n> = (nof], My eeey Mu=ly cee, nm) for i ¢ E ;
Toi(n) = (nofl, D, e ni+1, e nm) for i ¢ E.
and ~
~ * Vv .
N = {(no, Dy eees nm)l n = ifo n., -1 < n, < nfﬂ, i € E}

Now it is possible to define the transition rates of the system deno-

ted by q +
q: NxN->R
(n,n") q(n, n').

The non zero terms of q are :
Fi(n)
q(n, Tijn) = Ul(nl) rlj , for 1 € E, j € Fi(n)’ n e N:

with Fi(n) = F(n) u {i}.

_— A e e e

The equilibrium probability p(n) satisfies the global balance equation

—-1 -1
(1‘1) N \MZ' """‘*p(Tijn) q(Tijn’n) - P(n) N ‘z. - Q(n, Tijn)‘
1cE, JeE 1¢E,jeE
We remark that TT! = T,. for J ¢ E, 1 € E ; and because T .T. =
ij ji ) oi’io
=T. T . =1 we have T~} =T. and TT] =T ., so (1.1) can bewritten also as
io ol ol io io oi
(1.1") I _p(T..n) q(T.. n ,n) = p(n) pX q(n,T..n)
i€E, jeE 1 1] i€E,j€E 13

Theorem 1 The system described in I.1 admits a unique invariant measure
of probability

n -1
fo)

m |G
(1.2) p(n) =C I I (e./p. &) il (0 (k)/e ), n e N where
i=1 Lk -1 171 k o o o bt
the vector e satisfies

(1.3) er =e

and C is a constant of normalization

Proof ,
We verify that (1.2) satisfies the following partial balance equation
1.4 ..n) = . . i € E
(1.4) p(n) ] _Z‘ ) q(n,TlJn) R p(TlJn) q(TlJn,n)‘l € E.
jeE, jzi jeR, jzi

Let us first verify (1.4) for o < n< n. In this case
q(n, Tijn) = Ui(ni) i
q(Tijn,n)
q(Tion,n)

.(n.+1) r.. ] E
HJ i i J €

-1 ..
uo(no )r01

i



it

(i3 () /) (e, fuy () for e By § 2 i s

But p(Ti.n)/p(n)
J
(eo/uo(no—lnfpi(ni)/ei) and wvsing (1.3)(1.4) is

p(Tion)/p(n)

easily verified,

Nl

Let us verify (1.4) when CEF(n) 2 . In this case we have

1S

AR
q(g,Tijn) = ui(ni)rij lFi(n)’ for j ¢ E ;
F (5
.. =q.(n.+1) .. | b F.(T.. = F h
q(TlJn,n) uJ(nJ ) 3i Fi(n) ecause J( 1Jn) (n)y {3} when
je Fi(n) 5
B (o)
1 because o always belongs to Fi(n).

- -1
q(TiOn’n) uo(no ) rOi Fi(n)’

Therefore,the proof is the same as the case OQnéx provides we con prove that

Fi(n)
(1.5) b e. T.. = e..
] i i
JGFi (n) ] ]
Using the notation e, ={e , ke F.} e =1{e , ke F?} from (1.3)
F. k i c k 1
we have : 1 Fi
e.r, +te T _=e¢
Fiol F; O Fs

ep. To* e T4 T Cpe
1 Fi

which prooves that

ep T + ep T STy = ep which is (1.5).

1 1 1

Therefore p(n) is an equilibrium probability. The uniqueness comes
from (i) and (ii) which guarantees - that it is possible to reach

every point ofd from every other point.

From the theorem the following result is easily deduced.

m .
p(nl, vees nm) = C ’H Pi(ni) po(.z nifd) where pi(ni)’ i ¢ E is the inva-
1=1 k 1¢E : -
(n.)

. . e . . . . 1
riant measure of the queue i, in isolation with input eil Y _and po(no)
n<n.

is the invariant system measure of an aggregate queue,describing the total

(n)

. . . o
number of customers in the system#ith input uo(no) and _output eoln :D(Do),
o

Remark This kind of boundary behaviour is not exactly the truncation des-—

and accordingly the product form property.



11. OPTIMAL LOCAL FEEDBACK OF JACKSONIAN QUEUES

Now we need to make one more hypothesis.We assume that:

B

.. v
(iii) u is independant of n_ N=1 {o, ni}.
i=1

Given the network of queues described in I.1,{where now the service ra-—

tes Y are control variables)and a cost function c:

c =N x [ﬁ, ﬁ]m+]R continuous, we want to optimize the objective function:
T-1
(2.1) J) = lim /T I c(a(t), w(t))
T t=0
in the class of local feedback SL that is :

v A
= {uf uy oz {1, 05} o U [,y .
In this paragraph we take advantage of the prodnct form property to -
characterize strategies belonging to SL’ which are optimal player by
player'(i.e.‘each ui is one of these playerq. An equivalent formulation is
(2.1.") Min J(@) = I c(n, (@) p (n)
UES neN H
where p (n) is given by (1.1), because Vu € S the system descri-

bed in I 1 has a unique invariant measure pu(n)

Let us introduce the following notations:

(n.)

i . . . . .
= e

g(ni) i ]ni<X- where e; is defined by (1.3). ¥1 € E, Ai(ui) is a mitrix
characterized by :

A\
T g, (k) ¥k, o <k <n,

i
Ay o T W)
Ai(ui)k,z = o0 elsewhere

Ax is the transpose of A,
: + . .
W ¢ R' shall be interpreted as the optimal cost,

v . . .
Vi : [o,ni] + R could be interpreted as a Bellman functiomn.

The next result is the characterization of a Nash point u*eSI‘that is
* . - .
¢~ which satisfies :
* * * * * * A )
J(H]s My v W) < T Mys wees Mo ees w) o ¥ {1,...,ni} + [y,pl.

Under differentiability properties forrﬁSL > J(1) € R, such a point i$

a local minimum.Under convexity  and differentiability properties for J such
a point is a global minimum.



Theorem 2. A necessary and sufficient condition for W to be a Nash optimal

cost is that (u;, Py Vi’xw’ i €E) satisfying
1

(2.2) A (0)py 0, kio p; (k) =1
B3
*
(2.4) W, € Arg Min {Ai(Ui) v, + ci(pi)}
|1
R v _+
where ¢ : {0, ..., ni} x [ﬁ,p] + R
k v ci(k,v)
=% {c = - _u* .
(2.5) c, (k) =E e(nu(m)| =k, W) =V, W=V, § = i} and
m
p= T p., exists:
. i
i=1

Proof The invariant measure p(H) associated to the strategy U e SL can be
writtenas " M U i, % U

m . . .

1 L . * i i i
= h . . . = z . =l
P E P where pilst esolution of Al(ul)p1 0, z P (k)=1

The criterium that we have to optimize can be writtenas:
m s

Min J(W) = I c(nu(@) T p. (n,).
u n =1

Now if }f is a Nash point and if we denote by Si the strategy
. i
(W5 Mys oo Hys Wi e W)

(2.6) I < J(Sii) v, LR > f,

then (2.6) can be writtenas:

* .
(2.7) J(u') = Min E Ui'ci(ni’ui)
YioP , "
with cg(nj, ) = L c(num) T p7 (@)
{nlni given} jzi 3 J

and because the n. is an irreducible Markov chain ¥, using the undiscounted
cost dynamic programming theory, a necessary and sufficient condition for

* . - - . . .
W=J(y ) to be the minimum cost 1s that it satisfies :

Min {A(ui) Vi + ci(ui)} =W, Vi,

|51

The existence of a Nash point is guaranteed by the continuity of the



function U ~>pyi(which a consequence of the continuity of the unique eigen
vector associated to the eigen value o of the operator A. (.) Kato [20] The uni-
queness of p. follows from the fact that theMarkov chain n, t) has only one
recurrent class)- ‘
The function
U > c(yp) is continuous, the admissible set of strategies is compact by hy-
pothésis. Thys the ontimal cost in' the class of local feedbackbwhich is a

Nash poinﬁ)exists.

*
To compute (ui, P;>» Vi’ W, i € E) solution of (2.2) to (2.5) we can

use the following policy improvement algorithm :

1) start with U € SL’ compute pu, put j =n =1,

2) compute cj(ui)
compute by a classical improvement algorithm V.,Wn,ug the solution of
Min {A. ﬂ. V. + c. )l =w n *eAroMin {A. (V. + c. (. }.
Ay () Vo # ey 3 » Hiehrgliin 1A IR 5150
u. 3
J *
( : ']
3) U becomes (M, Hy, ---, uj, “j+1’ e, un?’ compute pj .

4) n becomes n+l, j=j+! modulo.n, and return to 2) until W R converges.

n . . .
Clearly the sequence W' isdecreasing and _bounded by o_ from below, thus 1t

converges to W, butwe are not assured that W is Nash optimal cost, excep-

te ' when the set of control is finited valued Sandell [12].powell's counter

example[}ijof éiample)shows the existence of limit cycles - To

avoid this difficulty we can modify the step (3khich changes to (3" :

* —
1 becomes ( “1’ Hys oees H., W ey um) only if Wn L W' > € where

€ is a given number.

. e . . € . .
Then clearly after a finite number of steps we obtain a point} which 1s
¢-Nash optimal that is

£

€ E €
J(u ) < J(]Jl, ceny ui_ls v, H.

€ \" ~ %
f410 e um) +E ¥Ve [o,ni] = [p,ul .

. . € . .
Now having obtained W, € becomes €/2, and we reiterate using the same

/2

algorithm with initial conditionlfio cbtain u5 , and so on. Clearly a sub-
g/2n . .
sequence of {u , L € N} is convergent and converges to a Nash point,
following the continuity of u =+ J().’ Nevertheless this new algorithm
cannot be implemeted on a computer because the step 2 needs an < number of
iterations to be achieved. So we have to solvethe step 2 only approximati-
vely if we want'@void this new difficulty.

Before giving an convergent algorithm let us introduce the notations

Lo do a8 & {o, ..., n.} x [0

(s eees M) €y defined by (2.5)



v

. n.
SL, = N1 I s R J+2
J,H
. V., W) a solution of A.(u.) V. + c.(y.) =W
My o ( T ) 5 (1) V5 ; uJ)
ith ¢, = J.(Y). | -
v i i
A consequence of (i) and {ii) is that W is uniquely defined.
¥.+1
A v {o,...,n:
M. :RJ — [y, nl 0y-- -5
J>H
V. .
J uJ
H. € Arg Min A. (1) V. + c.(
3 g " J( ) F ; W)

Fig. 1 givesnow the flowchart of the algorithm in which appears two supple-
mentary indices appear, g which was previously defined - , h which is an

indéx for an iteration of the Howard algorithmsy, V and W are indexed by
this two variables.

\ /. . . . .
Test is a variable which counts the numbetr of players which cannot im—
prove their cost more than -an " €'s by an iteration of the Howard al-

gorithm,

Theorem 3 {WF ] g€ = 1/2"} is a positive decreasing sequence

converging to W* which is _ cost optimal player by player.

' n .
From {ug IKE = 1/2"} we can extract a subsequence which is convergent,

and all convergent subsequencesconverge to a policy optimal player by
5 X
player of cost We

Proof WE = J(ug) and so it is always positive. Each time we go through the

point G of the flowchart . W decreases by €. So in a finite number of ite-
i certainly .
ration we¥go through the point F of the flowchart.A t this point ,whatever

the player, it is impossible ° to improve the cost by e . So at this
point the following relationsare verified:

) =W

2.6 A.(y. V. + ¢ (y.

( ) J(uJ,e) Js€ J uJ,e £ ¥jeE

2.7 A.(,! v! + c.(u! = W'

2.7 395,07 Ve TG i) T W

(2.8) W >W -¢
€ €

(2.9) AG' )V, +oe.(yl ) <A.(u) V. + c.(u.
35,0 Vi, T oeglug 0 s AGug) Vo egug)

¥ uj M [O,¥lj] > [ﬁ,h,]

Denoting by : Ay = A(pg’e),c,' = c(u! )

1s€ J-€
from (2.6) we have Al V., + ¢! + (A, - Al )V, +c. - c! =W,
Jse Jse Js€ Js€ J,€ 1»€ Js€ J,€ €

which can be written as ¢

(2.10) Min {a; Vet ngu)} + Ej’e = W,

3



. =(A. -A' )V, +c. _~—ci 20
EJ:C ( 1€ 1,€ J»€ J1»€ 1,€

Let us pow give an estimate  for sup Ej (nj).

n.

From (2.6),(2.7): . ‘ J
Aé(Vjte - Vg,e) + €j’€ =W, - Wé u§ E
and so using (2.8) we have We - Wé = i. gj;;nj) pj “(n.) <€
which implies that
; e
(2.11) sup €j’€(r}j) < €/Inf P; ’ (nj)

n. n.
J "]
but because (i) and (ii) .
u.
Ja>o :¥nf ij(nj) > 1/a (the hypotheses (i) and (ii) yere introduced
J;U;nj

for this Yeason) .
Thus we have obtained that!?
(2.12) |Min {a.(W) V.
u J J’

Now because U. c belongs to a compact set we can extract a subsequence

. +cj(u)}-w€|sk€.

3
of {ug e | e= 1/29} which is convergent. The index of this subsequence is
2 .
denoted by q -

for all j and ,we can always choose V. in such away

Because of (i) and (11) V. ,

that it is uniformly bounded Js .
and so we can extract a subsequence of (Vj €!E:= 1/29D which
3

is convergent .The corresponding .subsequence is once more indexed by q.

The seqaence (WEIE:= 1/29, q e W) is convergent and then using the

continuity property of ”j +’Aj(uj), u +'Cj(uj) and the fact that 1/24

converges to zero, (2.12) and the definition of u5 e gives the equation
b

(2.2) to (2.5) and we have the result.

Remark This policy algorithm gives a constructive existence result of a solu-
tion of (2.2) to (2.5).

CONCLUSION

In this paper we have proved that a network of queues of Jackson type
with finite capacity of storage and derivation of the input to the output
(when there is saturation of this storage capacity) has the product form
property. Then we have studied the control problem where the control varia-
bles are the output ratesas af eedback on the number of customers waiting
in the corresponding queue. We have given a necessary and sufficient condi-
tion for a strategy to be optimal player by player and an algorithm to com-
pute this strategy. The extension to more general systems of queues for exam-
ple B.C.M.P. [2] queues is currently under investigation.



The same kind of result can be obtained for a system of diffusion pro-
cesses QUADRAT-VIOT [10].

Initialisation

= M ta.e
o |

s

= (U, s Hy s «oey b)) given T
Figure 1 {’E 2,€ m, €

=
i
8

:= j+1 modulo m
=W

o) €
%d%uhg
=1

1= Jj(ue)

(u )

j,E,h—]

j’eih—]’ we:hfg) T SLj’E
I .

v

b 4

One step of the j,E,h JsHe

U = M. (Vj,e,h-l)
Howard algorithm (Vj,e,h’ WE,h) :=

(3 e,n)

L.
J’ug

|
(ws,h < Ye h-1 —@""@’_‘—j T
|
@ Test := Test + 1
N »

(X p. r..) lv
. UJ Jl) . .
] 1 Figure 2
N7 /
n > T .
o1
. v
capacity ni
rn
- Q
. 0 i>o
Exterior
)
r




REFERENCES

1]
[ 23

[3]

4]

(51

[6]

[ 71

[ 8]
{91

[101]

(111

(12]

[131

[141]

(151

[16]

[17]

[18]

[19]

[20]

J.R. JACKSON (1963) Jobshop like queuing system, Mgmt science 10, 131-142,

F. BASKETT, M. CHANDY, R. MUNTZ, J. PALACIOS (1975),0pen clésed and mi-
xed network of queues with different class of customers, J.A.C.M 22,

248-260.

a

*

F.P. KELLY (1979), Reversibility and stochastic Networks, J. Wiley & Sons.

P. FRANKEN, D. KONIG, V. ARNDT, V. SCHMIDT (1979), Queues and point pro-
cess, Akademic-Verlag, Berlin.

G. SECCO SUARDO (1978), Optimization of a closed network of queues. Re-
port M.I.T. Electronic Systems Laboratory 02139.

R.S. SHASSBERGER (1978), Insensitivity of steady state distributions of ge—
neralized semi Markov processes with speeds. Adv. Appl. Prob. 10, 836-851.

B.L. MILLER, A.F. VEINOTT (1969), Discrete programming with small inte-
rest rate. An. Math. Stat. 40(2).

R.A. HOWARD (1960), Dynamic programming and Markov processes. Wiley.

J.G. KEMENY , J.L. SNELL, KNAP (1976), Finite Markov chains, Springer-
Verlag.

J.P. QUADRAT, M. VIOT, Control of diffusion processes having the pro-
duct form property in the class of local Feedback,:to appear.

S.M. ROSS (1969), Applied probability models with optimization appli-
cations. Holdan day.

N. SANDEL (1974), Control of finite state finite memory stochastic sys-—
tems. M.I.T. Thesis Electronic Systems Laboratory.

M.J.P. POWELL (1973), On search direction for minimization algorithms.
Mathematical programming 4, 193-201.

A. EPHREMIDES, P. VARAIYA, J. WALRAND (1978), A simple dynamic routine
problem. University of California, Berkeley report 94720.

M. REISER (1979), A queuéing network analysis of computer communication
networks with window flow control. IEEE Transaction on communications,

8, 1199-1209.

E. CELEMBE, R.R. MUNTZ (1976), Probabilistic models of computer systems
Acta Informatica 7, 35-60.

R. SCHASSBERGER (1979), The insensitivity of stationary probabilistic
in networks of queues. Adv. Ap. Prob. 10, 906-912.

E. POLAK (1971), Computational methods in optimization a unified. Ap-
proach Academic-Press.

P.P. BERTSEKAS (1976}, Dynamic programming and stochastic control. Aca-
demic press.

T. KATO (1966), Perturbation of linear operators. Springer Verlag.



