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1. STRUCTURES

• A semiringK is a set endowed with two operations denoted⊕ and⊗
where⊕ is associative, commutative with zero element denotedε,⊗ is
associative, admits a unit element denotede, and distributes over⊕;
zero is absorbing (ε ⊗ a = a⊗ ε = ε for all a ∈ K). This semiring is
commutative when⊗ is commutative.
• A module on a semiring is called asemimodule.
• A dioidK is a semiring which is idempotent (a⊕ a = a, ∀a ∈ K).
• A [commutative, resp. idempotent]semifieldis a [commutative, resp.

idempotent] semiring whose nonzero elements are invertible.
• We denoteMnp(K) the semimodule of(n, p)-matrices with entries in

the semiringK. Whenn = p, we writeMn(K). It is a semiring with
matrix product:

[ AB] i j
def= [ A⊗ B] i j

def=
⊕

k

[ Aik ⊗ Bkj ] .

All the entries of thezero matrixareε. The diagonal entries of the
identity matrixaree, the other entries beingε.



1.1. EXAMPLES OF SEMIRING

K ⊕ ⊗ ε e name

R+ + × 0 1 R+
R+ p

√
ap + bp × 0 1 R+p

R+ max + 0 1 Rmax,×
R ∪ {+∞} min + +∞ 0 Rmin

R ∪ {−∞,+∞} min + +∞ 0 Rmin

R ∪
•
R a max(|a|, |b|) × 0 1 S

[a,b] max min b a [a,b]max,min

{0,1} and or 0 1 B
P (6∗) ∪ prod. lat. ∅ − L

In S we have	2, ⊕− 2 ; •2= 2	 2= (2,−2) ; 3	 2= 3 ;
−3⊕ 2= −3 ; •2⊕3= 3 ; •2	3= −3 ; •2⊕1=•2	1=•2 .



1.2. MATRICES AND GRAPHS

• With a matrixC inMn(K), we associate aprecedence graph
G(C) = (N ,P) with nodesN = {1,2, · · · ,n}, and arcs
P = {xy | x, y ∈ N , Cxy 6= ε}.
• Theweightof a pathπ , denotedπ(C), is the⊗-product of the weights

of its arcs. For example we havexyz(C) = Cxy⊗ Cyz.
• Thelengthof the pathπ (is π(1) when⊗ is+ (its weight when the arc

weigths are all equal to1)).
• The set of all paths with endsxy and lengthl is denotedP l

xy. Then,P∗xy
is the set of all paths with endsxy andP∗ the set of all paths.

P∗ def=
∞⋃

l=0

P l . C =
⋃

x

P∗xx. ρ ⊂ P∗, ρ(C)def=
⊕
π∈ρ

π(C) .

• We define thestar operationby C∗ def=⊕∞i=0 Ci .



PROPOSITION1. For C ∈Mn(K) we have

P l
xy(C) = Cl

xy, P∗xy(C) = C∗xy .(1)

• If K = R+ andCe= e, the equationpn+1 = pnC is the forward
Kolmogorov equation.
• If K = R+ andCe= e, C∗xy is the probability to reachy starting fromx.
• If K = Rmin, the equationvn+1 = vnC is the forwarddynamic

programming equation.
• If K = Rmin, theeigen equationλv = vC is the ergodic (average cost

by unit of time) dynamic programming equation.
• If K = Rmin andC irreducible,C admits a unique eigenvalueλ,
λ =⊕π∈C

π(C)
π(1) , the columns{(C/λ)+.x | (C/λ)+xx = e} with C+ = CC∗

generate the correspondingeigensemidodule.
• If K = Rmin andλ ≥ e, C∗ = e⊕ C · · ·Cn−1 andC∗xy is theminimal

weightof the paths joiningx to y which is finite.



1.3. COMBINATORICS - CRAMER FORMULAS

THEOREM 2. The solution of the systemAx⊕ b′ = A′x ⊕ b in R+max,× exists
and is unique and given by1

x = (A	 A′)](b	 b′)/ det
(
A	 A′

)
,

det(A) =
⊕
σ

sgn(σ )
n⊗

i=1

Aiσ(i ) , A]i j = cofactorj i (A) ,

when and only whenx ≥ 0.

{
max(x1,3x2) = 5,

max(4x1,2x2) = 6,
det(A) = 2	 12= 	12, det

[
5 3
6 2

]
= 	18,

det

[
1 5
4 6

]
= 	20, x1 = 3/2, x2 = 5/3,

[
1 3
4 2

] [
3/2
5/3

]
=
[
5
6

]
.

1The computation are done inS.



1.4. ORDER - RESIDUATION

• A dioid is completewhen the⊗ is distributive with the infinite⊕.
• A complete dioid is a lattice (⊕ upper bound,∧ lower bound).
• D andC complete dioidsf : D→ C. f is residuableif {x | f (x) ≤ y}

admits an maximal element denoted byf ] (y).
• f residuable⇔ f ◦ f ] 6 IC and f ] ◦ f > ID.

1. f ◦ f ] ◦ f = f. f ] ◦ f ◦ f ] = f ].
2. f is injective⇐⇒ f ] ◦ f = ID ⇐⇒ f ] is surjective and the dual.
3. (h ◦ f )] = f ] ◦ h]. f 6 g⇐⇒ g] 6 f ].
4. ( f ⊕ g)] = f ] ∧ g]. ( f ∧ g)] > f ] ⊕ g] .

In Rmax if f (x) = Ax then f ](y) j = (A\y) j ,
∧

i yi /Ai j .



1.5. GEOMETRY - IMAGE, KERNEL, INDEPENDENCE

X andY semodules,F : X→ Y a linear map.

• Im(F) = {F (x) | x ∈ X} .
• ker(F) = {(x1, x2

) ∈ X2 | F
(
x1
) = F

(
x2
)}
. It is acongruencethat

is an equivalent relationR ⊂ X × X which is a semimodule.
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FIGURE 1. Image and Kernel.



• A generating family{xi }i∈I of a semimoduleX is a subset ofX :

∀x ∈ X ∃ {αi }i∈I ∈ K : x =
⊕
i∈I

αi xi .

• “Convex” semimodule admits a unique generating family (the set of the
extremal points).
• The family{xi }i∈I is independentif⊕

i∈I

αi xi =
⊕
i∈I

βi xi H⇒ αi = βi , ∀i ∈ I .

• An independent generating family is called abasis. A semimodule
admitting a basis is calledfree.

p1 =
εe

e

 , p2 =
e
ε

e

 , p3 =
e

e
ε

 , p1⊕ p2 = p2 ⊕ p3 .



1.6. REGULAR MATRICES AND PROJECTIVESEMIMODULES

• A matrix A is regularif it exists a matrixA] : AA]A = A.
• A subsemimoduleV of a semimoduleE and a congruenceR of E form

adirect sumE , V �R if

∀x ∈ E ∃!y ∈ V : xRy .

y is called theprojectionof x on V parallel toR.
• A semimoduleV is saidprojectiveif it existsR congruence andE a

free semimodule such thatE = V �R.

THEOREM 3. GivenA =Mn(Rmax), Im(A) is projective iffA is regular
then it existsB with E = Im(A)� kerB and P , A(B A\B) is the linear
projector onIm(A) parallel to ker(B).



2. COST MEASURES ANDDECISION VARIABLES

We call adecision spacethe triplet(U,U ,K) whereU is a topological space,
U the set of open sets ofU andK a mapping fromU toRmin such that

1. K(U ) = 0,
2. K(∅) = +∞,
3. K

(⋃
n An

) = infnK(An) for any An ∈ U .

The mappingK is called acost measure.

A set of cost measuresK is saidtight if

sup
Ccompact⊂U

inf
K∈K

K(Cc) = +∞ .

A mappingc : U → Rmin such thatK(A) = infu∈A c(u) ∀A ⊂ U is called a
cost densityof the cost measureK.



THEOREM 4 (M. Akian, V.N. Kolokoltsov). Given a l.s.c.c with values in
Rmin such thatinfu c(u) = 0, the mappingA ∈ U 7→ K(A) = infu∈A c(u)
defines a cost measure on(U,U).
Conversely any cost measure defined on a topological space with a countable
basis of open sets admits a unique minimal extensionK∗ toP(U ) (the set of
subsets ofU) having a densityc which is a l.s.c. function onU satisfying
infu c(u) = 0.

EXAMPLE 5. 1. χm(x)
def=
{ +∞ for x 6= m.

0 for x = m,

2. Mp
m,σ (x)

def= 1
p‖σ−1(x −m)‖p for p ≥ 1 withMp

m,0
def= χm .

By analogy with the conditional probability we defineconditional cost excess
to take the best decision inA knowing that it must be taken inB by

K(A|B)def= K(A∩ B)−K(B) .



2.1. DECISION VARIABLES

1. A decision variableX on (U,U ,K) is a mapping fromU to E (a
second countable topological space). It induces a cost measureKX on
(E,B) (B denotes the set of open sets ofE) defined by

KX(A) = K∗(X−1(A)), ∀A ∈ B .
The cost measureKX has a l.s.c. density denotedcX .

2. Two decision variablesX andY are saidindependentwhen:

cX,Y(x, y) = cX(x)+ cY(y).

3. Theconditional cost excessof X knowingY is defined by:

cX|Y(x, y)
def= K∗(X = x | Y = y) = cX,Y(x, y)− cY(y).

4. Theoptimumof a decision variable is defined by

O(X)def= arg min
x∈E

conv(cX)(x)



5. When the optimum of a decision variableX with values inRn is unique
and when near the optimum, we have

conv(cX)(x) = 1

p
‖σ−1(x −O(X))‖p + o(‖x −O(X)‖p) ,

we say thatX is of orderp and we define itssensitivity of orderp by

Sp(X)
def= σ .

6. Thevalue[resp.conditional value] of a cost variableX is

V(X)def= inf
x
(x + cX(x)) ,V(X | Y = y)

def= inf
x
(x + cX|Y(x, y)) .

7. The cost densityof the sumZ of two independent variablesX andY is
theinf-convolution of their cost densitiescX andcY, denotedcX ? cY

defined by

cZ(z) = inf
x,y

[cX(x)+ cY(y) | x + y = z] .



For a real decision variableX of costMp
m,σ , p > 1, we have

O(X) = m, Sp(X) = σ, V(X) = m− 1

p′
σ p′ .

THEOREM 6. For p > 0, the numbers

|X|pdef= inf

{
σ | cX(x) ≥ 1

p
|(x −O(X))/σ |p

}
and‖X‖p

def= |X|p + |O(X)|
define respectively a seminorm and a norm on the vector spaceLp of real
decision variables having a unique optimum and such that‖X‖p is finite.

THEOREM 7. For two independent real decision variablesX andY and
k ∈ R we have (as soon as the right and left hand sides exist)

O(X + Y) = O(X)+O(Y), O(k X) = kO(X), Sp(k X) = |k|Sp(X) ,

[Sp(X + Y)] p′ = [Sp(X)] p′ + [Sp(Y)] p′, (|X + Y|p)p′ ≤ (|X|p)p′ + (|Y|p)p′ .



2.2. CHARACTERISTIC FUNCTIONS, FENCHEL & CRAMER TRANSFORM

• TheFenchel transformF of a convex function

ĉ(θ)
def= [F(c)](θ)def= sup

x
[〈θ, x〉 − c(x)] .

• Thecharacteristic functionof a decision variable is defined by

F(X)def= F(cX) .

F(X + Y) = F(X)+ F(Y), [F(k X)](θ) = [F(X)](kθ) .

• TheCramér transformCr
def= F ◦ log◦L associates to the probability law

µ the convex function

cµ : U 7→ sup
θ

[θU − logEµ(eθλ)] ,

whereL is the Laplace transform.



M log(L(M)) = F(C(M)) C(M)

µ ĉµ(θ) = log
∫

eθxdµ(x) cµ(x) = supθ (θx − ĉ(θ))
0 −∞ +∞
δa θa χa

Gauss distrib. mθ + 1
2|σθ |2 M2

m,σ

µ ∗ ν ĉµ + ĉν cµ ? cν
kµ log(k)+ ĉ c− log(k)
µ ≥ 0 ĉ convex l.s.c. c convex l.s.c.

m0
def= ∫ µ ĉ(0) = log(m0) infx c(x) = − log(m0)

m0 = 1 ĉ(0) = 0 infx c(x) = 0

m0 = 1, m
def= ∫ xµ ĉ′(0) = m c(m) = 0

m0 = 1, m2
def= ∫ x2µ ĉ′′(0) = σ 2def= m2−m2 c′′(m) = 1/σ 2

TABLE 1. Properties of the Cramer transform.



2.3. CONVERGENCES OFDECISION VARIABLES

For the sequence of real decision variables{Xn,n ∈ N}, cost measuresKn

andcn functions fromU (a first countable topological space2) toRmin we say
that :

1. Xn ∈ Lp converges in p-normtowardsX ∈ Lp denotedXn

Lp

−→ X, if
limn ‖Xn − X‖p = 0 ;

2. Knconverges weaklytowardsK, denotedKn
w→ K, if for all f in Cb(E)

3 we havelimnKn( f ) = K( f )4.

A sequenceKn of cost measures is said asymptoticaly tight if

sup
Ccompact⊂U

lim inf
n
Kn(C

c) = +∞ .

2Each point admits a countable basis of neighbourhoods.
3Cb(E) denotes the set of continuous and lower bounded functions fromE toRmin.
4

K ( f )
def= infu( f (u)+ c(u)) wherec is the density ofK .



THEOREM 8 (Large Numbers).Given a sequence{Xn, n ∈ N} of i.i.c.
decision variables belonging toLp, p ≥ 1, we have

YN
def= 1

N

N−1∑
n=0

Xn→ O(X0) ,

where the limit is in p-norm convergence.

THEOREM 9 (Central Limit). Given an i.i.c. sequence{Xn,n ∈ N} centered
of order p with l.s.c. convex cost, we have

ZN
def= 1

N1/p′

N−1∑
n=0

Xn
w→Mp

0,Sp(X0)
.

THEOREM 10 (Large Deviation).Given an i.i.c. sequence{Xn,n ∈ N} of
tight cost densityc, we have :

1

n
c(X1+···+Xn)/n

w→ ĉ ,

whereĉ denotes the convex hull ofc.



3. NETWORKS AND LARGE SYSTEMS
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FIGURE 2. Transportation System (6 cars, 3 parkings).



• We consider a company renting cars Figure (2). It hasn cars andm
parkings in which customers can rent cars.
• The customers can rent a car in a parking and leave the rented car in

another parking.
• After some time the distribution of the cars in the parkings is not

satisfactory and the company has to transport the cars to achieve a better
distribution.
• Givenr the(m,m) matrix of transportation cost from a parking to

another, the problem is to determine the minimal cost of the
transportation from a distributionx = (x1, · · · , xm) of the cars in the
parking to another oney = (y1, · · · , ym) and to compute the best plan
of transportation.



3.1. PRECISEFORMULATION

• Given the(m,m) transition cost matrixr irreducible such thatri j > 0 if
i 6= j = 1, · · · ,m andrii = 0 for all i = 1, · · · ,m,
• computeM∗ for the the Bellman chain onSm

n of transition costM

defined byMx,Ti j (x)
def= ri j and

Ti j (x1, · · · , xm)
def= (x1, · · · , xi − 1, · · · , xj + 1, · · · , xm) ,

for i, j = 1, · · · ,m.
• The operatorTi j corresponds to the transportation of a car from the

parkingi to the parkingj .
• If rii = e for all i = 1, · · · ,m (the absence of transportation costs

nothing) the previous problem corresponds to the computation of the
largest invariant costc satisfyingc = cM, andcx = e.



3.2. SOLUTION TO THE M-PARKINGS TRANSPORTATION PROBLEM

THEOREM 11. The optimal value of the transportation problem is :

M∗xy = P∗xy(M) = inf
φ≥0

J φ=y−x

φ.r ∗ .

whereJ the incidence matrix nodes-arcs of the complete graph and
φ.r =∑i, j φi j r i j .

We have for ally andx such thatx j ≤ yj for j 6= i

M∗xy =
⊗
j , j 6=i

(r ∗i j )
(yj−xj ) ,

and for all x and y satisfyingyj ≤ xj for j 6= i

M∗xy =
⊗
j , j 6=i

(r ∗j i )
(xj−yj ) .



3.3. EXAMPLE

Transportation system, Figure (2), with 3 parkings and 6 cars, and
transportation costs :

r =
 0 1 +∞
+∞ 0 1

1 +∞ 0

 =
e 1 ε

ε e 1
1 ε e

 .

We have :

r ∗ =
e 1 2

2 e 1
1 2 e

 .

x = (0,0,6), y = (2,3,1),
M∗xy = (r ∗31)

2(r ∗32)
3 = 2× 1+ 3× 2= 8 .



3.4. AGGREGATION

• GivenX = Rn
min, Y = Rp

min andC : X → Y a linear map. We say that
A : X → X is aggregablewith C if there existsAC such that

C A= ACC.

• If A is aggregable byC andXn+1 = AXn thenYn , C Xn satisties

Yn+1 = ACYn.

• Given a partitionU = {J1, . . . , Jp
}

of the state spaceF = {1, . . . ,n},
thecharacteristic matrix of the partitionU is

Ui J =
{

e si i ∈ J,

ε si i /∈ J,
∀i ∈ F, ∀J ∈ U .

• A is aggregable withUt we saylumpableiff⊕
k∈K

ak j = aK J, ∀ j ∈ J, ∀J, K ∈ U .



4. INPUT-OUTPUT MAX -PLUS LINEAR SYSTEMS

y

u

x1 x2

FIGURE 3. Event Graph


x1

k = max(1+ x1
k−2,1+ x2

k−1,1+ uk)

x2
k = max(1+ x1

k−1,2+ uk)

yk = max(x1
k , x

2
k)


x1

t = min(x1
t−1 + 2, x2

t−1 + 1,ut−1)

x2
t = min(x1

t−1 + 1,ut−2)

yt = min(x1
t , x

2
t )



4.1. TRANSFERFUNCTIONS

D =
⊕
k∈Z

dkγ
k, ck ∈ Zmax . C =

⊕
t∈Z

ctδ
t , dt ∈ Zmin .

γ : (dk)k∈Z 7→ (dk−1)k∈Z . δ : (ct )t∈Z→ (ct−1)t∈Z .{
X = γ AX⊕ BU ,

Y = C X .

{
X = δ ÃX⊕ B̃U ,

Y = C̃ X .

Y = C (γ A)∗ BU . Y = C̃
(
δ Ã
)∗

B̃U .



FIGURE 4. Event graph simplification.
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{
X = AX⊕ BU ,

Y = C X ,
A =

[
γ 2δ γ δ

γ δ ε

]
, B =

[
δ

δ2

]
, C = [e e

]
.

Y = C A∗BU = δ2 (γ δ)∗U .

u y

FIGURE 6. Equivalent system 3.



4.2. RATIONAL SERIES.

S∈Max
in [[γ, δ]] is :

1. rationalif it belongs to the closure{ε,e, γ , δ} with respect of finite
number of operations⊕,⊗ and∗;

2. realizableif it can be written :

S= C (γ A1⊕ δA2)
∗ B ,

with C, A1, A2, B boolean ;
3. periodicif it exists p, q polynomials andm monomial such that :

S= p⊕ qm∗ .

THEOREM 12.

Rational⇔ Realizable⇔ Periodic.



4.3. APPLICATIONS

Troughput of an event graph.A (γ, δ) irreducible,

λ = max
m∈C∈C

mδ

mγ

, m= γmγ δmδ .

Feedback design.

H

S?

u y

FIGURE 7. Feedback.

Y = H (U ⊕ SY) = (H S)∗ HU .

Latest entrance time to achieve an objective.

Z = C A∗BU 6 Y , U = C A∗B\Y ,

{
ξ = A\ξ ∧ C\Y ,

Y = B\ξ .
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