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1. STRUCTURES

e A semiring/C Is a set endowed with two operations denogdnd®
where® Is associative, commutative with zero element denetesl is
associative, admits a unit element denaéednd distributes ovep;
zero Is absorbinge(® a = a® ¢ = ¢ for all a € K). This semiring is
commutative wher® iIs commutative.

e A module on a semiring is calledssemimodule

e A dioid K is a semiring which is idempoterss 6 a = a, Va € K).

e A [commutative, resp. idempoterggmifieldis a [commutative, resp.
Idempotent] semiring whose nonzero elements are invertible.

e We denoteM(K) the semimodule ofn, p)-matrices with entries in

the semiringC. Whenn = p, we write M, (). Itis a semiring with

matrix product
def def
[AB]ij = [A® BJjj = @[Aik ® Byl -
K

All the entries of thezero matrixaree. The diagonal entries of the
identity matrixaree, the other entries being



1.1. EXAMPLES OF SEMIRING

IC - 0 g e name
RT + X 0 |1 RT
R* JaP 4+ bP X 0O |1 ng
Rt max + 0 |1 Rmax x
R U {400} min + +oo | O Rmin
R U {—o0, +00} min + +oo | O Rmin
RUI@% amax|al, |b|) X 0O |1 S
[a, b] max min b | a|[a, blmaxmin
{0, 1} and or 0O |1 B
P(X¥) U prod. lat.| ¢ | — L

INSwe haveo2 2 @ —2: 2=202=(2.-2): 362=3:
—3@®2=-3:2303=3;203=-3; 201l=201=2 .



1.2. MATRICES AND GRAPHS

e With a matrixC in Mn(K), we associate precedence graph
G(C) = (N, P) with nodesN = {1, 2, --- , n}, and arcs
P={Xy|x,yeN, Cuy # ¢}

e Theweightof a pathz, denotedr (C), Is the®-product of the weights
of its arcs. For example we haxg/z2(C) = Cyy ® Cys.

e Thelengthof the pathr (is 7 (1) when® is + (its weight when the arc
weigths are all equal tt)).

e The set of all paths with endsy and lengtH is denotedP)'(y. Then, P75,
IS the set of all paths with endsy andP* the set of all paths.

PELJP. c=JPi pC P pOEPr©).
|=0 X

TEP

e \We define thestar operatiorby cre Pr,C' .



PrRoPOSITIONL. For C € Muj(K) we have

(1)

Piy(C) = Cly Py (C) =C5, .

If X =R+ andCe = e, the equatiomp"t! = p"C is the forward
Kolmogorov equation
If C =R"andCe= e, CSy Is the probability to reacly starting fromx.

If X = Rmin, the equation™! = v"C is the forwarddynamic
programming equation

If IC = Rnin, theeigen equation.v = vC Is the ergodic §verage cost
by unit of time dynamic programming equation.

If IC = Rmin @andC irreducible,C admits a unigue eigenvalue

A=@. . %Cl:)) the columng(C/M)* | (C/0)f, = e} with Ct = CC*
generate the correspondiergensemidodule
If K = Rpipandr >e C*=epC..-CN1 andC;, is theminimal

weightof the paths joining to y which is finite.



1.3. COMBINATORICS - CRAMER FORMULAS

THEOREM 2. The solution of the systefix @ b’ = A'X @ bin R, exists
and is unique and given by

x= (Ao A)(bob)/det(Aoc A) ,
det(A) = 5 sgn(o) X) Aici) - A?j = cofactor; (A) ,
o =1

when and only wher > 0.

max(Xy, 3X2) = 5,
max(4xy, 2X2) = 6,

oot =020 x5z =5 [ (%[

1The computation are done h

det(A) =26 12=0612, det[g g] = 618,




1.4. ORDER- RESIDUATION

e A dioid is completewhen the® is distributive with the infinitep.

e A complete dioid is a latticeg upper bounda lower bound).

e D andC complete dioidsf : D — C. f isresiduablaf {x | f (X) <y}
admits an maximal element denoted Hy(y).

e fresiduables fofiglandféo f > Ip.

1. foflof=1f flofofli=fE

2. fisinjective< ffo f = |p <= f¥is surjective and the dual.
3. (ho f)f = flohf., f<ge g L

4. (fogf="FfAg. (FfAQFf> flagh.

IN Rmax If f(X) = Axthen fﬂ()’)j = (A\Y)] = Ni Yi/Aij .



1.5. GEOMETRY - IMAGE, KERNEL, INDEPENDENCE

X andY semodulesF : X — Y a linear map.

e IM(F)={F X)) | xe X} .
o ker(F) = {(x',x%) € X?| F (x}) = F (x?)} . Itis acongruencehat
IS an equivalent relatio® C X x X which is a semimodule.

~
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FIGURE 1. Image and Kernel.



e A generating family{x;};, of a semimoduleX is a subset oKX :
VX e X {ajlic e KL X = @(Xixi.

el
e “Convex” semimodule admits a unique generating family (the set of the
extremal points).
e The family{x;};c, Is independenif

@(xixi :@ﬂixi — o = fi, Vi el .
el el
¢ An independent generating family is calletha@sis A semimodule
admitting a basis is calleldee

g e e
PL= (€|, P2=|€]|, P3=|€[, PLDP2=P2D P3.
e e €




1.6. REGULAR MATRICES AND PROJECTIVE SEMIMODULES

e A matrix A is regularif it exists a matrixA* : AA'A = A,
e A subsemimoduléd/ of a semimodulée and a congruenc® of E form
adirect sUmE = V B R if

VxeE dlyeV : xRy.

y is called theprojectionof x onV parallel toR.
e A semimoduleV is saidprojectivelf it exists R congruence ané a
free semimodule such th&t =V H'R.

THEOREM 3. GivenA = My(Rmax), IM(A) Is projective IiffA is regular
then it existsB with E = Im(A) B kerB and P = A(B A\B) is the linear
projector onim(A) parallel toker(B).



2. COSTMEASURES ANDDECISION VARIABLES

We call adecision spacthe triplet(U, U, K) whereU is a topological space,
U the set of open sets &f andKK a mapping froni/ to Rpyin such that

1. KU) =0,
2. K(¥) = 400,
3. K(U, An) = infa K(Ay) for any A, € U.

The mappingK is called acost measute

A set of cost measurds is saidtight if
sup inf K(C® = +o0 .

CcompactU KeK

A mappingc : U — Rpin such thatkK(A) = inf,cac(u) VA C U is called a
cost densityof the cost measur&.



THEOREM4 (M. Akian, V.N. Kolokoltsov). Given a l.s.cc with values in
Rmin such thatinf, c(u) = 0, the mappingA € U — K(A) = infyca c(U)
defines a cost measure 0d, if).

Conversely any cost measure defined on a topological space with a countable
basis of open sets admits a unique minimal extengipto P(U) (the set of
subsets obJ) having a densitg which is a |.s.c. function ol satisfying

Inf, c(u) = 0.

def

EXAMPLE 5. 1. ym(X) = { oo forxzm.

0 forx = m,
2. Mbo(0Z Lot x — m)[|P for p = 1with Mp o=y

By analogy with the conditional probability we definenditional cost excess
to take the best decision B knowing that it must be taken iB by

K(AB)E K(AN B) — K(B) .



2.1. DECISION VARIABLES

. A decision variableX on (U, U, K) is a mapping fronU to E (a
second countable topological space). It induces a cost medAsuoa
(E, B) (B denotes the set of open setstOfdefined by

Kx(A) = K. (X" 1(A), YAc B.

The cost measuri& x has a |.s.c. density denotegd .
. Two decision variableX andY are saidndependentwhen:

Cx,y (X, Y) = Cx(X) + cy(y).

. Theconditional cost excessf X knowingY is defined by:

Cxiy (X, N2 K (X =X | Y =y) = cxy(X, y) — Sy (Y).

. Theoptimumof a decision variable is defined by

<O>(X)d§f arg miEnconv(cx)(x)
Xe



5. When the optimum of a decision variabewith values inR" is unique
and when near the optimum, we have

1
coNV(Cx ) (X) = 5 lo =2 (x — OX)[IP 4+ o([x — O(X)||P),

we say thatX is of orderp and we define itsensitivity of orderp by

SPOX)E &

6. Thevaludgresp.conditional valug¢of a cost variableX is

v(x) & INf(x + cx () , V(XY =y) o If(X + v (X, )

7. The cost densityof the suizi of two independent variables andY is
theinf-convolution of their cost densitiecx andcy, denotedcy * Cy
defined by

cz(2) = an; [Cx(X) +cy(Y) [ X+Yy=17].



For a real decision variabl¥ of cost/\/lr'%,a, p > 1, we have

1
OX)=m, SP(X) =0, V(X) =m— Ho-p :
THEOREMG6. For p > 0, the numbers

er . 1 e
X o inf {a ox(0) 2 —1(x - <O><><>>/o-|p} and [ X[ p € |X[p + [O(X)]

define respectively a seminorm and a norm on the vector dpBoé real
decision variables having a unique optimum and such &t Is finite.

THEOREM 7. For two independent real decision variabl¥sandY and
k € R we have (as soon as the right and left hand sides exist)

OX +Y) = O(X) +0(Y), OkX)=kO(X), SPkX)=KISP(X) .
[SP(X 4+ )P = [SPOOIP + [SPINIP, (IX+YIp)P < (XIpP +(YIpP .



2.2. (HARACTERISTIC FUNCTIONS, FENCHEL & CRAMER TRANSFORM

e TheFenchel transforndd of a convex function

O E [F]0)E SUFL (6. X) — c(x)]

e Thecharacteristic functiowf a decision variable is defined by

FOXO)® Fiey) .

F(X+Y)=F(X)+FY), [FkX)]O) =][FX)]KI) .

e TheCraner transfornC, ©Fo log oL associates to the probability law

u the convex function
c.: U suddU —logE,(e")],
0

where/ is the Laplace transform.



M log(L(M)) = F(C(M)) C(M)
n ¢, (0) =log [ €*du(x) | c,(x) = sup,(Ox — €(H))
0 —00 +00
83 fa Xa
Gauss distrib. mo + 3|06 ME,
M * vV éM + év C,LL * Cv
K log(k) + € c — log(k)
w>0 ¢ convexl.s.c. Cc convex l.s.c.
def N .
mo= [ ¢(0) = log(m) inf, c(x) = — log(mo)
My = ¢(0) =0 iInf, c(X) =0
my =1, mdg[x,u ¢'(0) =m c(m) =0
mo =1, mzdg[xz,u ¢ (0) = 2% my — m? ¢’'(m) = 1/0?

TABLE 1. Properties of the Cramer transform.




2.3. CONVERGENCES OFDECISION VARIABLES

For the sequence of real decision varialfl¥g, n € N}, cost measurek,
andc, functions fromU (a first countable topological spad&o Ry, we say

that :

1. Xn € LP converges in p-norntowardsX € LP denotedXp, LN X, if
limp | Xn — X[p =0

2. Knhconverges weaklyowardskK, denotedkK, LS K, ifforall fin Cp(E)
3 we havdim, K, (f) = K(f)%.

A sequenceéK,, of cost measures is said asymptoticaly tight if

sup liminf K,(C® = +o00 .
CcompactU n

2Each point admits a countable basis of neighbourhoods.
3C,(E) denotes the set of continuous and lower bounded functions EooR, .

AK(f )dgf inf,(f (u) + c(u)) wherec is the density oi.



THEOREM 8 (Large Numbers) Given a sequencgX,, n € N} of I.i.c.
decision variables belonging toP, p > 1, we have

1
YW = Z X, — O(Xo) .

where the limit is in p-norm convergence.

THEOREM 9 (Central Limit). Given an i.i.c. sequendeX,, n € N} centered
of order p with |.s.c. convex cost, we have

def
NS Nl/p Z Xn = MG goxg

THEOREM 10 (Large Deviation).Given an 1.1.c. sequendeX,, n € N} of
tight cost densitg, we have :

1 w A
HC(X1+“'+Xn)/n — C,

where€ denotes the convex hull of



3. NETWORKS ANDLARGE SYSTEMS

(0,6,0) ooNl
4 Mooo 3
| oooooob(]—l .N—|3
y

X

(0,0,6)

FIGURE 2. Transportation System (6 cars, 3 parkings).



e We consider a company renting cars Figuie (t hasn cars andn
parkings in which customers can rent cars.

e The customers can rent a car in a parking and leave the rented car in
another parking.

e After some time the distribution of the cars in the parkings is not
satisfactory and the company has to transport the cars to achieve a bette
distribution.

e Givenr the (m, m) matrix of transportation cost from a parking to
another, the problem is to determine the minimal cost of the
transportation from a distribution = (Xq, - - - , Xm) of the cars in the
parking to another ong = (y1, - - - , Ym) and to compute the best plan
of transportation.



3.1. RRECISEFORMULATION

e Given the(m, m) transition cost matrix irreducible such thatj > Oif
| 4] =1,---,mandr;j =0foralli =1, ---,m,

e computeM* for the the Bellman chain o0& of transition costV

defined byMy T x) et rij and

def
TlJ(X].? 7Xm):(X17 7X| _17 7XJ+17 7Xm)7

fori, ] =1,---,m.

e The operatoilj; corresponds to the transportation of a car from the
parkingi to the parkingj.

o Ifrjj =eforalli =1,.---, m(the absence of transportation costs
nothing) the previous problem corresponds to the computation of the
largest invariant cost satisfyingc = cM, andc, = e.



3.2. SOLUTION TO THE M-PARKINGS TRANSPORTATION PROBLEM

THEOREM 11. The optimal value of the transportation problem is :
Miy =Piy(M) = inf  ¢.r.
T p=y—X

where 7 the incidence matrix nodes-arcs of the complete graph and
¢ =2 Pirij-
We have for ally andx such thatx; < y; for | # 1

My, = ) (r)H V9,

o #i

and for all x andy satisfyingy; < Xx; for | # |

My = @ ™=
JL]#



3.3. EXAMPLE

Transportation system, Figurg)( with 3 parkings and 6 cars, and
transportation costs :

0 1 H4o© e 1 €
r= | +00 0 1 —le e 1
1 +00 0 1 € e

We have :

Xx=1(0,006),y=(231),
My = (r3)°(r5)°=2x1+3x2=8.



3.4. AGGREGATION

GivenX =R . Y =R". andC: X — Y alinear map. We say that
A . X — X isaggregablavith C if there existsAc such that

CA= AcC.

If Ais aggregable b€ and X1 = AX, thenY, = C X, satisties
Yn+1 = AcYh.

Given a partitior/ = {Ji, ..., Jp} of the state spacE = {1,... ,n},

the characteristic matrix of the partitiau is

Uy, =1% e vicr vieu.
e Sl ¢ J,
Ais aggregable withut we saylumpableiff

@akj —aky, V) e J, VI, Kel.
keK



4. INPUT-OUTPUT MAX-PLUS LINEAR SYSTEMS

/_\“@
O,
Q)

hv4

FIGURE 3. Event Graph

X =max(14 Xt 5 1+ x2 ,1+u)  [xt=min(xt ; +2, %2, 4+ 1, ur_1)
Xg = max(1+ X._;, 2+ U) XZ = min(xt ; + 1, Ut_»)
Yk = max(Xg, Xg) Yt = min(x{, x¢)

-




4.1. TRANSFERFUNCTIONS

D = @dkyk, Ck € Zmax- C= @Ct5t, d € Zmin :
keZ teZ

Y L (Gkez = (Ok-1kez - 81 (Ctez = (Ct—Dtez -

X=yAX®BU, [X=8sAX®BU,

Y=CX. = CX
~ ~\ ¥ ~

Y=C(HA*BU. Y= C A) BU .



/\
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/\
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\/
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O

FIGURE 4. Event graph simplification.

BLY,8] —— (8 — Z . [Y] |
y* V¥ (&Y y*

_ \ *\\ v

7. [8] —— (&) —— M[Y.3]

FIGURE 5. Modellings



X =AX® BU ’
Y=CX, véd & )

Y = CA*'BU = §% (y8)*U .

| —W—3]
u

(o

FIGURE 6. Equivalent system 3.

>(O—]
J



4.2. RATIONAL SERIES.
Se M¥[y,é]is:

1. rationalif it belongs to the closuré¢z, e, y, 6} with respect of finite
number of operation®, ® andx;
2. realizabldaf it can be written :

S=C(yAL®5A)" B,

with C, A1, Ao, B boolean ;
3. periodicif it exists p, g polynomials andn monomial such that :

S=pogm".
THEOREM 12.

Rational< Realizables Periodic.



4.3. APPLICATIONS

Troughput of an event graptA (y, §) irreducible,

m
A= max — . m=y™sm
meCeC m,,
Feedback design.
—u> H »—
A + y
S?

FIGURE 7. Feedback.

Y=HU®SY)=(HS*"HU .
Latest entrance time to achieve an objective.

§= A\ AC\Y,

Z=CABUKLY, U=CAB\Y,
Y = B\¢ .
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