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Abstract

We consider the projection problem for linear spaces and
operators over dioids such as the (max, +) semiring. We
give existence and uniqueness conditions for the projec-
tion onto the image of an operator, parallel to the kernel
of another one, together with an explicit formula for the
projector. The theory is not limited to linear operators:
the result holds more generally for residuated operators
over complete dioids. Illustrative examples are provided.

1 Introduction

One of themost regrettable gapsin thetheory of (max, +)
linear Discrete Event Systems is the lack of a geometric
understanding, in the spirit of the ‘geometric approach’
initiated by Wonham [17] for conventional linear systems.
The main obstacle in this direction is the lack of a power-
ful theory on images and kernels of linear operators over
the ‘(max, +) semiring’ Rpyax o (R U {—o0}, max, +),
similar to therank theory for vector spacesor to thetheory
of modules over principal rings.

Finite dimensional images, or equivaently, finitely
generated Rmax-semimodules, have been serioudly inves-
tigated. We refer the reader to [14, 15, 16] for existing
results (existence of basis, classification tools). Compar-
aively, kernels seem to have attracted very little atten-
tion. Indeed, in the (max, +) context, one has to define
the kernel (or perhaps the ‘bikernel’) of a linear map-
ping A as an equivalence relation, namely as the set of
pairs (X, y) such that Ax = Ay (the usua definition
ker A = {x | Ax = &}, where ¢ denotes the zero ele-
ment, carries little information in the (max, +) case, due
the noninvertibility of addition).

In this paper, we study the simplest geometrical prob-
lem which consists in projecting onto the image of an
operator B : U/ — X parallel to the kernel of an operator
C: X — Y. For linear operators over vector spaces, the
answer is well known: the existence of such a projector
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IT: X — imB, pardlé to kerC, is equivalent to the
direct-sum decomposition X = im B + ker C. Moreover,
as soon as B isinjective and C is surjective!, we have

n=B(CB)!C. (1)

Themaindifficulty in extending thisresultisthat linear op-
erators over idempotent semimodules are generically not
invertible (even not injective, and not surjective). How-
ever, they satisfy a suitably relaxed invertibility condi-
tion (residuability), which is enough for our purpose. We
provide a characterization based on the residuated maps
of B, C, and give a formula similar to (1) involving the
residual of CB instead of itsinverse. The class of residu-
ated mappings (over general ordered structures) isindeed
much wider than that of linear ‘continuous' ? operators
over idempotent semimodules.

The paper is organized as follows: in §2, we recall
the few algebraic elements needed in the paper. Kernels
and images are introduced in §3: intrinsic (operator inde-
pendent) characterizations are provided in terms of fac-
torizations (or Green classes) of residuated mappings. In
84, the operator of projection parallel to the kernel of a
residuated operator in isolation (without reference to an
image) is determined. Dually, in §5, the operator of pro-
jection onto theimage of aresiduated operator inisolation
(without reference to a kernel) is given. These two pro-
jection results use the order relation to canonically select
a (maximal or minimal) solution to these ill-posed prob-
lems, in away very much analogous to the specification
of conventional quasi-inverses by norm minimization ar-
guments. Next (§6), we address the complete projection
problem. We concludewithillustrating examplesfor R max
semimodules.

Of course, projection operatorsareinstrumental inlin-
ear algebraand in control, and the study of their (max, +)
and dioid analogues needs almost no justification. How-
ever, we would like to mention a specific application to
aggregation and lumpability problems. One may formu-
late aggregation problems for Markov chains (and more
generaly, for linear dynamical systems) in a purely al-
gebraic way using projection operators, as in [6]. With
the projection theorem given here at hand, this approach

1These conditions are not too restrictive in the case of linear oper-
ators over vector spaces. Indeed, what is important is the geometric
objectsim B and ker C rather than the representative operators B and C
themselves.

2Precisely, lower semicontinuous, as defined below.



extends verbatim to the (max, +) case. Then, one ob-
tains aggregation conditions for Timed Event Graphs, i.e.
conditions for the existence of (usually physically mean-
ingful) aggregated variables (typically the maximal com-
pletiontimeof all thetaskswithin acertain relevant class),
from which the complete behavior can be retraced. This
isreported in [4].

2 Algebraic preliminaries

We briefly and informally recall the few algebraic results
needed here. More details can be found in [1] for dioids
and ordered sets, and in [9] for semirings and semimod-
ules. A seminal referencein residuationtheory is[2]. See
aso[5].

2.1 Order propertiesof dioids

Adioid (D, ®, ®) isasemiringinwhich additionisidem-
potent: a @ a = a. The zero and unit elements will be
denoted ¢ and e respectively. A dioid (or more gener-
ally, an idempotent additive monoid) is equipped with the
natural order relation:

a<b < adb=h. %)

Then, a & b coincides with the upper bound sup{a, b} for
the natural order <. Note that ¢ is the bottom element of
D: VX € D, ¢ < X. Indeed, (2) sets up a one to one
correspondence between ordered sets (D, <) with upper
boundsfor any pairs of elementsand abottom element for
the whole set on the one hand, and commutative idempo-
tent monoidsonthe other hand. We say that anidempotent
monoid is complete whenever an arbitrary (possibly infi-
nite) set X ¢ D admits an upper bound sup X. Then, we
define infinite sums by setting:

def
X=supX.
xeX

We say that an isotone® mapping f from acompleteidem-
potent monoid E to a complete idempotent monoid F is
lower semicontinuous® (for short, I.s.c.) [1] if for al (pos-
sibly infinite) nonempty subsets X C E,

f(@x):@f(x). ©)
xeX xeX

A dioid is complete whenever its underlying additive
monoid is complete, and when for al a € D, the op-
erators of right and left multiplication by a, x — xa, and
X — ax arel.s.c.

Example 1. The dioid Rya Which is not complete can
be embedded in the complete dioid Rpx = (R U
{£o0}, max, +), with the convention —oco + (+00) =
—OX.

3A mapping f : (£, <) — (F, <) isisotoneif it is a morphism of
ordered sets,ieif x <y = f(X) < f(y).

4The specialization of this definition to isotone mappings R — R
coincides with the usual lower semicontinuity notion. Lower semicon-
tinuity can also be seen as a special case of Scott continuity defined for
(possibly non isotone) mappings over continuous lattices. See [8].

2.2 Residuation

A mapping f from an ordered set (£, <) to an ordered set
(F, <) isresiduated if it isisotone, and if foral y € F,
theset {x € £ | f(x) < y} admits a maximal element,
denoted f¥(y). The isotone mapping f* : (F, <) —
(&, <) iscalled the residual of f. Theresidua f# isthe
only isotone mapping satisfying the following relations’:

IA

foffi<l, (49)
flof>1. (4b)

A simple characterization holds in the case of complete
idempotent monoids £, 7. Then, f is residuated iff f
isl.s.c.t and f(e) = . The following identities can be
easily derived from (4).

fofnof:f, (5a)
fiofoff=f", (5b)
(foh)f=h%, %, (50)

where f, h are residuated mappings, f : £ - F, h:
H — &, respectively.

The notion of dually residuated mapping is defined
naturally by reversing the order in the above definitions.
See [1] for details. We use the notation f° for the dual
residua of f. Animmediate consequence of characteri-
zation (4) and its dual isthat aresiduated map f* isitself
dually residuated. Indeed:

(f5) = f . (6)

3 Kernels, images, and factorization of
isotone maps

Definition 1 (Kernel). Let C denote a mapping’ X —
Y. We call kernel of C (denoted ker C), the eguivalence
relation over A

x“Cyecm=Cey). @)

We will write
[Xlc = x ® ker C ¥ CY(C(x))

for the equivalence class of x. The notation x @ ker C, (to
beusedwhen X', )V are equipped with additive structures),
isintroduced by anal ogy with conventional linear algebra,

5We denote | the identity map, without reference to the underlying
set, which should be clear from the context. E.g., in (4a), | stands for
theidentity map 7 — F.

6All the examples of linear operators we have in mind for control
purposes, and in particular general input-output operators with kernel
representation, asin [1, Th.6.5], arel.s.c., and therefore, residuated.

"We need not restrict the definition of kernels to morphisms as usual
[3]. Indeed, definition (7) is a purely set-theoretic one.



although a kernel is not® a ‘subspace’ of X. It may be
thought of asa‘fibration’ of X” by the equivalence classes.
Even when C is linear, these equivalence classes may
have no uniform ‘dimension’ in that some may be reduced
to singletons whereas other may contain infinitely many
elements (see the examplesin §7).

Lemmal. LetC: X — Y bearesiduated (resp. dually
residuated) mapping. Then ker C = ker(C* - C) (resp.
ker C = ker(C" . C)).

Proof: By this statement, we mean that the equivalence
classes are the same with both mappings. We must prove
that

C(x) =C(y) & C*-C(x) =C*-C(y),

for al x, y, which follows from (54). The same for °
instead of . ]

Remark 1. In conventional algebra, if C and D arelin-
ear operators, ker(D - C) = ker CiffimCnker D = {0}.
Therefore, here, we may say that imC is ‘transverse’ to
ker C* (which is reminiscent of the fact that imC is or-
thogonal to ker CT — T denotes transposition — for ma-
trices in conventional algebra). A more accurate way of
saying this is to say that the intersection of any equiv-
alence class defined by ker C* (or ker C°) with imC is
reduced to a singleton. Indeed, the previous proof es-
tablishes uniqueness (it may be read as follows: if two
elements are both equivalent mod ker C* and belong to
imC, they are equal). To prove that there exists at least
one element in every classwhichliesalsoinimC, it suf-
fices to observe that, for any x, C - C*(x) € x @ ker C*
(since C* - C o C*(x) = CF(x)), and that, in addition, it
belongs to imC. This operator C . C* will later on be
denoted I and called ‘least projector ontoimC’.

I dentifying the equivalencerelation *2C withits graph

{X,y) ] X kS y}, we naturally order kernels by inclu-
sion. Thisalowsusto state thefollowing isotone version
of afamiliar result for vector spaces.

Lemma 2. Consider an isotone mapping G : X — G,
together with a residuated mapping F : X — F. The
following conditions are equivalent

1. ker F c kerG

2. there exists an isotone mapping H : such that G =
HoF

3. G = G o F]j o F
Proof: 3 — 2 — 1isstraightforward. We prove that

1 = 3. By (5a), we have (x, FFc F(X)) € ker F C
ker G, hence G(x) = G- F? o F(x). m

8The linearity of C is reflected by the fact that kerc isacongruence,

thatisforal x, x’, y € X andforall scalarsa, x ke X' = X®y kerC

kerC kerC
X @y, andx ~ xX = ax ~ ax.

For the sake of symmetry, we give the dual resultsfor
images. Given a mapping® B : &/ — X, we define as
usual imB = {B(u) | ue U}.

Lemma3. Let B: U — X bearesiduated (resp. dually
residuated) mapping. Then imB = im (B . B®) (resp.
imB =im(B. B")).

Proof: When B is residuated, this follows readily from
(5d). Dual argument for B’. [}

Lemma4. Consider an isotone mapping F : F — X,
together with a residuated mapping G : G — X. The
following conditions are equivalent

1. imF CcimG

2. there exists an isotone mapping H : F — G such
that F = GoH

3. F=G.G".F.

Proof: 3 — 2 — 1isdtraightforward. We prove that
1 — 3. Indeed, for al x € F, thereexistsy € G such
that F(x) = G(y). Therefore, by (5a), G- G* - F(X) =
GoG o G(y) = G(Y) = F(X). [ ]

Remark 2. Let uswrite G =, Fif G = HoF and
F = H’. G for some residuated mappings H, H’. By
Lemma 2, two isotone mappings F and G have the same
ker iff G= Ho.F and F = H’ - G for some residuated
mappings H, H’, which alows us to identify kernels to
equivalence classes modulo the left Green relation =,
[11]. Dually, defining the right Green relation G = F
iff G=F-HandF = G, H’for someisotonemappings
H, H’, we may identify images with equivalences classes
modulo =x.

Remark 3. Theinterest of thelast statementin Lemma2
and 4 is the effectivity. When dealing with linear map-
pingsover R7 ., residual sareeasily computed (see[5] and
[1, Lemma4.83]). Thus, theinclusion and equality of ker-
nels and images can be effectively checked. Note that in
the (max, +) case, by composition of linear mappingsand
their residuals, we obtain special cases of ‘(min, max)’
homogeneous mappings studied by Olsder and Gunawar-
dena (see[10]).

Remark 4. When F, G arelinear operators, one may nat-
urally ask for analogues of Lemma 2 and 4 restricted to
linear mappings (the isotone mappings H = G. F* or
H = G*. F arein genera nonlinear). Observing that the
restrictiontoim F of amapping H satisfying condition 2
of Lemma 2 islinear, we see that one part of the problem
is equivalent to extending a linear mapping defined on a
subspace to a globally defined linear mapping. See [7,
Ch.0,Th.7.1.1] for a particular case of this result.

9We do not reserve the term image to morphisms.



4 Projection parallel tothekernel of an
oper ator

From Remark 1 (or rather, itsdual), for any x, there exists
asingleelementin (x @ ker C) Nim C* and it is given by
C*? . C(x). Thefollowing lemmagives other properties of
this element.

Lemmab. LetC : X — Y bearesiduated mapping and
let [T¢ = C* - C. We have that

1. 1€ isa projector, i.e. T1€ o [1¢ = I1¢;
2. TI€ > | (identity over X);

3. M(x) is the unique element equivalent to x
mod ker C which also liesinim C?;

4. TI®(x) is the greatest element in the equivalence
classof x;

5 C.I° =C;

6. Cisinjectiveiff I1® = | and iff C* is surjective.

Proof: Thefirst two statementsfollow from (5a) and (4b).
The third one was aready explained in Remark 1. Asfor
thefourth one, itisalsoadirect consequenceof residuation
theory: forany x, lety € x @ ker C, hence C(y) = C(x);
thegreatest y which satisfiessuch an equationis, by defini-
tion, C*(C(x)). Thefifth statement isanother well known
formula (it expresses that TI¢(x) € x @ ker C). Finally,
thelast statement isextracted from[1, Theorem4.56]. m

Remark 5. Fromthislemma, we may call T1€ *the great-
est projector parallel to ker C’, or, aternatively, ‘the pro-
jector ontoim C¥ parallel toker C'. In[1, Definition4.58],
an operator satisfying thefirst two statementsof Lemma5b
was called a closure mapping. Suppose C itself isaclo-
sure mapping which is, in addition, residuated. Then,
according to [1, Theorem 4.59], I1¢ = C.

Remark 6. Needless, to say, if C is dualy residuated,
dual statements of Lemma 5 can be made: for example,
C’ o C(x) is the unique element of x @ ker C which lies
at the same time in im C", and also the least element in
X @ ker C.

5 Projection onto theimage of an operator

As noticed in Remark 1, for any residuated operator B :
U— Xandany x € X, B B*(x) isthe unique element
of im B whichisequivalenttox mod ker B*. By apply-
ing what was said in Remark 6 to the dually residuated
operator B#, it may be seen that B - B(x) isalso the least
element in x @ ker Bf. The following lemma adds the
interpretation that, among all isotone operators M which
preserve im B, that is, M - B(x) = B(x) for al x € U,
B . B* isthe least one (in addition, it is a projector).

Lemma6. Let B : U/ — X bearesiduated mapping and
let g = B . B%.1° We have that

=Y

. g isaprojector;
2. TIg < I;

3. Ig(x) is the unique element equivalent to x
mod ker B* which also liesinim B;

4. TIg(x) istheleast element in the equivalence class
of x mod ker B?;

5. Mg isthe least operator such that g - B = B;

6. Bissurjectiveiff ITg = | and iff B* isinjective.

Proof: Given that the other statements can be easily de-
rived from Lemma 3 and (4), (5) or have already been
established, only statement 5 needs some argument. In-
deed, this statement will be reformulated in another way
in the next lemma, and then proved. [

Lemma?7. Let B be a residuated mapping fromi/ to X
and Rg (1) betheoperator, defined over isotone mappings
over X', which associates the mapping M - B with M.
Then Rg isdually residuated™ and (Rg)” isequal to Rg:.

Proof: By definition, RbB(\IJ) istheleast operator M such
that

MoB>W. ®)
Therefore, sinceB. B < |,
M>M-B.B*>Ww,B".

Moreover, W . B® itself satisfies (8) since B*- B > 1.
Hence, it is the solution to the dua residuation problem.
|

Remark 7. From Lemma 6, we may call ITg ‘the least
projector onto im B’, or, aternatively, ‘the projector onto
im B parallel to ker B¥’, or even ‘the least projector par-
alel to ker BF. In [1, Definition 4.58], an operator sat-
isfying the first two statements of Lemma 6 was called
a dual closure mapping. However, if B itself is a dual
closure mapping which is residuated — and not dually
residuated —, it does not seem possibleto statein general
that ITg = B.

Remark 8. If B isdually residuated, dual statements of
Lemma 6 can be made: for example, B . B’(x) is the
unique element of x @ ker B” which lies at the sametime
inim B, and also the greatest element in x @ ker B®, and
B - B isthe greatest operator which preservesim B.

1ONote that B as a subscript refers to the expression B - B? whereas
B as a superscript refersto Bf - B.

1R for composition to the ‘right’

12|t isalso residuated but we do not have aclosed-form expression for
(Rp)* since B is not necessarily dually residuated.



6 Projection on theimage of an operator
parallel tothekernel of another operator

6.1 Discussion

Let X, U, Y bethreeorderedsetsand B : ¢/ — X andC :
X — Y betwo isotone operators. Givenany X € X, we
now raise the problem of findingy € imB N (x @ ker C),
that is,

findye X, st.3zeld: C(y) =C(X), (93)
Bz=vy. (9b)

If such ay exists and is unique, it will be called the pro-
jection of x onto im B parallel to ker C. This, in turn,
may raise the problem of existence (isim BN (x @ ker C)
nonempty?) or uniqueness (isimB N (x @ kerC) re-
duced to asingleton?). It isknown that residuation theory
isaway around the problems of nonexistence (by relax-
ing equalities to inequalities) and of nonuniqueness (by
looking for some ‘extremal’ — either greatest or least —
solution), provided that the direction of inequalities be
consistent with the notion of extremality chosen (greatest
‘subsolution’ or least ‘supersolution’) and that the oper-
ators involved have consistent residuation properties (see
[1, §4.4.2]). Also, if equalities can finaly be satisfied,
residuation will always provide an answer with equalities
holding true.

Linear |.s.c. operators are residuated. Therefore, itis
justified to privilege the theory in which B and C* do ex-
ist. Thisiswhat we do hereafter. The dual situation when
B and C are dually residuated can be studied similarly.

6.2 Existence

The following lemma gives severa necessary and suffi-
cient conditions for the fact that im B ‘crosses' ker C.

Lemma8. LetB: 4 - XandC : X — Y betwo
residuated operators. Let

rn§ =B.(C-B)*-C. (10)
The following statements are all equivalent:
1. for all x € X, there existsan elementy € imB N
(x @ ker C) and TI§(x) issuch a y;

2. foral x € X and w € Y such that w = C(x),
thereexistsaz € U/ suchthat w = C - B(2);

3. Im(CoB):|mC,
4. Tc.g = I, thatis, (Co B)o (CoB) =C.C¥;
5. CoII§ = C, thatis,Cc B4 (C-B)*-C =C.

Pr oof:

1= 2: Item 2 isarephrasing of item 1 with w = C(y).

2 = 3: Straightforward.

3 = 4: Straightforward by recalling that, e.g., I1¢ isthe
least projector onto im C.

4 = 5: |t suffices to post-compose with C to pass from
the equality in 4 to the equality in 5.

5 = 1: By applicationto x, the equality in 5 says nothing
but 1. m

6.3 Uniqueness

The following lemma gives severa necessary and suffi-
cient conditionsfor thefact that im B ‘ crosses' ker C at at
most one poaint.

Lemma9. LetB: U4 - X andC : X — Y betwo
residuated operators. The following statements are all
equivalent:

1. for all x € X, there exists at most one element in
imBN (x® kerC);

2. forall z,Z € U suchthat C - B(z) = C - B(Z), we
have B(z) = B(Z);

3. ker(C o B) = ker B;
4. T1°°8 =118, that is, (C - B)!« (C - B) = B*. B;
5. M§-B = B, thatis, Bo(C-B)*-C-B = B.

Proof:
1= 2: Item 2isarephrasing of item 1.
2 = 3. Straightforward.

3 = 4: Straightforward by recalling that, e.g., I8 isthe
greatest projector parallel to ker B.

4 = 5: It suffices to pre-compose with B to pass from
the equality in 4 to the equality in 5.

5= 1(or2): If Co-B(2) = C.B(Z), apply B- (C . B)*
to both members and conclude, using the assumption. m

6.4 Summary

We summarize the above results as follows.
Theorem 1. Consider two residuated operators

ulxSy. (12)

There exists a unique projection operator T1§ (on im B
parallel to ker C) iff conditions of Lemma 8 and 9 above
hold true. Then, T1§ is given by (10). Equivalently:



M§ = MgoI°. (12

Moreover, if B and C are linear, then IT§ islinear.

Proof: The only points to check are: (i) factorization
(12) which follows from (10) and (5c¢), (ii) the linearity
of 1§, which follows from the linearity of the defining
relations (9). [}

Remark 9. When the existence and uniqueness condi-
tions are satisfied, (12) shows that projecting onto im B
parallel to ker C amountsto projecting ontoim C* parallel
to ker C first, and then, to project this element onto im B
parallel to ker B*. Recall that ker(C*-C) = kerC and
that imB = im (B B¥). We thus might have replaced
from the beginning C, resp. B, by C?. C, resp. B o BF,
but these operators are obviously neither residuated nor
dually residuated.

Remark 10. Note also that, in general,
Mg < Mg < I1°,

confirming theextremality of ITg and IT¢ observed earlier.
These two projectors are less — for the former — and
greater — for the latter — than identity, whereas I1§ is
not comparable to identity in general.

6.5 Duality

Finally, we mention the following useful duality result.

Theorem 2 (Duality). Consider two residuated map-
pings B, C asin (11).

1. The existence of a projection onto im B parallel to
ker C is equivalent to the uniqueness of the projec-
tion onto im C# parallel to ker BF.

2. Theuniqueness of the projection ontoim B parallel
to ker C isequivalent to the existence of a projection
onto imC* parallel to ker BF.

Proof: 1. Using Lemma 8 (item 4) and the dua of
Lemma9 (item4) (stated for dually residuated mappings),
we write the existence condition of aprojection ontoim B
parallel to ker C and the uniqueness condition of the pro-
jection onto im C* parallel to ker B?, respectively, as fol-
lows:

C.Cf=C.B.Bf.CF, (133)
(C*)’ - C* = (CF)"« (BF) - BF o CF. (13b)

Using (6), we see that (13a) and (13b) coincide, which
shows the equivalence of the two conditions stated in
item 1. The proof for item 2 is similar. [}

Remark 11. Observe that the theory with dually residu-
ated operators applies for T1E;, and that the dual formula
of (10) yields

N =Cc*.C.B.B =MNC°.Tjg, (14)
which should be compared with (12).

Remark 12. Formulae(12) and (14) give IT§ and ng as
afunction of T1¢ and I1g. We note that, conversely:

C B*
Mg =MN§.Ng ,

nc =ng.n§.
7 lllustrative examples

We start by observing that, if B islinear, im B isinvariant
by translation along the vector 1 = (1 1 1 )T
Indeed, for al 1 € R, we have:

XeimB& x+1leimB,

where (exceptionaly), the operations have to be inter-
preted in conventional algebra. Likewise, if C islinear,
the equivalence classes defined ker C are ‘reproducible
by trandations along 1 in the sense that

X,y) ekerC & (x+ 11, y+1l) ekerC.

Therefore,in the following examples, we can limit our-
selves to determine enough classes to fill in the whole
space by these trandations.

0 X o (-2 =2
B=<2> 6 n8_<0 0)

<

Figure 1: Projection on aline parallel to an hyperplane

Example2. Let X = R2_, U = Ryax, Y = Rpnax, and

max?
consider thetwo linear mappingswith respectivematrices:

B:(E),C:(c d) . (15)

Assoon asac @ bd # ¢, CB isinvertible, and the ex-
istence/uniqueness conditions are trivially satisfied™®. A
generic exampleisdisplayed in Fig 1. Theimage of B is
the conventional line crossing the point (0, 2) asshownin
the figure. The two broken lines (with arrows) represent
the preimage by l‘[g of thetwo points (bold circles) (2, 4)
and (—3, —1), respectively.

13The example extends immediately to X = R, when imB isa
line (i.e. when B hasonly one column) and ker C isan hyperplane (when
C hasonly one row).



X2 . (0 O
- C_B_<_4 0)
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(m§) @4 | "
_ b‘7/
| X 1
vt \+’v (M%) (7.3
(M) "(=L —1) A= N 1
R 0+\;\3’ 5
N
/ o7
N

Figure 2: Projection on amaximal rank strict subspace

Example 3. Consider the matrices

0 O
o= (%) c=s.

Note that CB = B is not invertible. Note also that the
columns of B span astrict subspace of R2_,, with ‘rank’
(minimal number of generators) 2: such asituation cannot
occur in conventional algebra. However, the projection
problem admitsauniquesolutiondepictedinFig. 2. Three
types of classes are shown. If x; +4 > X; > Xp, then x
liesintheinterior of im B. The equivalence class[x]c =
C~}(C(x)) isreduced to {x} itself, and thus TI§ (x) = x.
If Xo > X1 (X isabovetheupper boundary of im B), [X]c =
{(t,%2) | t < Xp}isan horizontal half line crossing im B
a the unique point (xz, Xp), that is, TIS(t, X2) = (X2, X2)
fort < x,. Dually, the points below the lower boundary
of im B are projected on this boundary along vertical half
lines, as shown in Fig 2.

Example 4. Ex. 3isaspecia caseof thefollowing. Con-
sider an arbitrary idempotent matrix P (i.e. P = P?). We
notethat T5 = P(P?)*P = PP*P = P (by (53)), and
that [IEP = PIIf = P. Thus, P = II§ isthe unique
projector onim P parallel to ker P. Thisresult can bein-
terpreted asan anal ogue of thefamiliar fact that withacon-
ventional idempotent matrix P isassociated the projection
onim P paralel to the supplementary spaceim(l — P).

Remark 13. Conversely, when X = D" isthe free semi-
module with n generators over adioid D, and when C, B
are linear operators satisfying the existence and unique-
ness condition of Theorem 1, TI§ is a linear idempotent
operator D" — D". Therefore, it is represented by an
idempotent matrix P in the canonical basis.

Example 5. Consider the matrices

0 1
B=[05 0 ,cz(g ’ 8).
2 1
The image of B and the equivalences classes modulo C

arerepresented in Fig. 3. Let usdetail the construction of
this picture.

Figure 3: 3-dimensional case

Then, it is not difficult to see that there are exactly 5
types of equivalence classes, namely:

[(,1,D]c = {(a, s, )7 | max(s, t) = 1}
withO <a <1 (typel),

[0,1,0)"]c ={(s,t, )" | max(1+s,t) =1}
withl <o <2 (type?2),

[(LLD"c=1{1st"|st<1) (type 3),
[(0,,2T]c ={(5t,27 | s<0,t<1} (typed),

[0,L, D c={(s1t" | s<0t<1}
U{(0,s,1)7 | s<1} (type5).

Modulo the trandations along 1, the last three types are
unique classes whereas type 1 and 2 classes fill in the
gaps | eft between the previous classes: thisisachieved by
letting the parameter o vary within the given bounds. It
should be clear (by mere inspection of the picture) that
each equivalence class modulo C crosses imB at ex-
actly one point. Therefore, the ‘direct sum’ conditions
of Theorem 1 are satisfied. We may of course prove
this algebraically by checking the conditions expressed
in Lemma8 (item 5) and Lemma 9 (item 5), but Fig. 3is
probably more informative.

Remark 14. Consider the case where X = R}, and B
and C arelinear. A necessary condition for the projection
I1$ to exist is that any basis [15] of im B has at most n
generators**. Indeed, when it exists, 1§ isalinear oper-
ator from RfY ., — RI.. with imageim B, but the image
of such an operator is generated by at most n elements.
Since abasis of im B is obtained by eliminating elements
from an arbitrary generating family [15], the necessary
condition is proved.

14As shown in [5], a basis of a finitely generated subspace of R7.,
(with n > 3) may have arbitrarily many elements.
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Exemple 3D du papier WODES 96:

0 1 2
B.CB C 1 15 15
0 0 0
source :
B\comp(C\comp B)\sharp}\comp C=
\begin{pmatrix}

0&-1&-2\\-1&-1.5&-1.5\\0&0&0
\end{pmatrix}



	where: WODES' 96. Edinburgh, Scotland, UK, 19-21 August 1996


