Contribution of Stochastic Control Singular
Perturbation Averaging and Team Theories
to an Example of Large-Scale Systems:
Management of Hydropower Production

FRANCOIS DELEBECQUE anD JEAN PIERRE QUADRAT

Abstract—We present a global model describing a hydropower produc-
tion system and the related management problem. Using averaging and
singular perturbation techniques, we define a nearby optimal problem. The
optimization in the class of local feedbacks leads to a team problem which
can be solved numericaily.

INTRODUCTION

WE DESCRIBE a hydropower system and the related
operational optimization problem. The stochastic and
nonlinear characteristics of this problem impose the dy-
namic programming approach, which leads to a dimen-
sionality problem. We have to solve a partial differential
equation on R?%,

To overcome this difficulty, we use two kinds of tech-
niques.

1) The first one uses a novel singular perturbation and
averaging technique to define a relevant simplified prob-
lem.

2) The second one consists of constraining the class of
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admissible strategies to a class of local feedbacks which
keep the dynamics of the system uncoupled.

At the end of this process, we have to control a system
of about 20 two-dimensional partial differential equations.
This problem, which may be viewed as a team problem, is
solved numerically on a test example. Then, a local prob-
lem (management of a valley) is solved on real data.

The mathematical techniques are explained for specific
examples, and afterwards applied to the hydropower sys-
tem.

The plan will be the following.

I. THE HYDROPOWER SYSTEM

. The description of a valley
The model of water inputs
The evolution of the stocks of water
. The demand of electricity
The cost function
The management problem
. A change of variables
. The dynamic programming equation
I. The limit problem when e—0.

folcivivRel- Y

0018-9286 /78 /0400-0209$00.75 ©1978 IEEE



210

J. A relevant simplified problem

K. A team problem

L. Approximation of multiple integrals
M. A numerical example.

II. NUMERICAL SOLVING FOR A REAL VALLEY

A. Identification of water inputs
B. Bellman’s equation
C. Discretization of Bellman’s equation.

APPENDIX |
A periodic dynamic programming equation
AppPENDIX 11

An averaging singular perturbation problem
1) The averaging theorem
2) Interpretation of the averaging theorem

I. THE HYDROPOWER SYSTEM

We shall describe a model which wants to be relevant
for a one-year management of a hydropower system. Its
purpose is to give a good idea of the weekly outputs of the
big seasonal dams.

We consider 7(~20) hydroelectric valleys. Each valley
is equipped with J;(~10) dams in cascade. This assump-
tion is a simplification of the real system: in fact, we need
only to be able to divide the system into subsystems with
independent dynamics. Each subsystem (here one valley)
must be computable after simplification (here particular
treatment of “small” dams) by the dynamic programming
approach. ’

A. The Description of a Valley

Let us consider the ith valley:

dam (i,1)

dam (i,2)

where x" " is the inflow of water between dam (i,j— 1) and
dam (i,j).

For the dam (i,j) we denote

'} the stock of water

Y; the capacity of storage

u’; the water release through the turbines

i the maximal release through the turbines

v the water release through spillway

ety ) the power generated when the stock is y” and

the turbmed release is u”
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B. The Modeling of Water Inputs

The inputs of water being very uncertain, a determinis-
tic model is irrelevant. We model the inputs of water by
independent diffusion processes. By this way we obtain all
Markov processes of dimension 1 with continuous trajec-
tories. The assumption of independence is not very realis-
tic, but it is necessary to numerically solve the problem.

The input in the upper dam is given by

dx”;=b”'(s,x”'l(s))ds+\/a"'(s,x”'1(s)) dB! (1.1)

where b” and @’ are to be identified ([30], [24], [18]-{20]
and ‘Section II) and B’ i=1---I are independent
Brownian motions. '

We suppose that

x"i(s) =fj(s,x”i (s)), -1, (1.2)

Equation (1.2) means that intermediary inputs are func-
tionally linked to the input of the upper dam.

Moreover, we suppose that the functions s—(b"(s,x),
a"(s,x),f"i(s,x)) are periodic functions with a period of
one year.

J, i=1--

1

j=2---

C. The Evolution of the Stocks of Water

The variation of the stock of water is equal to the inputs
minus the outputs:

ajz'j"-=(x’j".+ u’j’i_1+v’j‘:_1—u’§—v’1’:)ds (1.3)

with the constraints
0<ui<uf (1.4)
0< 0 (1.5)
wWitvi<xi+wi_+oi,,  ifyi=0  (L6)
iU > x w0 ifyi=p,.  (1.7)

Equation (1.6) means that when the stock is empty, the
output cannot exceed the input.

Equation (1.7) means that when the stock is full, the
output exceeds the input.

D. The Demand of Electricity

The demand for electrical power z’ is modeled by a
diffusion process; this process takes into account the
“double periodicity” of the demand:

1) one-year oscillation if we neglect the long term
trends as climatic or market perturbations

2) one-week oscillation (each working day the demand
presents two peaks and there are particular phenomena
during the weekends).

A%

1 week 1 year
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dzs’=%,8 (5.2 z)ds+\/"‘; dB,

where s—f(s,6,z") and §—>B(s,0,z’) are one-year peri-
odic functions and e=1/52.

Indeed, if we look at the demand of electricity with a
step of discretization of one hour, during one week, it
presents many perturbations around a deterministic
trajectory. If we look at the demand with a step of
discretization of one week, during one year, it seems
deterministic. The model (1.8) takes into account this
phenomena. If we take a unit of time of one week, a
diffusion dz’=B’(s,z")ds+ Vo' dB, is good; now if we
change the unit of time, we take a unit of one year, and

we obtain
arz'=lﬁf(£ Z)ds+ < 4B
E € I € R4

and now if we want to take into account the one-year
oscillations, we have the model (1.8) where the application
(¢,8,2)—>B(1,0,z) and a must be identified.

We set

(1.8)

E. The Cost Function

The cost function is the expectation of the cost: of
meeting the electricity demand over one year.
Let us denote

h(z,y )= 2—22 ”(yj,u (1.9

the power produced by nonhydroelectrical means when
the demand is z’, the stocks y’, and the turbine releases u’'.

c’(K) is the cost or production of 4’ per unit of time. It
is, in fact, the result of the optimization of nonhydroelec-
trical means {32], {12].

So, the nonhydropower part of electricity appears only
in the cost function. This is also a simplification, but
realistic for the purpose of this model.

F. The Management Problem

If we require that all the feedbacks (#',v") are one-year
periodic functions, we may suppose that there exists a
unique initial law gg for the states (xg,yg,zp) such that
(x},!,z;) admits a one-year periodic law. Then the mana-
gement problem consists of minimizing

T
E f (W) ds (1.10)
0
with respect to all admissible strategies (v’,v") where T is
the period of management (one year) (the expectation is
taken for the process starting with the initial law gp).
Then, by ergodic consideration, we can prove that
t
lim lf ¢(W)ds=(1.10). (1.11)
t—>o0 1 0
Remark: The interest of such a criterion is that it does
not depend on the starting point. This will be an im-

portant point when we constrain the admissible strategies
to local feedbacks.
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Remark: This problem is studied in [10] by simulation
techniques for the French case. In [32] and [36] the
Quebec case is studied. In [14] a valley is optimized. In
[12] the problem is studied, taking into account the start-
ing cost and the availability of the power plant for the
New Caledonia case. In [16] and [17] two intermediary
steps of this presentation are given.

G. A Change of Variables

Let us make a change of variables such that all the new
ones become dimensionless.

If T=one year, Z=the total installed power, and k=
the cost of production of the power Z during T, let us
define

t=s/T

=23/
=i/
Dji=v{t/u‘ji
xi=x5/ 1
§=y//%
ch:f lljl / i/l
v/ =Ti /¥

b'(t, xl) Tb" (¢ T, xiu)) /i)

a'(t,x}))=Ta"(tT, x"’)/( 1)2 ~

S @x)=F50T,xiy)/ i

m(yj’ t)_e/t(gfyjt)‘;lt’uul)/z
Z

z=z
B(t,0,2)=TB'(¢tT,0T,zZ)/Z
a=a'T/Z?

c(hy=Tc'(hZ)/«k.

We suppose that the design of a valley is the following:

1) a big seasonal dam at the head of the valley

2) small weekly dams downstream

3) the maximal capacities of turbine plants do not
depend on their capacities of storage. (In general, they are
of the same order in the same valley in agreement with the
fact that the water flow of a river is increasing when the
altitude decreases.)

These assumptions are often a good approximation of
the reality; if they are not verified (valley in V'), we can
aggregate several big dams into one in such a way so as to
have a good representation of the reality by this structure.

These assumptions are mathematically written by

¢=1; J#1;

v/ independent of €;

g~e<l)!
|
€=35
(1/number of weeks in a year).
From now on we shall distinguish the upper dams from
the others. For that, let us denote

/g, 1

X'=x

Y =yi

U'=u

Vi=v

Li=vp]

e (v, u))=e";(y}, ), i=1---1, j=2---1,
e;=e"}.

1_ means same order.
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From now on, x(resp.y,u,v) denotes (x’) (resp. (yj)
(u’) )) i=1---1j=2---J.

So we have to solve the following stochastic control
problem:

dX'=b'(t,X")dt+Va' (t,X')dB] (1.14)
dY'=L'(X'=U'=V')d1, i=1---1 (LI5)
ey =1/ + (1) + 0/ )k —u/—v])dr,

i=1---1, j=2---J, (1.16)

xj’:fj‘_i (t,X’) (1.17)

0<u’<1 (1.18)

v/ >0 (1.19)

u'+of <x/+ K (w_ +ol,),  ify/=0 (120)

i=1---1, j=1---J, (121)

dz=1/€B(t,t/e,z)dt+ Va/e dB,

h(Y,e,z,Uu)=z— D el (Y, U)- Eeji(eyji,ztji)
; : i

(1.23)

(122)

p¢= min E
U,V,u,v

Olc(h) dt. (1.24)

H. The Dynamic Programming Equation

Let us define the operators

AU V)= bs(tX’)—+ Loi(e,x7

aX12
P ]
+LI(X'=-U-V! 1.25
( =% (29)
Ff (u',0') = 15/ + (sl + o) l)k,-"—u,-"—v;)i. (126)
ay;
8 1 92

The solution p*, W<(t,X,y,z) of

aW

TH +1/eD(t/e) W+ n&ln [ZAi(Ui,Vi)W‘

+1/e> 2‘ Fi(u',0")we

i j=2
+e(h(Y,0,2,U,u)) | =
W<(0,X,Y,y,z)=W(1,X,Y,y,z)+p*

(1.28)

gives the optimal cost of the problem (1.14)- - - (1.24), as is

shown in Appendix I.
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The numerical solution of (1.28) is impossible because
the large dimension of the state [+ ZX,J; +1=200

(X,Y,y,2)E R?),

I The Limit of the Dynamic Programming Equation
when e—>0

Appendix II gives a singular perturbation theorem.
Thanks to this theorem, we know what happens to the
dynamic programming equation when €—0.

The W, solution of (1.28) converges to the W solution
of

aW +
at U,u,V,v

W (0,X,Y)=W (1,X,Y)+p

S ANULVW +9(1,X, Y, U, V,u,0) | =0

(1.29)

with the v _solution of the short run control problem, that is,
t, X, Y, U, V, i, ¢ being given, one has to solve the
following stochastic control problem where § is now the
time:

v(t,X,Y,U,V,i,0)

= min Ef cOh(Y,0,z,, U+ U, ii+1i,)d0 (1.30)
UVuu

subject to the constraints
1 1
E| 4dl=0, E| 6d0=0,
fo fo

1. 1
Efo Udg=0, Efo Vdo=0 (1.31)

b=+ o o) (132)
X =f (LX) (133)
5+ (o + 5 =~ =0,
J=2,J, i=1,---,1 (1.34)
u=ii+i v=o+6 (118)---(121) U=u, V=0,

(135)
dz=B(1,0,z)d0+ Va dB, (1.36)

h(Y,0,z,Uu)=z— D el (Y, U")

J

-2 X e (0u)=H(Y,z,Uu). (1.37)

i j=2

The expectation in (1.30) is relative to the periodic
measure, that is, the processes y/(#),z(#) start with an
initial law which keeps the marginal law of these processes
periodic of period one.

The equation (1.29) is the dynamic programming equa-
tion of the following stochastic control problem called
long term one:
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with
dX]=b,(1,X;})dt+ Va, dB;
dY;=L'(X'-U'-V*)dt
1>U'>0; Viz0; X'<U+V ifY'=1;
U+Vi<X' ifY'=0
0=%+k& (@ +5,) - -5

ijizj;i (t’Xi ).

So the limit stochastic control problem when €—0 is
decomposed into two stochastic control problems:

1) one called “short run,” the purpose of which is to
give the optimal allocation during “the week™ of the
average output of the big seasonal dam and to manage for
that purpose the weekly dams

2) one called “long run,” the purpose of which is to
manage the big seasonal dams knowing the optimal allo-
cation of its output during the “week.”

Now we shall give an analytical approximation of the
solution of the short run problem.

J. A Relevant Simplified Problem

¢ being a convex function, we have

1 1
E h)dd>c|E| hdb ). 1.38
[letnap> ([ nan) (138)
u/—e’(y/,u) being concave, ¢ increasing, we get
1 - A
Ef c(h)d0>c(z"—~2e1’(Y’,U’)
0 1
J; _
-> 3 e;(o,ﬁ,."))=c(H(Y,z‘, U,ii)) (1.39)
i j=2
with
1
5=Ef zdb. (1.40)
0

The law of z is independent of y and is a solution of

[_ 2, prgyg =
q.>0
qz(07z)=qz(lﬁz)

fqz(O,z)dz=1

(1.41)

A

D* being the adjoint of D. o
Thus, we get the lower bound »(¢,X,Y,U,V,u,0)>

c(H(Y,z,U,)) and the lower bound obtained is reached if
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we linearize e/ around @, and if the constraints
(1.18)- - - (1.21) are not reached (this is not true in the
French case). The following problem (1.42)---(1.45) de-
fines the long run stochastic control problem associated

with the lower bound (1.39).

3w + min
at Uu,V,o

[2A"(U",V")W+c(H(Y,z‘,U,u)) =0
1

W(0,X,Y)=W(1,X,Y)+p

(1.42)
with z defined by
1
z(1)= zq(t,0,z)d0 dz. 1.43
()= [ [za(2,6.2) (143)
q is a solution of
0 d 1 a2
—@q—‘ggﬁ(haﬁ)(ﬁ' Ea“a‘z—zq=0, q>0
q(t’03z)=q(t’ 1,2) (1'44)
1
f q(t,8,2)d9dz=1
0
and u and v satisfy the constraints
Xk (4 + o) =+ o (1.45)

This simplified problem can be viewed as a problem of
managing only the big dams, the stocks of the small ones
being equal to zero, with the cost being to meet an average
deterministic demand defined by (1.43), (1.44). We have
reduced the dimension of the problem to dim(X,Y)=2/
~40. Nevertheless, this problem is intractable. In Section
I-K we shall define a suboptimal control problem which is
solvable numerically.

K. A Team Problem, The Management of the Big Dams

We shall define a suboptimal problem: the stochastic
control problem corresponding to (1.29) in the class of
local feedbacks.

The stochastic control problem associated with (1.29) is

1 L i .

min E c(z,—ze;(w,w)—z > ¢/ (0.u],) |dt
U,V,u,v 0 i i j=2

(1.46)

dX;=b/(t,X})dt+Va; dB] (1.47)

ay/=L'(X'=U'=V)d;; 1>U'>0; V'>0;

XU+ V! ifYi=1;
U+ Vi<X' i Yi=0 (1.48)
0=x/+K (w1 +ol)—u-g (149
xi=f(,X). (1.50)
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Let us denote

Mi(Y U=
( )= uv(l49)(150)

el (YL U )+ 2 21(0,u).

(1.51)

¢ being an increasing function, (1.46) is equal to

1 oo

i IR O LACEH NG

Remark: The problem (1.47)- - - (1.52) is degenerate [no
Brownian motion disturbance in (1.48)], so the standard
existence theorems cannot be applied [9], [13], [25], [7],
[38]. Even the theorem for existence for the degenerate
case [21], [22], [35] is not sufficient because of the con-
straints (1.48). Reference [33] gives the result in the non-
periodic case if we change the constraints

Xi<U+Vi, ifYi=1

Xi>U+V", if Yi=0
to

Xi>U+V, if Yi>1

X' >U+V", if Y’<0

(this modification does not change the physical nature of
the problem, but ensures us of the existence of a solution).
Let us define the class of local feedbacks:

Uy ={U,V: U, V" are functions only of the
local state ¢,X° Y’ such that there exists an
initial law getting the marginal law periodic}.

With the restriction to the class of local feedback con-
trols, the dynamics of the valleys are stochastically inde-
pendent That means that the processes (X/,Y/) and
(X, Y/) have their laws independent for i#i’.

The probability density of (X, Y/) is given by

bp'|+ 5

(L (1.53)

Vl
=3y )p']=0

P'(0,X", Y)=pi(1,X", Y").

The problem of control can be written

1 , .
U}né%mfo f(l;lp’)c(it— gM')do dt (1.54)
with © =(R X[0, 1])! subject to the constraints (1.53).

We can consider the problem (1.54) as a team problem,
each player (the controller of a valley) trying to minimize
the same criterion knowing what happens in his valley
and the probability laws of the other valleys. The criterion
is independent of the starting point.
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A sufficient condition for optimality player-by-player
(Nash point) is

i 2 i
w1, 9 +b.al+mm{L,.(X"— _yn
I ) & Xt uwvi Y’
+f[Hp] —ZMi)d®i}=
ki
‘= I (Rx[0,1])

ki
Wi0,X,Y )=W (LX,Y)+p
(1.55)

P, being the solution of (1.53).
The application of Ito’s formula to W (¢, X", Y’) proves
I pk) do'de

that
wemns [ fo(a-Sar)( 1T

f()lf@c(z‘,— gM")(Hpk)de) dt=p.

So to solve the problem, we can use the relaxation
technique proposed in [32], [34].

Step 1: U given.

Step 2: U'—p'i=1---1 solving (1.53),.

Step 3: i=i+1 modulo I.

Step 4: (p*, U*k+i)— U’ solving (1.55),.

Step 5: U'—p' solving (1.53),.

Step 6: Go to step 3 until convergence occurs.

It is easy to see that we obtain a decreasing sequence of
p'yut >0, s0 { i} converges to u optimal player-by-player
cost (Nash point).

= min
uv

L. Approximation of the Multiple Integrals

To achieve the numerical solution, we must overcome a
last difficulty, the computation of terms like

f(Hp
with 1~20.

ki
But we can see that we need only the laws of Q,=
ZeiM”. k. Using the fact that the M’ are independent
random variables, we may apply the central limit theorem
to justify the following approximation:

Jo(zi-Zar')ao

Qi~I(m;, A,)
m;= 2 E(Mk)
ki
A= 2 Vr(Mk )-
k=i

The computation of E(M*) and V,(M,) needs only
numerical integration in dimension 2. p* defines com-
pletely the law of M*. So we have
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I

II p*

k#i

)i~ Sar Jae

—-(Q—-m)
2A,;

2
oo %2
R\/2IIA,
c(z,—M'—Q)dQ.

M. A Numerical Test of the Algorithm

We solve an example of the team problem described in
Section I-K to test the algorithm (in particular, the ap-
proximation by the normal law) and to have an idea of
the computation time needed.

The discretization of (1.53), (1.55) is explained in Sec-
tion II, using a Markov chain discretization method [14],
[17], [22], [33].

The example treated is the following, with the notations
of Section I-L: 8 valleys

=2/3(1+0.5sin2n)
c(8)=67

M, (Y, U")=B; (1—exp—BjU")(1 - Biexp—BiY")
Bi=1/(0.96x8)

Bi=~(10g0.2) /3

Bi=Bs=

[ X (1)=(exp (&' (1) +m* (1))) /6

4! (1)= — alg’ (1)dr + ajew’ (1)
=02

(a£)2= ai/36

m'(t)=1+0.2sin2xt

dy' (=L (X' (1)- U (1)) dt
L'=18./e.

In this example we have not solved the periodic case
(P (0)=p‘(1)) in (1.53) but have taken a fixed indepen-
dent initial law.

P ‘0,8, Y")= 44E) X (T

=9(0,2X a3/ a;) normal law mean 0 and variance
20‘2/ &,

g,(Y") is discretized in 11 points (0, -
0,0.1,0.4,04,0.1).
The sequence of cost u’ of the algorithm is
192 115 60 26 11 7
{5.8 5 46 44 42 4
3.66 357 348 339 329 3.
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So to achieve the convergence, three global iterations have
been done. In this particular case, it is possible to com-
pute exactly the law of X, ;M k. The difference between
this and (1.54) (obtained with the Gaussian approxima-
tion) is less than 0.0004.

The computation of an element of the sequence (1.54)
costs 3 s of IBM 370-168 for the following discretization:

50 steps in time

11 steps in Y’

6 steps in X". g

In view of this computation time, the French case (20
valleys) seems solvable.

NUMERICAL SOLUTION OF A LoCAL PROBLEM ON
REeAL DaTa

IL.

One studies now how to solve a local problem, that is,
an approximation of the couple of partial differential
equations (1.53), and (1 55) (in the sequel the index i is
dropped).

‘The functions b(z, x) and a(t, x) are unknown, and they
have to be identified before solving (1.53); and (1.55),.

A. Identification of b and a

One has at one’s disposal about a 20-year sample on the
water supply X, solution of (1.14). Its probability law P is
characterized by the functions b and a.

These functlons are apprommated by

b(t,x)= 2 0,-1Ai(t,x)

2.1
a(t,x)= 2 w214, (2,x)

where {4,} is a partition of the space time. :
Because of the periodicity assumptions made, the sets 4;
are chosen as A,=U?2.4,, with 4;,,,=4,,+1 (trans-
lated).
By Girsanov’s formula, if one denotes by Q the proba-
bility law of the stochastic process ajz, Va (t,y,)dB,, one
has

dP,
ag,

It follows that the maximum‘li‘kelihood estimator § of 8 is
given by

=exp{j;t%(s,xs)dxs—%fot%i(s,xs)ds}. (2.2)

. ft.lA,- (S’Xs)dXs
0

bi= = : 23)
f"A'_(S,Xs)dS )
0
6 5.8 first iteration
3.84 3.82 second iteration (1.56)
2 .3.16 3.16 third iteration.
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Moreover, the quadratic variation of the process X, on
the interval [0, s] is given by

lim
sup f4+1— 4|0
i

S(X,,~X,)= fo ‘a(s,X,)dsae.  (2.4)

4 €][0,s]
It follows that

lim
sup|t;— 40

2 (XtH-l _Xti )2

=

fs1Ak(t,X,)dt
0

L= (2.5)

where the summation is taken over I, ={i;(f,X,)E4,}
and s such that [31, (¢,X,)dr>0.

In the discrete time case, (2.3) and (2.5) are approxi-
mated by /

0 1 U
0k=T 2 (%Hq_xﬁ)
kiel,

2
l_ti)) )

(x, 2.6)

i+1
iel;

ﬁ’%=—]—"; _Xt,—’ 0k(tl+

with T, = 3 (14— 1)-

iel,

The statistical properties of the estimators are studied in
[14], [18] and [19]. In particular, their variances can be
estimated by ¥,(6)~( 37/ T;) and V,(3) =2t /|L,]).

Fig. 1 shows the numerical results obtained with real
data (dam of TIGNES in the French Alps); it presents a
part of the observed trajectory (two years) and a trajec-
tory obtained by simulation after identification.

Remark: For computational convenience (for the con-
trol problem), the identified process is X, =p(t,£(¢)) where
p is a regular, strictly increasing [0, 1] valued function and
¢ is the real input. The p(z,-) function chosen is the
distribution function of a normal law with mean m(¢) and
variance 7%(¢#) where m(f) and 7%(¢) are the sample mean
and variance; this transformation resets the diffusion X, in
the bounded set [0, 1] with unreachable boundaries. One
has

&) =exp { G(n+7(ON ' (X (1)},
vo- .

2
I exp— = dx. 2.7

VI 2

B. Numerical Computation of a Closed-Loop Control

In this part one solves numerically a local problem, that
is, approximately step 4 of the algorithm described before.
By the stochastic interpretation of the discretized prob-
lem, one gets, furthermore, a method of resolution of step
2 of the algorithm.

The stochastic control problem for a valley can be
formulated (in the finite horizon case):

T

mafoO g(ty,u)dt+ H(yp) (2.8)

dX=b(t,X,)dt+Va (t,X,)dB, (2.9)
—(E-u)d, ifY,=1

dY,=! (x-u)dt, if0<Y,<1 (2.10)
¢E—w)*d, ifY,=0

with the notations of remark of Section II-A.
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- g is a gain function (value of the power produced by
the dam) and H is a final cost which gives us the value of
the water at the end of the period of management.

Let us denote by V (s,x,y) the Bellman function, that is,

T
V(s,x,y)=m51xE{f g(t,Y,u)dt

+H(Y;)|X(s)=x, Y(s)=y}. (2.11)

V' is the solution of the following dynamic program-
ming equation:
0%

ax?

v LV
”37 +b3; +

a
2
0<x<i (2.12)
0<y<i

with a(£,0)=a(1,1)=0, (£—u) replaced by (¢—
u)*[resp. —(§~u)"] if y=0 [resp.y=1] and V (T, x,y)=
H(y).

+max| (6= 5 +g(tyu) | =0,

The problem of existence, unicity, and regularity of a :
solution of (2.12) necessary to have the probabilistic inter- '

pretation of V' (2.11) is not studied here. One can, how-
ever, give a numerical solution to (2.12) by a method of
discretization given in [22], [33] which allows us to inter-
pret the discretized problem as a Markov chain control
problem. Equation (2.12) is only written here to obtain a
discretized problem which admits a solution thanks to its
probabilistic interpretation, although (2.12) is a degener-
ate partial differential equation [33].

Let (A7,Ax,Ay) by the discretization steps. Equation
(2.12) is approximated by the following equations where
(¢,x,p) take the discretized values

;E{T,T—At,- --,0}
x€{0,Ax, -+ ,N-Ax=1}=G,
y€{0,Ay,--- N,-Ay=1}=G,
V(t+Anx,y)—V(t,x,y)

v
=7 (BXy)e

At
. x+Ax)—-V(x
b(t,x '%e[b‘L(x) Vixt Ai V(x)
Vix)—V{(x—Ax
—-b7(x) (x) Zx( )}(t+At,y)
1% LVO+A)-V(y)
-0 G ] g L)
—(t—u)~ V(y)—i/y(y_AY) }(I-FAI,X)
g(t x)_aZ_Ve a V(x+Ax)+V(x—Ax) -2V (x)
27 axz 2 (AX)Z
(14 Azy).

Then one can solve (2.12) in an explicit way. Indeed,
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this approximation is valid at the boundary because b* =
0if x=1and b7 =0if x=0.
Now we set

. . |b(t,x)|At

Pl (xylxy)=1-—F——
|(§—u)|Az  a(t,x)At
- Ax | Ax

“(x+Bxplxy) b* (1,x)At N a(t,x)At
pr\x X, Y| XY )=

' Ax 2(Ax)?

(x—Bxy|xr) b~ (t,x)At N a(t,x)At (2.13)

pl(x—Ax,y|x,y)=

' Ax 2(Ax)*

. (E—u)T At
b; (X,y"‘Ale,J’)— _Ay—

. (§—u) At
Pl (xy —by|x,y)= &

If x=1 (res. x=0), one has b* =0 (res. b~ =0) and
a=0, and so p*(x+Ax,y|x,y)=0(res.p (x — Ax|x,y) =0).

For y=1 (res. y=0), one sets (§—u)" =0 [res. (§—u)~
=0] in (2.13). ' '

One remarks that for At sufficiently small, one has
pf>0and X, p/(x,y|x0,10)=1, and thus one can inter-
pret the matrix p*(-|-) as the transition matrix of a
Markov chain {n,=(x,,y,)}, t=0,---,T.

P(n11=(x"p") = (xp)=p (x| x.y). (2.14)
Now the discretized equation (2.12) can be written as
V(t,x,y)= max {(V(t+At,x,y)p* (x,p]x,)

+V(t+At,x+Ax,y)p! (x+Ax,p|x,y)
+ V(t+At, x—Ax,y)p!(x—Ax,p|x,p)
+ V(t+At,x,y+Ay)p/ (x,y +Ay|x,y)
+V(t+ALx,y —Ay)pH(x,y —Ay|x,p)
+g(ty,u)-At}  (1=T-1,---,0) (2.15)

with V (T, x,y)=H (p).
Equation (2.15) is the discrete Bellman equation of the
discrete time control problem max, V*(0,x,:y,) with

T—1
2 g(r.yu,(x,.y,))At + H (yr)}

(2.16)

pu (t,x,y)=xE)'} {

where m,=(x,,y,) is a Markov chain with space state
G, X G, transition matrix (2.13), and initial condition
(Xo:Y0)-

Because of the probabilistic interpretation (2.16), one
can calculate directly the transition probabilities
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{week 38)

P“(x,=x"y,=y'|x,=x,y,=y)

=p!(xy|xy), r=t+1,---,T

with the following formulas:
(x| x,y)=8(x,y;x',y") (Kronecker symbol)

Ptt,‘z+k+1 (x’y/]x’y)
N, N

x

= 2 2 Ptl,‘t+k(x1’y1]x’y)Xptlg-k(x/’y/lxlayl)
x1=0 y,=0

(discrete time Fokker-Planck equation). (2.17)

One gets directly an approximation of (1.53) necessary
for step 2 of the algorithm. The cost function (2.16)
admits the representation

T—i-1[ No W,
Ve(t,x,y)= 2 2 2 g(t+k7yl’ut+k(xl’yl))

k=0 x1=0 y;=0

’Pt’,‘z+k(x1’J’1|x’)")At}

D pitr Cepn|x.y)H (yy)-

Xy )

C. Numerical Results

The maximization problem (2.15) can be solved in an
explicit way using an optimality necessary condition
which is the discretization of the necessary condition

, 14
gu(t,y,u)=—5}—(t,x,y). (2.18)

The left-hand side of (2.18) is the (deterministic) gain

obtained from a “marginal” unit of water turbined at time

t with the stock y, and the right-hand side of (2.18)
represents the mathematical expectation of the future
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Stock

Smax

DISTRIBUTION
FUNCTION OF St

Fig. 3.

(stochastic) gain starting in state (x,y). It is clear that for
0<u<1, (2.18) must be verified.

Fig. 2 shows the control obtained, that is, the quantity
of water to be turbined as a function of the water supply x
and the stock y at time ¢ fixed (here week number 38). The
computation has been made with real data (dam of
TIGNES).

Fig. 3 represents the time evolution of the isoprobability
curves for the stock, obtained from (2.13) and (2.17).

One sees that the optimal policy makes the stock of
water decrease to a low level for a few months.

In [14] another example is treated with another dam,
and one gets a policy which keeps the level of water near
its upper boundary (in that last case, the functions g
depends strongly on ).

APPENDIX |
A PerIODIC DYNAMIC PROGRAMMING EQUATION

Let u(t,x) be a feedback, and a controlled diffusion

(1.1)

where t—b(¢,x,u),0(t,x) are periodic functions of period
1,

Let us denote Q“(s,x,t,y)dy as the conditional proba-
bility law of x, knowing that x,=x, and A ={u:R* X R
— R such that r—u(z,x) is periodic of period 1 and there
exists a unique p, verifying

dx,=b(t,x,,u(t,x,))dt+o(t,x,)dB,

P0)= [Q (sxstIDp ). (12)

Let c(¢,x,u) be the cost function, periodic in . We can
define the stochastic control problem:

N
min 11;1’1 7,'/(; c(t,x,u(t,x,))dt

1
=min E| c(t,x,u(t,x))dr, (13)
uel 0

E meaning the expectation relative to this “periodic law.”
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Let us consider the partial differential equation We is the solution of the following Bellman equation:
W 1 9?2 . (1.4 _ g .
W+Ea—5W+ m}n[b(t,x,u)a—x +c(t,x,u) |=0 aWe 92We +1/ea W
ax a 7 +a 1 axz / 2 ayz
W(0,x)=W(1,x)+p. (1.4) e
, ' +min[b1(t,t/€,x,y,u)a—
Let us suppose that there exists a unique (p, W)W e “ X (11.2)
C"2 pE R solving (1.4) (that is the main difficulty) then p ) b, oW :
is the optimal cost (I.3). Indeed, let u be a feedback + ?(1, t/ex,y,u) 3

belonging to AU; applying Ito’s formula to the W(t,x) _
solution of (I.4), we have +c(t, t/e,x,y,u)] =0

W< (T,x,y)=0.

ow , aw
E[W(1,x,)— W (0,x) | =EfO (T + a—xb(t,x,,u(t,x,))
The problem is to study the asymptotic behavior of W*
1 02 when e—0.
= A . 15 .
* 2 a(t,x) 0x? W)dt (15) We conjecture the following theorem.

Theorem: If (t,x) is considered as a parameter,
The left-hand side of (I.5)=[}(W (1,x)— W (0,x)) po(x)dx Vu(1,0,x,y)
[by (I4)]= — p; the right-hand side of s =-
- Efge(t,x,,u(t,x,))dt, so we have ¢ - )
—-a—q—-i byoujl+L 9 a,4]=0 >0
1 EY: 8y[2 q] 282[2"1] 9=
p< Ef c(t,x, u(t,x))dt  VYued Y
° §(6,0,xy)=G(1,1,x,y)  withb,ou(s,0,x,y)
and the equality is reached for u'(t,x)Earg min[b(1,x, = bz(t, b,x,y,u(t,0, x,y))

w) (W /0x)+ c(¢,x,u)). So we have
Jitoxy)d=1

1
=E| c(t,x,u*(t,x,))dt
u=E [ et xput(t,x) )

1
<E f c(t,x,u(t,x))dt  Yueal. has a weak solution (measure), then the W< solution of
0 (I1.2) converges at least pointwise to W, the solution of
Remark: Some periodic parabolic equations are studied

in [28]. In [23] and [29] the ergodic stochastic control W 1 9w Y%
problem is studied in the time homogeneous case. 3 2% Fv + ;L(t,x, Ec—) =0 (IL4)
W (T,x)=0
APPENDIX II
AN AVERAGING AND SINGULAR PERTURBATION where p(t,x,A) is solution of
PrOBLEM
W 1 W . AW
A. The Averaging Theorem 20 + 5023))_2 + e [ ba(t,6,%.y,u) _a)7 1L5)
Let us consider the following control problem: +Abi(1,0,x,,u)+ (4,0, x,y,u) | =0 (-
dx,=b(t,t/€,x,y,u)dt+ 0,dB, W(5,0,x,y)=W(5,1,%y)+ p(t,x,A).
& =1/eby(t,1/e,x,y,u)dt+1/Ve 0,dB? Moreover, if
s07=a, i=12; B independent Brownian motion
2 T [a(6.50)5ldy <oo,
8—b,(¢,0,x,y,u) periodic of period 1
c(1,6,x,y, u) cost function one periodic in 8. then
. T 1 .
mlnEf c(t,t/e,x,,y,,u,)dt. (III) '/(; sz(tﬂ,)f,y,u(t,a,xd’))q(tag,x,J’)dgdy=O. (II6)
u 0
Let us define Remarks: At present we have a proof only in the par-
ticular case b,=0; a,=0 [15].
€ . r A proof in the following deterministic case, a., a,=0: b
We(t,x,y)=minE [ cds. pro . ving > b f2 T T
(t.x.7) u .[ ¢ and b, linear in x,y,u independent of 6, ¢ quadratic in x,y,
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is given in [11], [31]. In this case, §(#,x,y)= 8« ,, Where

y*(t,x) is the solution of b,(#,x,y)=0.

In [1]{6] other averaging theorems are given.

Singular perturbation techniques applied to the control
of partial differential equations are given in [26], [27].

Let us give the outlines of a formal proof. For that
purpose, let p(z,8,x,y) be the probability measure of the
state 0,,x,,y, where §,= /¢ modulo 1.

- p is the solution of the following Fokker—Planck equa-
tion:

8p132 9

T TNl g [ w]
o 1 3P 3
+1/€ @4-502@—8__)/[[)2 up] =0

P(O, Q,X;J’) = 8 (Oa x09y0)
| p(t, O,X’y) =p(t, l,x,y).

(IL.7)
The stochastic control problem can be viewed as the

control of the partial differential equation (IL.7), the cost
function being

T r1
v (0,x0,y0)= Hll}nj(; '/(‘) fc(t’a,X,y,u(t,B,x,J’))
-p(,0,x,y)dtdf dx dy.

Let us denote by §(z,6, x,y) the solution of

g 9%
_0 1, 9%

A\
(=)

a9t 2% gy llowd]=0 g
§(4,0,x,y)=3(t,1,x,) (11.8)
f‘i(t,oax,y)aj/=l

and by g(z,x) the solution of
9¢ 1 99 3 . _
ot +5“15;‘a{[fb1 uqd@dy]q}— (119)

30.x)=5,,
A solution of (IL.7) can be written

pe(t,0,x,)=q(t,x)g (¢,0,x,y) +er<(t,0,x,y)

with r€
measure.

Assuming |c(2,8,x,y)] bounded, we can prove by the
maximum theorem [8] that

W Oxov0) = WOz =min [ [ [5(6,2)3(1.0,x.)

c(t,0,x,y,u(t,0,x,y))dtdf dxdy.

the density of a bounded (independent of ¢)

Now we have to solve the following control problem:

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-23, NO. 2, APRIL 1978

W (0,x0) = min [3(1,%)3(1,6,%.5)
-c(,8,x,y,u(t,0,x,y)) dtdd dx dy
subject to the constraints (11.8), (IL.9). (II.10)

A condition of optimality for this problem is given by
(11.4), (IL.5).

Multiplying (II.8) by y and integrating by part, we
obtain

[ badoa= [ bav-5 5

[aydy+3da,| 8. (IL11)

—m

The condition [§|y|dy <oo gives (I1.6) by passing to
the limit in (I.11) m—co.

By this method, we can prove that W (0,x)<J (u)Vu
Lipschitz, under very general assumptions, where J (u) is
lim,_, of the cost for the feedback u.

On regularity conditions of the solution of (IL5), in the
stationary case, [37] gives a complete proof.

B. Interpretation of the Averaged Problem

Equations (I1.4) and (IL.5) can be viewed as two cou-
pled stochastic control problems for which the dynamic
programming equations are

W W ., . [vow _
T+5 " +mvm{ ™ +m§1xv(txv§) =
W (T,x)=0
(11.4%)
W 1 W
Fa—+§aza—yz—+mm[b2(t 0 x,y,u) a
(IL.5)

+c(t,0,x,y,u)+ § (by(1,0,x,y,u)— v)] =
W (1,0,x,9)=W(1,1,x,9)+»(t,x,0,8).

This problem is obtained when we write (1I.10):
min min f Ggedtdddx dy.
v u
f byGdody =10

¢ is the dual variable associated with the constraint
[b,Gdddy =v. The usefulness of the formulation (I1.4°)
and (IL.5") is that in some case we can obtain analytically
a good approximation of max,»(z,x,0,{).

Equation (4') will be called the long run problem, and
(5') the short run one.

So the limit problem is decomposed into two stochastic
control problems. The first is the short run one, knowing ¢
and x,



DELEBECQUE AND QUADRAT: MANAGEMENT OF HYDROPOWER PRODUCTION

= bZ(taoax,yyy ug)da‘f‘ GZdBHZ

1
ﬁ Efo b, (£,0,,y,,u,)d0 =0

1
min Ef c(8,0,x,y5,1y)df = v(t,x,0)
u 0

L

where the expectation is relative to a probability law for
the initial condition, such that the marginal law of the
process y, is periodic. # is the short run time.

The second is the long run one:

dx,=vdt+9,dB/

T
minEf v(t,x,0,)dt
0

where ¢ is the long run time.

So the short run control problem can be viewed as an
optimal allocation of the resource v given by the long run
problem.

Remark: The short run problem defined here is diffe-
rent from the “fast system” defined in [11]; it is the
coupled system (I11.4") (I1.5") which is the “slow system” of
f111.

CONCLUSION

In this paper we have studied a particular large-scale
system. The techniques used here have much more general
interest: reduction of the dimension of the system (for
example, by singular perturbation techniques), and reduc-
tion of the class of the admissible strategies (for example,
class of feedbacks decoupling the dynamic of the system).

This method seems implementable for the management
of a large system of dams with a reasonable computation
cost.
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