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In the modeling of human activities, in contrast to natural phenomena, quite fre-
quently only the operations max (or min) and + are needed. A typical example is the
performance evaluation of synchronized processes such as those encountered in manu-
facturing (dynamic systems made up of storage and queuing networks). Another typical
example isthe computation of a path of maximum weight in agraph and more generally
of the optimal control of dynamical systems. We give examples of such situations. The
max-plus algebra which is a mathematical framework well suited to handle such situ-
ations. We present results on ¢) linear algebra, i) system theory, iii) duaity between
probability and optimization based on this algebra.

1 Max-PlusLinear Algebra

Definition1. 1. A abelian monoid K is a set endowed with one operation & which is
associative, commutative and has azero element «.

2. A semiring is an abelian monoid endowed with a second operation ® whichis as-
sociative and distributive with respect to & which hasan identity element denoted
e, with e absorbing (that ise ® a = a ® € = ¢).

A dioid isa semiring which isidempotent (that isa & a = a, Va € K).

A semifield is a semiring having its second operation invertibleon K, = K\ {e}.
A semifield which is also adioid is called an idempotent semifield.

Wewill say that these structures are commutative when the product is also commu-
tative.

We call Ryyax [resp. Rminlthe set R U {—oo} [resp. R U {+o0}] endowed with the
two operations & = max [resp & = min] and ® = +.

8. Wecall R”X" and analogously R" X" the set of n x n matriceswith entries belonging

max min

to R,,ax €ndowed with @ denoting the max entry by entry and ® defined by
def
ij = |

o0k w

~

[AB] A ® Bl;; o m]?X[Aik + Bij] = ®rAix @ By, -

9. We call S,ax [resp. Tiax] the set of functions [resp. increasing functions], from
R into R, endowed with & denoting the pointwise maximum and ® the sup-
convolution defined by

[ @ g)(@) Z [f 0 g)(@) E suplf (e~ 1) +9(0)]



Analogously we define Spin [resp. Zimin]. The set Ifflin isthe restriction of Z,,,;, to
piecewise constant increasing functions with jumps at positive integer abscissas.

10. Wecal C,, [resp. C,] the set of lower [resp. upper] semicontinuous and proper (never
equal to —oo [resp. oo]) convex [concave] functions endowed with the & operator
denoting the pointwise maximum [minimum] and ® operator denoting the point-
wise sum.

11. Wecall Cy the set of lower semicontinuous and proper strictly convex functions hav-
ing 0 asinfimum endowed with the @ operator denoting the inf-convolution of two
functions.

Clearly the algebraic structure R, and R,,,;,, are idempotent commutative semifields,
REX2R™S™ Siaxs Smins Zmaxs Zmins L, Co and C,, are dioids, Cy is a commuta-
tivemonoid. We will call al thesevectoria structures based on R, OF R 3, max-plus
algebras. Working with these structures show that idempotency is as useful as the exis-
tence of a symmetric element in the simplification of formulas and therefore that these

structures are very effective to make algebraic computations.

Application2. 1. Thesemathematical structuresintroducealinear algebrapoint of view
to dynamic programming problems.
Given C'inRR”x" we call precedence graph G(C) the graph having i) n nodes, i)
oriented arcs (¢, j) of weight Cj; if Cj; # € inthe matrix C.
The min-plus linear dynamical system

X" =CoX™, X]=e forj=i, X = celsewhere, )

is a dynamic programming equation. The number X" is equal to the least weight
of al paths from i to j (the weight of a path is the sum of the weights its arcs) of
length m (composed of m arcs).

Theminimal average weight by arc of paths having their lengthsgoing to infinity is
obtained by computing A solution of the spectral problem

AX=00X.

The computation of the minimal weight of paths from ¢ to a region described by
d € R?,, (d; = eifj belongs to the region d; = € elsewhere) is equal to X
solution of

X=0Xaod.

2. The evaluation of some systems where synchronization between tasks appears (as
in event graphs a subset of Petri nets) can be modeled linearly in R, or dualy in
Rmin by

X"l —FeoXmeoGeU™, Y™ = Hg Xm*!L, 2

INRmax, thenumber X ™ hastheinterpretation of theearliest date of the m-th occur-
rence of the event i (for example the starting time of atask on amachinein manufac-
turing) has happened. The max operator modelsthe fact that tasks can be performed
as soon as all the preconditions are fulfilled. The vector U models the timing of the
input preconditions. The vector Y denotes the timing of the outputs of the system.



INn Rpyin the number X" hastheinterpretation of the maximum number of events of
kind 7 that can occur before the date . We can pass from (F, G, H) over Ry« tO
the one over R,,;,, by interchanging the role of the delays and the coefficients. (see
[7] for more details).

3. Clearly it existsinfinite dimensional and/or continuoustime versions of theequation
(). For ¢, 9 € Cy the problem

N-1
vy’ = min Z c(u) + ) | 2™ =z|, 2 =2t — b,
u

=m

may be called dynamic programming with independent instantaneous costs (c de-
pends only on « and not on z). Clearly v satisfies the linear recurrencein Cy

v =coo™ N =

To solve some of these applicationswe have to solve max-pluslinear equationsin R} <"

max
or RI'*". The general one can bewritten A®@ X ¢ b = C ® X @ d. In this section we
use three points of view (contraction, residuation, combinatorial) to study this kind of
equations.

1.1 Spectral equations, Contraction and Residuation

Asinthe conventional algebraall the linear iterations are not contractions. We can char-
acterize the contractions using the max-plus spectral theory. To simplify the discussion
we give asimplified result under restrictive hypotheses on the connexity of the associ-
ated incidence graph. The general result will be found for examplein [7].

Theorem3. 1. Ifthegraph G(C) associated withthe matrix C' hasonly a strongly con-
nected component there exists a unique A solution of A ® X = C ® X. It hasthe
graph interpretation

where |{|,, denotes the weight of the circuit ¢ and |{]; itslength.
2. Wedenote C'y thematrixdefined by Cy & A~'oC, ¢* € EaCcaC2e- .00}
where E denotestheidentity matrixand C+ % C'C*. A column i of [C]T suchthat

[C\]f; = e isan eigen vector. In C} it exists at least such a column,
3. Thereexists ¢ such that for m large enough we have

C’HL+C — )\ccm .

If G(C) has more than one strongly connected component, C' may have more than one
eigenvalue. The largest oneis called the spectral radius of the matrix C and is denoted

by p(C).

Theorem4. The equation uX = CX @ d has aleast solution X = [C),]"d,, when
p(C) < u. The solution is unique when p(C) < p.



The equation Az = d has not always a solution but its greatest subsolution can be com-
puted explicitly

x=A\d i max{z | Az < d} = min(d; —a;.) .
J

This computation, well known in residuation theory, defines a new binary operator \
which can be seen asthe dual operator of ®. The\ isdistributive with respect to A (de-
fined asthemin operator inthe R} X7 context). With thistwo operators dual linear equa-
tions may be written.

Corollary 5. Theequation u\ X = (C'\ X) Ad , hasasolutionassoonas p > p(C).
Thelargest X solution of this equation is

X =[Cu" \ pd = pd A (Cy \ pd) AN(Cu\ Cpu\ pd) A -

Application6. In the event graphs framework described before this kind of eguations
appears when we compute the the latest date at which an event must occur if we want
respect due times coded in d (see [7] for more details).

1.2 Symmetrization of the Max-Plus Algebra

Because every idempotent group isreduced to the zero element it is not possibleto sym-
metrize the max operation. Nevertheless we can adapt the idea of the construction of Z
from N to build an extension of R, such that the general linear scalar equation has
always a solution.

Let us consider the set of pairsR2,, . endowed with the natural idempotent semiring
structure

(l'/,x,/) @ (y/7yll) — (LU/ @ y/, .'L'// @ y//) )
(ZC/, .'L'//) ® (y/7y//) — (:L./y/ @ .’L'I/y//7$/y// EB x/lyl) )

with (¢, ¢) asthezeroelement and (e, ) astheidentity elementand ©(z’, 2”') 4 (2, 2).

Definition7. Let 2 = (2/,2”)and y = (v/,y"). We say that = balances y (which is
denotedz Vy)if 2’ @y = 2" ® y/'.

Itisfundamental to noticethat V isnot transitive and thusisnot acongruence. However,
we can introduce the congruence R on R2,,  closely related to the balance relation:
! 11 1 / H / /1 !/ 11
w7 ’oon oy’ ="y it £y #y",
(33 y L )R(y Y ) g { (m’,x”) _ (y/, y//) otherwise.

We denotes & R2,_/R.
We distinguish three kinds of equivalence classes:

{(t,z") | #" < t}, called positive elements, represented by ¢;
{(&',t) | ' < ¢}, called negative elements, represented by © ¢;
{(t,t)}, called balanced elements, represented by ¢°.



The set of positive [resp. negative, resp. balanced] elements is denoted S® [resp. S°,
resp. S°]. Thisyields the decomposition

S=s®us®us* .

Wealso denote S & §8 USS and SY = SV \ {e}.
IfzVyandz,y € SY,wehavex = y. Wecadll thisresult the reduction of balances.
We now consider asolution X, inR} __, of theequation AX &b = CX @ d, then
the definition of the balance relation impliesthat (A© C)X @ (bo d) V . Conversely,
assuming that X isapositivesolutionof AX @bV CX dd,with AX dband CX dd €

S®, using the reduction of balances we obtain that X issolutionof AX ©b = CX ®d.

Theorem 8 (Cramer’srule). Let A € S"*", b € S™, | A| the determinant of the matrix
A (defined by replacing + by @, — by © and x by ® in the conventional definition) and
A; the matrix obtained from A by replacing the i-th column by b, thenif |A| € SY, and
|A;] € SY, Vi = 1,---,n, then there exists a unique solution of AX V b , belonging
to (SV)", which satisfies

Xi = |Ail/]Al .

2 Min-PlusLinear System Theory

System theory is concerned with the input (u)-output (y) relation of a dynamical sys
tem (S) denoted y = S(u) and by the improvement of thisinput-output relation (based
on some engineering criterion) by altering the system through a feedback control law
u = F(y,v). Then the new input (v)-output (y) relation is defined implicitely by y =
S(F(y,v)). Not surprisingly, system theory is well developed in the particular case of
linear shift-invariant systems. Analogously, a min-plus version of this theory can also
be developed. The typical application is the performance evaluation of systems which
can be described in terms of event graphs.

2.1 Inf-convolution and Shift-Invariant Max-PlusLinear Systems

Definition9. 1. A signal uwisamapping from R into R,,;,,. The signals set, denoted )/,
is endowed with two operations, namely the pointwise minimum of signals denoted
&, and the addition of a constant to asignal denoted ® which plays the role of the
externa product of asignal by a scalar.

2. A systemisanoperator S : Y — Y, u — y. Wecal u (respectively y) the input
(respectively output) of the system. We say that the system is min-plus linear when
the corresponding operator is linear.

3. Theset of linear systemsis endowed with two internal and one external operations,
namely
i) parallel composition S = S; @ S, defined by pointwise minimum of output
signals corresponding to the same input;
i1) series composition S = S; ® S, or more briefly, S1.55 defined by the compo-
sition of operators,
i71) amplification T'=a ® S, a € Ry, defined by T'(k) = a @ S(k).



4. Theimproved input (v)-output (y) relation of asystem S by alinear feedback © =
F(y) ® G(v) is obtained by solving the equationy = S(F'(y)) & S(G(v)) iny.
5. A linear system is called shift-invariant when it commutes with the shift operators
onsignals (u(.) — u(. + k)).
Theorem 10. 1. For a shift-invariant continuous® min-plus linear system S it exists
h: R — Ry, called impulse response such that

yzh@ud:dhmu.

2. Theset of impul se responses endowed with the poi ntwi se minimumand the inf-convol ution
isthe dioid Sp;p,.

3. If f [resp. g] denotestheimpulseresponse of the system S F [resp. SG], theimpulse
response h of asystem S altered by the linear feedback u = F(y) ®G(v) issolution

of
h=f®hdg.

2.2 Fenchel Transform

The Fourier and Laplace transforms are important tools in automatic control and sig-
nal processing because the exponential s diagonalize al the convolution operators simul-
taneously and consequently the convolutions are converted into multiplications by the
Fourier transform. Analogous tools exist in the framework of the min-plus algebra.

Definition 11. Let ¢ € Cx, its Fenchel transform isthe function in Cx defined by ¢(6) =
def

[F()](0) = sup, [0z — c(z)].

For example setting I, (z) = ax we have [F(1,)](0) = x.(0) with

[ 4+oofor b #a,
Xa(6) = {0 for 6 = a.

Theorem 12. For f, g € Cx wehavei) F(f) € Cx, i) F isaninvolutionthatisF (F(f)) =
friii) F(f o g)=F(f)+ F(g), ) F(f+9) =F(f) o Flg).

Theorem 13. The response to a conventional affine input (min-plus exponential) is a
conventional affine output with the same slope. If y = h o uw and u = [, we have

y = la/[F(R)](a).

Unfortunately, the class of min-plus linear combinations of affine functionsis only the
set of concave functions which is not sufficient to describe al the interesting inputs of
min-pluslinear systems.

2.3 Rational Systems

A general impulse responde is too complicated to be used in practise since it involves
an infinite number of operations to be defined.

Definition 14. 1. Animpulseresponseh € 72, isrational if it can be computed with

min

afinite number of @, ® and «* operations, from the functionsa ® e (@ € Ryni,) and

3 Linear also for infinite linear combinations.
4 For an impulse response » we define the operator * by h* = e @ h @ h? - -



x1 ® e where

d efort <0,
et) = {efort>0.

2. Itiscaled realizable if thereexists (F, G, H) such that h™ = FG™H. Then there
exists X such that

Xm+1 B xm o G ® Um, Yym—H ® Xxm

The vector X is called the state of the realization.
3. Thesystemiscalled ultimatly periodic if h™+¢ = ¢ x A+ h™, for m large enough.
4, The number X is called the ultimate slope of h.

Theorem 15. For SIS0 systems having animpulse responsein Z¢.  thethree notions of
rationality, ultimate periodicity and realizability are equivalent.

This theorem isamin-plus version of the Kleene Schutzenberger theorem. Theredliza-
tion of an impulse response with a vectorial state X of minima dimension is an open
problem in the discrete time case.

2.4 Feedback Stabilization

Feedback can be used to stabilize a system without slowing down its throughput (the
ultimate slope of its impulse response).

Definition 16. 1. Aredlization of arational systemisinternally stableif al theultimate
slopes of the impulse responses from any input to any state are the same.
2. Aredlizationisstructurally controllableif every state can bereached by apath from
at least oneinput.
3. A redlization is structurally observable if from every state there exists a path to at
|east one output.

Theorem 17. Any structurally controllable and observable realization can be made in-

ternally stable by a dynamic output feedback without changing the ultimate slope of the
impul se response of the system.

3 Bdlman Processes

The functions stable by inf-convolution are known. They are the dynamic programming
counterpart of the stable distributions of the probability calculus. They arethefollowing
functions

MG, o () = %(Ifﬂ —ml/o)?, with M}, (z) = Xm(z), p>1meR,0cERT.

Wehave M2, o ME = MP e Withl/p+1/p =1.

m,o m+4m,[oP +57']



3.1 Cramer Transform

The Cramer transform (C ®Fo log oL, where £ denctes the Laplace transform) maps
probability measuresto convex functions and transform convolutionsinto inf-convol utions:

C(f*g)=C(f) aC(g).

Therefore it converts the problem of adding independent random variables into a dy-
namic programming problem with independent costs. In Table 1 we give some proper-
ties of the Cramer transform. For a systematic study of the Cramer transform see Azen-
cott [4].

Table 1. Properties of the Cramer transform.

[ M [log(L(M)) = F(C(M))] C(M) |
1 é0) =log [ " du(x) | c(x) = supy (9 — &(9))
w>0 ¢ convex |.s.c. ¢ convex |.s.c.
moE [dp=1 20) =0 inf, c(z) =0
mo=1, m% [ zdp &) =m c(m) =0
mo =1, my & [*dp|é’(0) = o® g — m? c'(m) =1/0?
mo = 1 &) =r@)e” | P(07)=T(p)/o”
¢=100" /p’ + o(|0]")
fod 1%6_%(9‘_7")2/02 mo + %(0—9)2, Mgn,a
stable distrib. mo + L |o0|” M2,
Feller [9] withp>1, 1/p+1/p =1

3.2 Decision Space, Decision Variables

These remarks suggest the existence of aformalism anologous to probability calculus
adapted to optimization. We start by defining cost measures which can be viewed as the
normalized idempotent measures of Maslov [12].

Definition 18. 1. Wecall decision spacethetriplet (U, U, K) where U isatopological
space, U isthe set of the open subsets of U and K amap from/ into R such that
i) K(U) =0,14i) K(0) = +o0,iii) K(U, 4,) = inf, K(4,,) for any 4,, € U.
2. Themap K is called acost measure.
3. Amapc:uc U c(u) € R suchthat K(A) = inf,e 4 c(u), VA € U iscaled
acost density of the cost measure K.

SRTERT U {400}



4, The conditional cost excess to take the best decision in A knowing that it must be
takenin B is
K(A|B) € K(ANB) —K(B) .

Theorem 19. Given al.s.c. positive real valued function ¢ such that inf,, ¢(u) = 0, the

expression K(A) = inf,c 4 c(u) for all A € U defines a cost measure. Conversely any
cost measure defined on the open subsets of a Polish space admits a unique minimal
extension K, to P(U) (the set of the parts of /) having a density c® whichisal.s.c.
function on U satisfying inf,, ¢(u) = 0.

This precise result is proved in Akian [1].
By analogy with random variables we define decision variables and related notions.

Definition 20. 1. A decision variable X on (U, U, K) isamapping from U into £ a
topological space. It induces Kx a cost measure on (E, B) (B denotes the set of
open sets of E) defined by Kx (A) = K.(X~1(4)), VA € B. The cost measure
Kx hasal.s.c. density denoted cx .

2. When E = R [resp. R"”, resp. Ry,i,] With the topology induced by the absolute
vaue [resp. the euclidian distance, resp. d(z,y) = |e™* — e ¥|] then X iscaled a
real [resp. vectorial, resp. cost] decision variable.

3. Two decision variables X and Y are said independent when

cx,y (z,y) = ex () + ey (y).

4. The optimum of areal decision variable is defined by O(X) o argming cx ()
when the minimum exists. When adecision variable X satisfiesO(X) = 0, we say
that it is centered.

5. When the optimum of areal decision variable X is unique and when near the opti-
mum, we have

p

= 0K oz — 0(x)P)

ex(z) = .

1
p
we define the sensitivity of order p of K by o?(X) % . When a decision variable

satisfies o? (X)) = 1, we say that it is of order p and normalized.
6. The numbers

x|, inf{o exo) = 2 - @(X))/ap} and [, © ], + [0(X)|

define respectively a seminorm and a norm on the set of decision variables having
aunique optimum such that || X ||, isfinite. The corresponding set of decision vari-
ablesis called DP. The space D? is a conventional vector space and O is a linear
operator on DP.

7. Thecharacteristic function of areal decision variableisF(X) i Flex) (clearly F
characterizes only decision variables with cost in Cx).

5 We extend the previous definition to a general subset of U.



The role of the Laplace or Fourier transform in probability calculus is played by the
Fenchel transform in decision calculus.

Theorem 21. If the cost density of a decision variable is convex, admits a unique mini-
mum and is of order p, we have’:

F(X)'(0) = O(X), [F(X—0(X))]%)(0) = I'(p))[o"(X)]", with1/p+1/p' =1.

Theorem 22. For two independent decision variables X and Y of order pand k € R
we have

cx4y =cx 0ocy, F(X+Y)=FX)+F(Y), [F(kX)](0) = [F(X)](k0) ,
O(X +Y) = O(X) +0(), OkX)=kO(X), o?(kX) = |klo?(X),

[0P(X + Y)Y = [oP(X)] + [oP (V)] (X +Y],)" < (IX],)7 +(Y],)" .

3.3 Limit Theoremsfor Decision Variables

We now study the behavior of normalized sums of real decision variables. They corre-
spond to asymptotic theorems (when the number of steps goes to infinity) for dynamic
programming. We have first to define convergence of sequences of decision variables.
We have defined counterparts of each of the four classical kinds of convergence used
in probability in previous papers (see [3]). Let us recall the definition of the two most
important ones.

Definition 23. For the decision variable sequence { X ™, m € N} we say that

1. X™weakly converges towards X, denoted X™ % X, if for al f inCy(E) (where

Cy(E) denotes the set of uniformly continuous and lower bounded functions on £

iNto Rypin ), lim, Mf(X™)] = M[F(X)] , with M(f(X)) € inf, (f(z) +cx (2)).

2. X™ € DP convergesin p-sensitivity towards X € DP, denoted X™ 2, X, if
lim,, || X™ — X]||, =0.

Theorem 24. Convergence in sensitivity implies convergence and the converse is false.

The proof is givenin Akian [2].
We have the analogue of the law of large numbers and the central limit theorem.

Theorem 25 (large numbers and central limit). Given a sequence {X™, m € N} of
independent identically costed (i.i.c.) real decision variables belongingto D?, p > 1,

we have
N-—-1

3 1 m __ 0
i, 2 X" =0(X?),

where the limit is taken in the sense of p-sensitivity convergence.

7 I denotes the classical Gamma function.



where X isa decision variable with cost equal to M?

Moreover if { X", m € N} iscentered and of order p we have
1 N-1
8 * 12 m __ N /
Weak llj{fn W E_OX —X, W|th 1/p+ ]./p =1 s

0,07 (X0)"

The analogues of Markov chains, continuous time Markov processes, Brownian and

diffusion processes have also been given in [3].
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