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In the modeling of human activities, in contrast to natural phenomena, quite fre-
quently only the operations max (or min) and + are needed. A typical example is the
performance evaluation of synchronized processes such as those encountered in manu-
facturing (dynamic systems made up of storage and queuing networks). Another typical
example is the computation of a path of maximum weight in a graph and more generally
of the optimal control of dynamical systems. We give examples of such situations. The
max-plus algebra which is a mathematical framework well suited to handle such situ-
ations. We present results on i) linear algebra, ii) system theory, iii) duality between
probability and optimization based on this algebra.

1 Max-Plus Linear Algebra

Definition 1. 1. A abelian monoid K is a set endowed with one operation ⊕ which is
associative, commutative and has a zero element ε.

2. A semiring is an abelian monoid endowed with a second operation ⊗ which is as-
sociative and distributive with respect to ⊕ which has an identity element denoted
e, with ε absorbing (that is ε ⊗ a = a⊗ ε = ε).

3. A dioid is a semiring which is idempotent (that is a⊕ a = a, ∀a ∈ K).
4. A semifield is a semiring having its second operation invertible on K? = K \ {ε}.
5. A semifield which is also a dioid is called an idempotent semifield.
6. We will say that these structures are commutative when the product is also commu-

tative.
7. We call Rmax [resp. Rmin]the set R ∪ {−∞} [resp. R ∪ {+∞}] endowed with the

two operations ⊕ = max [resp ⊕ = min] and ⊗ = +.
8. We call Rn×n

max and analogously Rn×n
min the set ofn×nmatrices with entries belonging

to Rmax endowed with ⊕ denoting the max entry by entry and ⊗ defined by

[AB]ij
def
= [A⊗ B]ij

def
= max

k
[Aik + Bkj] = ⊕kAik ⊗ Bkj .

9. We call Smax [resp. Imax] the set of functions [resp. increasing functions], from
R into Rmax endowed with ⊕ denoting the pointwise maximum and ⊗ the sup-
convolution defined by

[f ⊗ g](x)
def
= [f 2 g](x)

def
= sup

t
[f(x− t) + g(t)] .



Analogously we define Smin [resp. Imin]. The set Idmin is the restriction of Imin to
piecewise constant increasing functions with jumps at positive integer abscissas.

10. We call Cx [resp. Cv] the set of lower [resp. upper] semicontinuous and proper (never
equal to −∞ [resp. ∞]) convex [concave] functions endowed with the ⊕ operator
denoting the pointwise maximum [minimum] and ⊗ operator denoting the point-
wise sum.

11. We call C0 the set of lower semicontinuous and proper strictly convex functions hav-
ing 0 as infimum endowed with the ⊗ operator denoting the inf-convolution of two
functions.

Clearly the algebraic structure Rmax and Rmin are idempotent commutative semifields,
Rn×n

max , Rn×n
min , Smax, Smin, Imax, Imin, Idmin Cx and Cv are dioids, C0 is a commuta-

tive monoid. We will call all these vectorial structures based on Rmax or Rmin max-plus
algebras. Working with these structures show that idempotency is as useful as the exis-
tence of a symmetric element in the simplification of formulas and therefore that these
structures are very effective to make algebraic computations.

Application 2. 1. These mathematical structures introduce a linear algebra point of view
to dynamic programming problems.
Given C in Rn×n

min we call precedence graph G(C) the graph having i) n nodes, ii)
oriented arcs (i, j) of weight Cji if Cji 6= ε in the matrix C.
The min-plus linear dynamical system

Xm+1 = C ⊗Xm, X0
j = e, for j = i, X0

j = ε elsewhere, (1)

is a dynamic programming equation. The number Xm
j is equal to the least weight

of all paths from i to j (the weight of a path is the sum of the weights its arcs) of
length m (composed of m arcs).
The minimal average weight by arc of paths having their lengths going to infinity is
obtained by computing λ solution of the spectral problem

λ⊗X = C ⊗X .

The computation of the minimal weight of paths from i to a region described by
d ∈ Rn

min (dj = e if j belongs to the region dj = ε elsewhere) is equal to Xi

solution of
X = C ⊗X ⊕ d .

2. The evaluation of some systems where synchronization between tasks appears (as
in event graphs a subset of Petri nets) can be modeled linearly in Rmax or dually in
Rmin by

Xm+1 = F ⊗Xm ⊕G⊗ Um, Y m+1 = H ⊗Xm+1 . (2)

In Rmax, the numberXm
i has the interpretation of the earliest date of the m-th occur-

rence of the event i (for example the starting time of a task on a machine in manufac-
turing) has happened. The max operator models the fact that tasks can be performed
as soon as all the preconditions are fulfilled. The vector U models the timing of the
input preconditions. The vector Y denotes the timing of the outputs of the system.



In Rmin the numberXm
i has the interpretation of the maximum number of events of

kind i that can occur before the date m. We can pass from (F,G,H) over Rmax to
the one over Rmin by interchanging the role of the delays and the coefficients. (see
[7] for more details).

3. Clearly it exists infinite dimensional and/or continuous time versions of the equation
(1). For c, ψ ∈ C0 the problem

vmx = min
u

[
N−1∑

i=m

c(ui) + ψ (xN ) | xm = x

]
, xi+1 = xi − ui ,

may be called dynamic programming with independent instantaneous costs (c de-
pends only on u and not on x). Clearly v satisfies the linear recurrence in C0

vm = c 2 vm+1, vN = ψ .

To solve some of these applications we have to solve max-plus linear equations in Rn×n
max

or Rn×n
min . The general one can be written A⊗X ⊕ b = C ⊗X ⊕ d. In this section we

use three points of view (contraction, residuation, combinatorial) to study this kind of
equations.

1.1 Spectral equations, Contraction and Residuation

As in the conventional algebra all the linear iterations are not contractions. We can char-
acterize the contractions using the max-plus spectral theory. To simplify the discussion
we give a simplified result under restrictive hypotheses on the connexity of the associ-
ated incidence graph. The general result will be found for example in [7].

Theorem 3. 1. If the graph G(C) associated with the matrixC has only a strongly con-
nected component there exists a unique λ solution of λ ⊗ X = C ⊗ X. It has the
graph interpretation

λ = max
ζ

|ζ |w
|ζ|l

,

where |ζ|w denotes the weight of the circuit ζ and |ζ |l its length.

2. We denoteCλ the matrix defined byCλ
def
= λ−1⊗C,C∗

def
= E⊕C⊕C2⊕· · ·⊕Cn−1

where E denotes the identity matrix andC+ def
= CC∗. A column i of [Cλ]

+ such that
[Cλ]

+
ii = e is an eigen vector. In C+

λ it exists at least such a column.
3. There exists c such that for m large enough we have

Cm+c = λcCm.

If G(C) has more than one strongly connected component, C may have more than one
eigenvalue. The largest one is called the spectral radius of the matrix C and is denoted
by ρ(C).

Theorem 4. The equation µX = CX ⊕ d has a least solution X = [Cµ]
∗dµ when

ρ(C) ≤ µ. The solution is unique when ρ(C) < µ.



The equation Ax = d has not always a solution but its greatest subsolution can be com-
puted explicitly

x = A\d def
= max{x | Ax ≤ d} = min

j
(dj − aj·) .

This computation, well known in residuation theory, defines a new binary operator \
which can be seen as the dual operator of ⊗. The \ is distributive with respect to ∧ (de-
fined as the min operator in the Rn×n

max context). With this two operators dual linear equa-
tions may be written.

Corollary 5. The equation µ \X = (C \X) ∧ d , has a solution as soon as µ ≥ ρ(C).
The largest X solution of this equation is

X = [Cµ]∗ \ µd = µd ∧ (Cµ \ µd) ∧ (Cµ \ Cµ \ µd) ∧ · · · .

Application 6. In the event graphs framework described before this kind of equations
appears when we compute the the latest date at which an event must occur if we want
respect due times coded in d (see [7] for more details).

1.2 Symmetrization of the Max-Plus Algebra

Because every idempotent group is reduced to the zero element it is not possible to sym-
metrize the max operation. Nevertheless we can adapt the idea of the construction of Z
from N to build an extension of Rmax such that the general linear scalar equation has
always a solution.

Let us consider the set of pairs R2
max endowed with the natural idempotent semiring

structure
(x′, x′′) ⊕ (y′, y′′) = (x′ ⊕ y′, x′′ ⊕ y′′) ,

(x′, x′′)⊗ (y′, y′′) = (x′y′ ⊕ x′′y′′, x′y′′ ⊕ x′′y′) ,

with (ε, ε) as the zero element and (e, ε) as the identity element andª(x′, x′′)
def
= (x′′, x′).

Definition 7. Let x = (x′, x′′) and y = (y′, y′′). We say that x balances y (which is
denoted x∇ y) if x′ ⊕ y′′ = x′′ ⊕ y′.

It is fundamental to notice that∇ is not transitive and thus is not a congruence. However,
we can introduce the congruence R on R2

max closely related to the balance relation:

(x′, x′′)R(y′, y′′) ⇔
{
x′ ⊕ y′′ = x′′ ⊕ y′ if x′ 6= x′′, y′ 6= y′′ ,
(x′, x′′) = (y′, y′′) otherwise.

We denote S def
= R2

max/R.
We distinguish three kinds of equivalence classes:

{(t, x′′) | x′′ < t}, called positive elements, represented by t;
{(x′, t) | x′ < t}, called negative elements, represented by ª t;
{(t, t)}, called balanced elements, represented by t•.



The set of positive [resp. negative, resp. balanced] elements is denoted S⊕ [resp. Sª,
resp. S•]. This yields the decomposition

S = S⊕ ∪ Sª ∪ S• .

We also denote S∨ def
= S⊕ ∪ Sª and S∨? = S∨ \ {ε}.

If x∇y and x, y ∈ S∨, we have x = y. We call this result the reduction of balances.
We now consider a solution X , in Rn

max, of the equation AX ⊕ b = CX ⊕ d, then
the definition of the balance relation implies that (AªC)X ⊕ (bª d)∇ ε. Conversely,
assuming thatX is a positive solution ofAX⊕b∇CX⊕d,with AX⊕b andCX⊕d ∈
S⊕, using the reduction of balances we obtain that X is solution of AX⊕ b = CX ⊕d.

Theorem 8 (Cramer’s rule). Let A ∈ Sn×n, b ∈ Sn, |A| the determinant of the matrix
A (defined by replacing + by ⊕,− by ª and× by⊗ in the conventional definition) and
Ai the matrix obtained from A by replacing the i-th column by b, then if |A| ∈ S∨? , and
|Ai| ∈ S∨, ∀i = 1, · · · , n, then there exists a unique solution of AX ∇ b , belonging
to (S∨)n, which satisfies

Xi = |Ai|/|A| .

2 Min-Plus Linear System Theory

System theory is concerned with the input (u)-output (y) relation of a dynamical sys-
tem (S) denoted y = S(u) and by the improvement of this input-output relation (based
on some engineering criterion) by altering the system through a feedback control law
u = F (y, v). Then the new input (v)-output (y) relation is defined implicitely by y =
S(F (y, v)). Not surprisingly, system theory is well developed in the particular case of
linear shift-invariant systems. Analogously, a min-plus version of this theory can also
be developed. The typical application is the performance evaluation of systems which
can be described in terms of event graphs.

2.1 Inf-convolution and Shift-Invariant Max-Plus Linear Systems

Definition 9. 1. A signal u is a mapping from R into Rmin. The signals set, denoted Y ,
is endowed with two operations, namely the pointwise minimum of signals denoted
⊕, and the addition of a constant to a signal denoted ⊗ which plays the role of the
external product of a signal by a scalar.

2. A system is an operator S : Y → Y, u 7→ y. We call u (respectively y) the input
(respectively output) of the system. We say that the system is min-plus linear when
the corresponding operator is linear.

3. The set of linear systems is endowed with two internal and one external operations,
namely
i) parallel composition S = S1 ⊕ S2 defined by pointwise minimum of output
signals corresponding to the same input;
ii) series composition S = S1 ⊗ S2, or more briefly, S1S2 defined by the compo-
sition of operators;
iii) amplification T = a⊗ S, a ∈ Rmin defined by T (k) = a⊗ S(k).



4. The improved input (v)-output (y) relation of a system S by a linear feedback u =
F (y)⊕G(v) is obtained by solving the equation y = S(F (y))⊕ S(G(v)) in y.

5. A linear system is called shift-invariant when it commutes with the shift operators
on signals (u(.) 7→ u(.+ k)).

Theorem 10. 1. For a shift-invariant continuous3 min-plus linear system S it exists
h : R 7→ Rmin called impulse response such that

y = h⊗ u
def
= h 2 u .

2. The set of impulse responses endowed with the pointwise minimum and the inf-convolution
is the dioid Smin.

3. If f [resp. g] denotes the impulse response of the systemSF [resp. SG], the impulse
response h of a system S altered by the linear feedback u = F (y)⊕G(v) is solution
of

h = f ⊗ h⊕ g .

2.2 Fenchel Transform

The Fourier and Laplace transforms are important tools in automatic control and sig-
nal processing because the exponentials diagonalize all the convolution operators simul-
taneously and consequently the convolutions are converted into multiplications by the
Fourier transform. Analogous tools exist in the framework of the min-plus algebra.

Definition 11. Let c ∈ Cx, its Fenchel transform is the function in Cx defined by ĉ(θ) =

[F(c)](θ)
def
= supx[θx− c(x)].

For example setting la(x) = ax we have [F(la)](θ) = χa(θ) with

χa(θ) =

{
+∞ for θ 6= a,
0 for θ = a.

Theorem 12. For f, g ∈ Cx we have i)F(f) ∈ Cx, ii)F is an involution that isF(F(f)) =
f , iii) F(f 2 g) = F(f) + F(g), iv) F(f + g) = F(f) 2F(g).

Theorem 13. The response to a conventional affine input (min-plus exponential) is a
conventional affine output with the same slope. If y = h 2 u and u = la we have

y = la/[F(h)](a).

Unfortunately, the class of min-plus linear combinations of affine functions is only the
set of concave functions which is not sufficient to describe all the interesting inputs of
min-plus linear systems.

2.3 Rational Systems

A general impulse responde is too complicated to be used in practise since it involves
an infinite number of operations to be defined.

Definition 14. 1. An impulse response h ∈ Idmin is rational if it can be computed with
a finite number of⊕,⊗ and ∗4 operations, from the functions a⊗e (a ∈ Rmin) and

3 Linear also for infinite linear combinations.
4 For an impulse response h we define the operator * by h∗

def
= e ⊕ h⊕ h2 · · ·



χ1 ⊗ e where

e(t)
def
=

{
e for t ≤ 0,
ε for t > 0.

2. It is called realizable if there exists (F,G,H) such that hm = FGmH . Then there
exists X such that

Xm+1 = F ⊗Xm ⊕G⊗ Um, Y m = H ⊗Xm .

The vector X is called the state of the realization.
3. The system is called ultimatly periodic if hm+c = c×λ+hm, for m large enough.
4. The number λ is called the ultimate slope of h.

Theorem 15. For SISO systems having an impulse response in Idmin the three notions of
rationality, ultimate periodicity and realizability are equivalent.

This theorem is a min-plus version of the Kleene Schutzenberger theorem. The realiza-
tion of an impulse response with a vectorial state X of minimal dimension is an open
problem in the discrete time case.

2.4 Feedback Stabilization

Feedback can be used to stabilize a system without slowing down its throughput (the
ultimate slope of its impulse response).

Definition 16. 1. A realization of a rational system is internally stable if all the ultimate
slopes of the impulse responses from any input to any state are the same.

2. A realization is structurally controllable if every state can be reached by a path from
at least one input.

3. A realization is structurally observable if from every state there exists a path to at
least one output.

Theorem 17. Any structurally controllable and observable realization can be made in-
ternally stable by a dynamic output feedback without changing the ultimate slope of the
impulse response of the system.

3 Bellman Processes

The functions stable by inf-convolution are known. They are the dynamic programming
counterpart of the stable distributions of the probability calculus. They are the following
functions

Mp
m,σ(x) =

1

p
(|x−m|/σ)p, with Mp

m,0(x) = χm(x), p ≥ 1, m ∈ R, σ ∈ R+ .

We have Mp
m,σ 2Mp

m̄,σ̄ = Mp

m+m̄,[σp′+σ̄p′ ]1/p′
with 1/p+ 1/p′ = 1 .



3.1 Cramer Transform

The Cramer transform (C def
= F ◦ log ◦L, where L denotes the Laplace transform) maps

probability measures to convex functions and transform convolutions into inf-convolutions:

C(f ∗ g) = C(f) 2 C(g).

Therefore it converts the problem of adding independent random variables into a dy-
namic programming problem with independent costs. In Table 1 we give some proper-
ties of the Cramer transform. For a systematic study of the Cramer transform see Azen-
cott [4].

Table 1. Properties of the Cramer transform.

M log(L(M)) = F(C(M)) C(M)

µ ĉ(θ) = log
∫
eθxdµ(x) c(x) = supθ(θx− ĉ(θ))

µ ≥ 0 ĉ convex l.s.c. c convex l.s.c.

m0
def
=

∫
dµ = 1 ĉ(0) = 0 infx c(x) = 0

m0 = 1, m
def
=

∫
xdµ ĉ′(0) = m c(m) = 0

m0 = 1, m2
def
=

∫
x2dµ ĉ′′(0) = σ2 def

= m2 −m2 c′′(m) = 1/σ2

m0 = 1 ĉ(p
′)(0+) = Γ (p′)σp

′
c(p)(0+) = Γ (p)/σp

ĉ = |σθ|p
′
/p′ + o(|θ|p

′
)

1
σ
√

2π
e−

1
2 (x−m)2/σ2

mθ + 1
2 (σθ)2 M2

m,σ

stable distrib. mθ + 1
p′ |σθ|

p′ Mp
m,σ

Feller [9] with p > 1, 1/p+ 1/p′ = 1

3.2 Decision Space, Decision Variables

These remarks suggest the existence of a formalism anologous to probability calculus
adapted to optimization. We start by defining cost measures which can be viewed as the
normalized idempotent measures of Maslov [12].

Definition 18. 1. We call decision space the triplet (U,U ,K) where U is a topological

space, U is the set of the open subsets of U and K a map from U into R+5 such that
i) K(U ) = 0, ii) K(∅) = +∞, iii) K (

⋃
n An) = infn K(An) for any An ∈ U .

2. The map K is called a cost measure.

3. A map c : u ∈ U 7→ c(u) ∈ R+
such that K(A) = infu∈A c(u), ∀A ∈ U is called

a cost density of the cost measure K.

5 R
+ def

= R+ ∪ {+∞}



4. The conditional cost excess to take the best decision in A knowing that it must be
taken in B is

K(A|B)
def
= K(A ∩B) −K(B) .

Theorem 19. Given a l.s.c. positive real valued function c such that infu c(u) = 0, the
expression K(A) = infu∈A c(u) for all A ∈ U defines a cost measure. Conversely any
cost measure defined on the open subsets of a Polish space admits a unique minimal
extension K∗ to P(U) (the set of the parts of U ) having a density c6 which is a l.s.c.
function on U satisfying infu c(u) = 0.

This precise result is proved in Akian [1].
By analogy with random variables we define decision variables and related notions.

Definition 20. 1. A decision variable X on (U,U ,K) is a mapping from U into E a
topological space. It induces KX a cost measure on (E,B) (B denotes the set of
open sets of E) defined by KX (A) = K∗(X−1(A)), ∀A ∈ B. The cost measure
KX has a l.s.c. density denoted cX .

2. When E = R [resp. Rn, resp. Rmin] with the topology induced by the absolute
value [resp. the euclidian distance, resp. d(x, y) = |e−x− e−y | ] then X is called a
real [resp. vectorial, resp. cost] decision variable.

3. Two decision variables X and Y are said independent when

cX,Y (x, y) = cX (x) + cY (y).

4. The optimum of a real decision variable is defined by O(X)
def
= arg minx cX(x)

when the minimum exists. When a decision variable X satisfies O(X) = 0, we say
that it is centered.

5. When the optimum of a real decision variable X is unique and when near the opti-
mum, we have

cX(x) =
1

p

∣∣∣∣
x−O(X)

σ

∣∣∣∣
p

+ o(|x−O(X)|p) ,

we define the sensitivity of order p of K by σp(X)
def
= σ. When a decision variable

satisfies σp(X) = 1, we say that it is of order p and normalized.
6. The numbers

|X|p
def
= inf

{
σ | cX(x) ≥ 1

p
|(x−O(X))/σ|p

}
and ‖X‖p

def
= |X|p + |O(X)|

define respectively a seminorm and a norm on the set of decision variables having
a unique optimum such that ‖X‖p is finite. The corresponding set of decision vari-
ables is called Dp. The space Dp is a conventional vector space and O is a linear
operator on Dp.

7. The characteristic function of a real decision variable is F(X)
def
= F(cX) (clearly F

characterizes only decision variables with cost in Cx).

6 We extend the previous definition to a general subset of U .



The role of the Laplace or Fourier transform in probability calculus is played by the
Fenchel transform in decision calculus.

Theorem 21. If the cost density of a decision variable is convex, admits a unique mini-
mum and is of order p, we have7:

F(X)′(0) = O(X), [F(X−O(X))](p
′)(0) = Γ (p′)[σp(X)]p

′
, with 1/p+1/p′ = 1 .

Theorem 22. For two independent decision variables X and Y of order p and k ∈ R
we have

cX+Y = cX 2 cY , F(X + Y ) = F(X) + F(Y ), [F(kX)](θ) = [F(X)](kθ) ,

O(X + Y ) = O(X) + O(Y ), O(kX) = kO(X), σp(kX) = |k|σp(X) ,

[σp(X + Y )]p
′
= [σp(X)]p

′
+ [σp(Y )]p

′
, (|X + Y |p)p

′
≤ (|X|p)p

′
+ (|Y |p)p

′
.

3.3 Limit Theorems for Decision Variables

We now study the behavior of normalized sums of real decision variables. They corre-
spond to asymptotic theorems (when the number of steps goes to infinity) for dynamic
programming. We have first to define convergence of sequences of decision variables.
We have defined counterparts of each of the four classical kinds of convergence used
in probability in previous papers (see [3]). Let us recall the definition of the two most
important ones.

Definition 23. For the decision variable sequence {Xm, m ∈ N} we say that

1. Xmweakly converges towards X , denoted Xm w→ X , if for all f in Cb(E) (where
Cb(E) denotes the set of uniformly continuous and lower bounded functions on E

into Rmin), limm M[f(Xm)] = M[f(X)] ,with M(f(X))
def
= infx(f(x)+cX(x)).

2. Xm ∈ Dp converges in p-sensitivity towards X ∈ Dp, denoted Xm Dp−→ X , if
limm ‖Xm −X‖p = 0 .

Theorem 24. Convergence in sensitivity implies convergence and the converse is false.

The proof is given in Akian [2].
We have the analogue of the law of large numbers and the central limit theorem.

Theorem 25 (large numbers and central limit). Given a sequence {Xm, m ∈ N} of
independent identically costed (i.i.c.) real decision variables belonging to Dp, p ≥ 1,
we have

lim
N→∞

1

N

N−1∑

m=0

Xm = O(X0) ,

where the limit is taken in the sense of p-sensitivity convergence.

7 Γ denotes the classical Gamma function.



Moreover if {Xm, m ∈ N} is centered and of order p we have

8weak∗ lim
N

1

N1/p′

N−1∑

m=0

Xm = X, with 1/p + 1/p′ = 1 ,

where X is a decision variable with cost equal to Mp
0,σp(X0).

The analogues of Markov chains, continuous time Markov processes, Brownian and
diffusion processes have also been given in [3].
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Springer-Verlag, Berlin (1978).

5. Bellalouna, F.: Processus de décision min-markovien. Thesis dissertation, University of
Paris-Dauphine (1992).

6. Bellman, R., Karush, W.: Mathematical programming and the maximum transform. SIAM
Journal of Applied Mathematics 10 (1962).

7. Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and Linearity: an Alge-
bra for Discrete Event Systems. John Wiley and Sons, New-York (1992).

8. Del Moral, P.: Résolution particulaire des problèmes d’estimation et d’optimisation non-
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