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1 Introduction

Following the theory of idempotent measures of Maslov, a formalism anal-
ogous to probability calculus is obtained for optimization by replacing the
classical structure of real numbers (R, +,×) by the idempotent semi-field ob-
tained by endowing the set R ∪ {+∞} with the “min” and “+” operations.
To the probability of an event corresponds the cost of a set of decisions. To
random variables correspond decision variables.

Weak convergence, tightness and limit theorems of probability have an
optimization counterpart which is useful to approximate Hamilton Jacobi
Bellman (HJB) equation and to obtain asymptotics for this equation. The
introduction of tightness for cost measures and its consequences is the main
contribution of this paper. The link between the weak convergence and the
epigraph convergence used in convex analysis is done.

The Cramer transform used in the large deviation literature is defined as
the composition of the Laplace transform by the logarithm by the Fenchel
transform. It transforms convolution into inf-convolution. Probabilistic re-
sults about processes with independent increments are then transformed into
similar results on dynamic programming equations. Cramer transform gives
new insight on the Hopf method used to compute explicit solutions of some
HJB equations. It also explains the limit theorems obtained directly as the
image of the classic limit theorems of probability.

Bibliographic notes are given at the end of the paper.

2 Cost Measures and Decision Variables

Let us denote by Rmin the idempotent semifield (R ∪ {+∞}, min, +) and by
extension the metric space R∪{+∞} endowed with the exponential distance
d(x, y) = | exp(−x) − exp(−y)|. We start by defining cost measures which
can be seen as normalized idempotent measures of Maslov in Rmin [24].



2 Marianne Akian, Jean-Pierre Quadrat and Michel Viot

Definition 2.1. We call a decision space the triplet (U,U ,K) where U is a
topological space, U the set of open sets of U and K a mapping from U to
Rmin such that

1. K(U) = 0,

2. K(∅) = +∞,

3. K (
⋃
n An) = infnK(An) for any An ∈ U .

The mapping K is called a cost measure.

A function c : U → Rmin such that K(A) = infu∈A c(u) ∀A ∈ U is called a
cost density of the cost measure K.

The set Dc
def
= {u ∈ U | c(u) 6= +∞} is called the domain of c.

Theorem 2.2. Given a l.s.c. c with values in Rmin such that infu c(u) = 0,
the mapping A ∈ U 7→ K(A) = infu∈A c(u) defines a cost measure on (U,U).
Conversely any cost measure defined on open sets of a second countable topo-
logical space1 admits a unique minimal extension K∗ to P(U) (the set of
subsets of U) having a density c which is a l.s.c. function on U satisfying
infu c(u) = 0.

Proof. This precise result is proved in Akian [1]. See also Maslov [24] and
Del Moral [15] for the first part and Maslov and Kolokoltsov [23, 25] for the
second part.

Remark 2.3. This theorem shows that on second countable spaces there is a
bijection between l.s.c. functions and cost measures. In this paper, we will
consider cost measures on Rn, RN, separable Banach spaces and separable
reflexive Banach spaces with the weak topology which are all second countable
topological spaces.

Example 2.4. We will use very often the two following cost densities defined
on Rn with ‖.‖ the euclidian norm.

1. χm(x)
def
=

{
+∞ for x 6= m.
0 for x = m,

2. Mp
m,σ(x)

def
= 1

p
‖σ−1(x−m)‖p for p ≥ 1 withMp

m,0
def
= χm.

By analogy with conditional probability we define the conditional cost excess.

Definition 2.5. The conditional cost excess to take the best decision in A
knowing that it must be taken in B is

K(A|B)
def
= K(A ∩B)−K(B) .

1i.e. a topological space with a countable basis of open sets.
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By analogy with random variables we define decision variables and related
notions.

Definition 2.6. 1. A decision variable X on (U,U ,K) is a mapping from
U to E (a second countable topological space). It induces a cost measure
KX on (E,B) (B denotes the set of open sets of E) defined by KX(A) =
K∗(X−1(A)) for all A ∈ B. The cost measure KX has a l.s.c. density
denoted cX . When E = R, we call X a real decision variable; when
E = Rmin, we call it a cost variable.

2. Two decision variables X and Y are said independent when:

cX,Y (x, y) = cX(x) + cY (y) .

3. The conditional cost excess of X knowing Y is defined by:

cX |Y (x, y)
def
= K∗(X = x | Y = y) = cX,Y (x, y)− cY (y) .

4. The optimum of a decision variable is defined by

O(X)
def
= arg min

x∈E
conv(cX)(x)

when the minimum exists. Here conv denotes the l.s.c. convex hull
and arg min the point where the minimum is reached. When a decision
variable X with values in a linear space satisfies O(X) = 0 we say that
it is centered.

5. When the optimum of a decision variable X with values in Rn is unique
and when near the optimum, we have

conv(cX)(x) =
1

p
‖σ−1(x−O(X))‖p + o(‖x−O(X)‖p) ,

we say that X is of order p and we define its sensitivity of order p by

Sp(X)
def
= σ. When Sp(X) = I (the identity matrix) we say that X is of

order p and normalized.

6. The value of a cost variable X isV(X)
def
= infx(x+cX(x)), the conditional

value is V(X | Y = y)
def
= infx(x + cX |Y (x, y)).

Example 2.7. For a real decision variable X of cost Mp
m,σ with p > 1 and

1/p + 1/p′ = 1, we have

O(X) = m, Sp(X) = σ, V(X) = m− 1

p′
σp
′
.
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3 Vector Spaces of Decision Variables

Theorem 3.1. For p > 0, the numbers

|X|p def
= inf

{
σ | cX(x) ≥ 1

p
|(x−O(X))/σ|p

}
and‖X‖p def

= |X|p + |O(X)|

define respectively a seminorm and a norm on the vector space Lp of classes2

of real decision variables having a unique optimum and such that ‖X‖p is
finite.

Proof. Let us denote X ′ = X −O(X) and Y ′ = Y −O(Y ). We first remark
that σ > |X|p implies

cX(x) ≥ 1

p
(|x−O(X)|/σ)p ∀x ∈ R⇔ V(−1

p
|X ′/σ|p) ≥ 0 . (3.1)

If there exists σ > 0 and O(X) such that (3.1) holds, then cX(x) < 0 for any
x 6= O(X) and cX(x) tends to 0 implies x tends to O(X) therefore O(X) is
the unique optimum of X. Moreover |X|p is the smallest σ such that (3.1)
holds.

If X ∈ Lp, λ ∈ R and σ > |X|p we have

V(−1

p
|λX ′/λσ|p) = V(−1

p
|X ′/σ|p) ≥ 0 ,

then λX ∈ Lp, O(λX) = λO(X) and |λX|p = |λ||X|p.
If X and Y ∈ Lp, σ > |X|p and σ′ > |Y |p,

V(−1

p
(max(|X ′/σ|p, |Y ′/σ′|p))) = min(V(−1

p
|X ′/σ|p),V(−1

p
|Y ′/σ′|p)) ≥ 0

and
|X ′ + Y ′|
σ + σ′

≤ σ

σ + σ′
|X ′|
σ

+
σ′

σ + σ′
|Y ′|
σ′
≤ max(

|X ′|
σ

,
|Y ′|
σ′

) ,

then

V(−1

p
(|X ′ + Y ′|/(σ + σ′))p) ≥ 0 .

Therefore we have proved that X + Y ∈ Lp with O(X + Y ) = O(X) +O(Y )
and |X + Y |p ≤ |X|p + |Y |p.

Then Lp is a vector space, |.|p and ‖.‖p are seminorms and O is a linear
continuous operator from Lp to R. Moreover, ‖X‖p = 0 implies cX = χ thus
X = 0 up to a set of infinite cost.

2for the almost sure equivalence relation: X a.s.= Y ⇔ K∗(X 6= Y ) = +∞ .



Duality between Probability and Optimization 5

Theorem 3.2. For two independent real decision variables X and Y and
k ∈ R we have (as soon as the right and left hand sides exist)

O(X + Y ) = O(X) +O(Y ), O(kX) = kO(X), Sp(kX) = |k|Sp(X) ,

[Sp(X + Y )]p
′
= [Sp(X)]p

′
+ [Sp(Y )]p

′
, (|X + Y |p)p

′ ≤ (|X|p)p
′
+ (|Y |p)p

′
,

where 1/p + 1/p′ = 1.

Proof. Let us prove only the last inequality. Consider X and Y in Lp and
σ > |X|p and σ′ > |Y |p. Let us denote σ′′ = (σp

′
+ σ′p

′
)1/p′, X ′ = X −O(X)

and Y ′ = Y −O(Y ). The Hölder inequality aα+bβ ≤ (ap+bp)1/p(αp
′
+βp

′
)1/p′

implies
(|X ′ + Y ′|/σ′′)p ≤ |X ′/σ|p + |Y ′/σ′|p ,

then by the independency of X and Y we get

V(−1

p
(|X ′ + Y ′|/σ′′)p) ≥ 0 ,

and the inequality is proved.

Theorem 3.3 (Chebyshev). For a decision variable belonging to Lp we
have

K(|X −O(X)| ≥ a) ≥ 1

p
(a/|X|p)p ,

K(|X| ≥ a) ≥ 1

p
((a− ‖X‖p)+/‖X‖p)p .

Proof. The first inequality is a straightforward consequence of the inequality
cY (y) ≥ (|y|/|Y |p)p/p applied to the centered decision variable Y = X−O(X).

The second inequality comes from the nonincreasing property of the func-
tion x ∈ R+ 7→ (a− x)+/x.

4 Convergence of Decision Variables and Law

of Large Numbers

Definition 4.1. A sequence of independent and identically costed (i.i.c.) real
decision variables of cost c on (U,U ,K) is an application X from U to RN
which induces the density cost

cX(x) =
∞∑
i=0

c(xi), ∀x = (x0, x1, . . .) ∈ RN .

Remark 4.2. The cost density is finite only on minimizing sequences of c,
elsewhere it is equal to +∞.
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Remark 4.3. We have defined a decision sequence by its density and not by
its value on the open sets of RN because the density always exists and can be
defined easily.

In order to state limit theorems, we define several type of convergence of
sequences of decision variables.

Definition 4.4. For the sequence of real decision variables {Xn, n ∈ N} we
say that

1. Xn ∈ Lp converges in p-norm towards X ∈ Lp denoted Xn
Lp−→ X, if

limn ‖Xn −X‖p = 0 ;

2. Xn converges in cost towards X, denoted Xn
K−→ X, if for all ε > 0 we

have limnK{u | |Xn(u)−X(u)| ≥ ε} = +∞;

3. Xn converges almost surely towards X, denoted Xn
a.s.−→ X, if we have

K{u | limn Xn(u) 6= X(u)} = +∞ .

Some relations between these different kinds of convergence are given in
the following theorem.

Theorem 4.5. 1. Convergence in p-norm implies convergence in cost but
the converse is false.

2. Convergence in cost implies almost sure convergence and the converse
is false.

Proof. See Akian [2] for points 1 and 2 and Del Moral [15] for point 2.

We have the analogue of the law of large numbers.

Theorem 4.6. Given a sequence {Xn, n ∈ N} of i.i.c. decision variables
belonging to Lp, p ≥ 1, we have

lim
N→∞

YN
def
=

1

N

N−1∑
n=0

Xn = O(X0) ,

where the limit can be taken in the sense of almost sure, cost and p-norm
convergence.

Proof. We have only to estimate the convergence in p-norm. The result fol-
lows from simple computation of the p-seminorm of YN . Thanks to Theo-
rem 3.2 we have (|YN |p)p

′ ≤ N(|X0|p)p
′
/Np′ which tends to 0 as N tends to

infinity.
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5 Weak Convergence and Tightness of Deci-

sion Variables

In this section we introduce the notions of weak convergence and tightness of
cost measures and show the relations between the weak convergence and epi-
graph convergence of functions introduced in convex analysis [5, 4, 22]. Weak
convergence and tightness of decision variables will mean weak convergence
of their cost measures.

Definition 5.1. 1. Let Kn and K be cost measures on (U,U). We say
that Knconverges weakly towards K, denoted Kn

w−→ K, if for all f in
Cb(U)3 we have limnKn(f) = K(f)4.

2. Let cn and c be functions from U (a first countable topological space5)
to Rmin, we say that cn converges in the epigraph sense (epi-converges)

towards c, denoted cn
epi−→ c if

∀u, ∀un → u, lim inf
n

cn(un) ≥ c(u) , (5.1)

∀u, ∃un → u : lim sup
n

cn(un) ≤ c(u) . (5.2)

3. If U is a reflexive Banach space, we say that cn Mosco-epi-converges

towards c, denoted cn
M-epi−→ c, if the convergence of un holds for the

weak topology in (5.1) and for the strong topology in (5.2).

Theorem 5.2. Let Kn, K be cost measures on a metric space U. Then the
three following conditions are equivalent

1. Kn
w−→ K ;

2.
lim inf

n
Kn(F ) ≥ K(F ) ∀F closed , (5.3)

lim sup
n
Kn(G) ≤ K(G) ∀Gopen ; (5.4)

3. limnKn(A) = K(A) for any set A such that K(
◦
A) = K(Ā).

Proof. The proof is similar to those of classical probability theory. The mains
ingredients in both theories are : 1) U is normal, 2) a probability on the
Borel sets of U or a cost measure on the open sets of U is “regular”, 3)
any bounded continuous function from U to R or Rmin may be approximated

3Cb(U) denotes the set of continuous and lower bounded functions from U to Rmin.
4K(f) def= infu(f(u) + c(u)) where c is the density of K.
5Each point admits a countable basis of neighborhoods.
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above and below by a R or Rmin-linear combination of characteristic functions
of “measurable” sets. Properties 1) and 2) are used in showing 1. ⇒ 2. and
the equivalence 2. ⇔ 3. and property 3) in showing 2. ⇒ 1.. The main
difficulty in optimization theory compared to classical probability is that cost
measures are not continuous for the nonincreasing convergence of sets.

Let us precise properties 1–3) in the case of optimization theory. Firstly,
since U is a metric space, U is normal in the classical sense. Equivalently,
by using the bi-continuous application t 7→ − log(t) from [0, 1] to the subset
[0, +∞] of Rmin, U is normal with respect to Rmin (see Maslov [24] for this
notion), that is for any open set G and closed set F such that F ⊂ G, there
exists a continuous function f from U to Rmin such that f ≥ 0, f = 0 on F
and f = +∞ on Gc and then χG ≤ f ≤ χF . A typical function f is:

f(u) = − log

(
d(u, Gc)

d(u, F ) + d(u, Gc)

)
.

Secondely, the regularity property of classical probabilities may be translated
here in the two following conditions :

K(F ) = sup
G⊃F, G∈U

K(G) ∀F closed (5.5)

and

K(G) = inf
F⊂G, F closed

K(F ) ∀G ∈ U . (5.6)

The first one is a consequence of the definition of the minimal extension, the
second of the fact that in a metric space, any open set is a countable union
of closed sets and of the continuity of cost measures for the nondecreasing
convergence of sets. Let us note that in classical probability conditions (5.5)
and (5.6) are equivalent which is not the case here.

Finally, any lower bounded continuous function may be approximated
by simple functions : above by a Rmin-linear combination of characteristic
functions of open sets, below by an Rmin-linear combination of characteristic
functions of closed sets. The first approximation follows easily from upper
semi-continuity of continuous functions. The second one uses the relative
compactness of lower bounded sets in Rmin.

Definition 5.3. A set of cost measures K is said tight if

sup
C compact ⊂U

inf
K∈K

K(Cc) = +∞ .

A sequence Kn of cost measures is said asymptotically tight if

sup
C compact ⊂U

lim inf
n
Kn(C

c) = +∞ .
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Theorem 5.4. On asymptotically tight sequences Kn over a metric space U ,
the weak convergence of Kn towards K is equivalent to (5.4) and

lim inf
n
Kn(C) ≥ K(C) ∀Ccompact . (5.7)

Remark 5.5. In a locally compact space conditions (5.7) (5.4) are equivalent
to the condition limnKn(f) = K(f) for any continuous function with com-
pact support. This is the definition of weak convergence used by Maslov and
Samborski in [27]. These conditions are also equivalent to the epigraph con-
vergence of densities (see Theorem 5.7 below). This type of convergence does
not insure that a weak-limit of cost measures is a cost measure (the infimum
of the limit is not necessarily equal to zero).

Theorem 5.6. Let us denote by K(U) the set of cost measures on U (a metric
space) endowed with the topology of the weak convergence. Any tight set K of
K(U) is relatively sequentially compact6.

Proof. It is sufficient to prove that from any asymptotically tight sequence
{Kn}, we can extract a weakly convergent subsequence.

Let Ck be a compact set such that: lim inf
n

Kn(C
c
k) ≥ k and V = ∪kCk,

then lim infnKn(V
c) = +∞. The convergence of Kn is then equivalent to the

convergence of Kn on V , which is a separable metric space. Since Kn is still
asymptotically tight on V , we suppose now U = V .

Let B be a countable basis of open sets of U . Since Kn takes its values in
[0, +∞] (which is a compact set of Rmin) and B is countable, we may extract a

subsequence of Kn, denoted also Kn, such that limnKn(B) = K̃(B) ∀B ∈ B .

Since any open set is a countable union of elements of B, we define K on
U by:

K(A) = sup
A

inf
B∈A

K̃(B) ,

where the supremum is taken over subsets A of B such that ∪B∈AB = A. K
is the minimal cost measure on U greater than K̃ on B.

Its minimal extension to P(U) is

K(A) = sup
A

inf
B∈A

K̃(B) .

where this times A satisfies ∪B∈AB ⊃ A.

Let us show that Kn
w−→ K. By Theorem 5.4 it is enough to prove (5.4)

and (5.7). If G is an open set, then for any B ∈ B such that B ⊂ G, we have

lim sup
n

Kn(G) ≤ lim sup
n

Kn(B) = K̃(B) .

6that is any sequence of K contains a weakly convergent subsequence
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Therefore if G = ∪B∈AB with A ⊂ B, we have

lim sup
n

Kn(G) ≤ inf
B∈A

K̃(B) ≤ K(G) .

If F is a compact set, and if ∪B∈AB ⊃ F , we may restrict A to be finite,
then we have

lim inf
n

Kn(F ) ≥ lim inf
n

inf
B∈A

Kn(B) = inf
B∈A

lim inf
n

Kn(B) = inf
B∈A

K̃(B) .

By taking the supremum over all sets A, we obtain condition (5.7).

Theorem 5.7. On a first countable topological space, the epi-convergence of
l.s.c. densities cn of Kn towards the density c of K is equivalent to conditions
(5.4) and (5.7).

Proof. We prove (5.1)⇔ (5.7) and (5.2)⇔ (5.4).

1. (5.1)=⇒ (5.7).

Let un be a point where cn reaches its optimum in compact set C . For
any converging subsequence {unk}, the limit u belongs to C and we have
lim infk cnk(unk) ≥ c(u) ≥ K(C), therefore lim infnKn(C) ≥ K(C).

2. (5.7)=⇒ (5.1).

The sets CN = {un, n ≥ N} ∪ {u} are compact and we have

lim inf
n

cn(un) ≥ lim inf
n
Kn(CN) ≥ K(CN ) .

As the l.s.c of c implies supN K(CN ) ≥ c(u), the result follows.

3. (5.2)=⇒ (5.4).

Let us prove this assertion by contraposition. Let us suppose there
exists an open set G and ε > 0 such that lim supnKn(G) > K(G)+ε. By
definition of the infimum there exists u ∈ G such that c(u) ≤ K(G)+ ε.
Therefore for any sequence un converging towards u, un ∈ G for n big
enough and we have lim supn cn(un) ≥ lim supnKn(G) > K(G) + ε ≥
c(u) which contradicts the hypothesis.

4. (5.4)=⇒ (5.2).

For all u there exists a decreasing family of open sets {Gk, k ∈ N}
such that ∩kGk = {u}. By definition of the infimum, there exists ukn
such that Kn(Gk) ≥ cn(u

k
n) − 1/n. Then we have lim supn cn(u

k
n) ≤

lim supnKn(Gk) ≤ K(Gk) ≤ c(u). By diagonal extraction we obtain a

sequence u
k(n)
n which satisfies (5.2).
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Remark 5.8. In Attouch [4] another definition of epigraph convergence is
given in a general topological space and is mostly related to conditions (5.4)
and (5.7).

Proposition 5.9. If Kn and K′n are (asymptotically) tight sequences of cost
measures on U and U ′ and Kn

w−→ K and K′n
w−→ K′ then Kn × K′n is

(asymptotically) tight and Kn ×K′n
w−→ K×K′.

Proof. The product of two measures K and K′ is defined as in probability,
then if K and K′ have densities c(u) and c′(u′), K×K′ has density c(u)+c′(u′).
In probability theory, tightness is not necessary, but the technique of proof
does not work here. We need to impose the tightness condition, but in this
case weak convergence is equivalent to epigraph convergence, for which the
result is clear.

Theorem 5.10. If Xn
K−→ X and X is tight then Xn

w−→ X. More generally

if Xn
w−→ X, Xn − Yn

K−→ 0 and X is tight, then Yn
w−→ X.

Proof. see [2].

6 Characteristic Functions

The role of the Laplace or Fourier transforms in probability calculus is played
by the Fenchel transform in decision calculus.

Definition 6.1. 1. Let c ∈ Cx, where Cx denotes the set of l.s.c. and
proper7 convex functions from E (a reflexive Banach space with dual
E ′) to Rmin . Its Fenchel transform is the function from E ′ to Rmin

defined by ĉ(θ)
def
= [F(c)](θ)

def
= supx[〈θ, x〉 − c(x)].

2. The characteristic function of a decision variable is F(X)
def
= F(cX).

3. Given two functions f and g from E toRmin, the inf-convolution of f and
g, denoted f � g, is the function z ∈ E 7→ infx,y [f(x)+g(y) | x+y = z].

Theorem 6.2. 1. For f, g ∈ Cx we have

(a) F(f) ∈ Cx,

(b) F is an involution that is F(F(f)) = f ,

(c) F(f � g) = F(f) + F(g),

(d) F(f + g) = F(f) � F(g).

7not always equal to +∞
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2. For two independent decision variables X and Y and k ∈ R, we have

cX+Y = cX � cY , F(X+Y ) = F(X)+F(Y ), [F(kX)](θ) = [F(X)](kθ) ,

3. A decision variable with values in Rn is of order p if we have:

F(X)(θ) = 〈O(X), θ〉 + 1

p′
‖Sp(X)θ‖p′ + o(‖θ‖p′) ,

with 1/p + 1/p′ = 1.

Remark 6.3. The Fenchel transform (for l.s.c proper convex functions) is bi-
continuous for the Mosco-epi-convergence [22].

Theorem 6.4. Let Kn and K be cost measures on a separable reflexive Ba-

nach space with (proper) l.s.c convex densities cn and c, then cn
M-epi−→ c iff the

two conditions (5.4) and

lim inf
n
Kn(C) ≥ K(C) ∀Cbounded closed and convex (6.1)

hold.

Proof. In the proof of Theorem 5.7 we see easily that we can replace compact
sets by bounded closed convex sets which are weakly compact on a reflexive
Banach space and let open sets be those of the strong topology.

Corollary 6.5. For an asymptotically tight sequence Xn of decision variables
with l.s.c. convex cost densities on a separable reflexive Banach space, Xn

converges weakly towards X iff F(Xn) Mosco-epi-converges towards F(X).

Proof. By the tightness property and previous result, the weak convergence
of Xn towards X is equivalent the Mosco-epi-convergence of Xn towards X
and then to the Mosco-epi-convergence of F(Xn) towards F(X).

This may be used for proving the central limit theorem in a Banach space.
For simplicity let us state it in finite dimensional situation where epigraph
and Mosco-epigraph convergences are equivalent.

Theorem 6.6 (Central limit theorem). Let {Xn, n ∈ N} be an i.i.c. se-
quence centered of order p with l.s.c. convex cost density and 1/p + 1/p′ = 1,
we have

ZN
def
=

1

N1/p′

N−1∑
n=0

Xn
w−→Mp

0,Sp(X0) .
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Proof. We have limN [F(ZN )](θ) = 1
p′‖Sp(X0)θ‖p

′
, where the convergence can

be taken in the pointwise, uniform on any bounded set or epigraph sense. In
order to obtain the weak convergence we have to prove the tightness of ZN .
But as the convergence is uniform on B = {‖θ‖ ≤ 1} we have for N ≥ N0,
F(ZN ) ≤ C on B where C is a constant. Therefore cZN (x) ≥ ‖x‖ − C for
N ≥ N0 and ZN is asymptotically tight.

The central limit theorem may be generalized to the case of non convex
cost densities. This generalization essentially uses the strict convexity of the
limiting cost density and was suggested by the Gärtner-Ellis theorem on large
deviations of dependent random variables [18, 21]. Indeed, the large deviation
principle for probabilities Pn with entropy I may be considered as the weak
convergence of “measures” Kn = −h(n) logPn (with limn h(n) = 0) towards
the cost measure with density I . We first need the following result which is
proved in [2].

Proposition 6.7. If Xn
w−→ X in Rp and (F(Xn)(θ))n is upper bounded for

any θ ∈ O where O is an open convex neighborhood of 0 in Rp, then

F(Xn)(θ) −→
n→+∞

F(X)(θ) ∀θ ∈ O .

In general, a l.s.c. function c on Rp is not characterized by its Fenchel
transform, but when the Fenchel transform is essentially smooth, the convex
hull of c is essentially strictly convex, thus c is necessarily convex (see Rock-
afellar [30] for definitions). A generalization of this remark leads to a result
equivalent to Gärtner-Ellis theorem.

Proposition 6.8. If Xn is a sequence of decision variables with values in Rp
such that

F(Xn)(θ) −→
n→+∞

ϕ(θ) ∀θ ∈ Rp ,

where ϕ is an essentially smooth proper l.s.c. convex function such that

0 ∈
◦

Dϕ. Then, Xn
w−→ F(ϕ).

The particular case, where ϕ(θ) = 1
p′‖σθ‖p′ which has a strictly convex

Fenchel transform leads to the general central limit theorem.

7 Bellman Chains and Processes

We can generalize i.i.c. sequences to the analogue of Markov chains that we
call Bellman chains.

Definition 7.1. A finite valued Bellman chain (E, C, φ) with

1. E a finite set of |E| elements called the state space,



14 Marianne Akian, Jean-Pierre Quadrat and Michel Viot

2. C : E ×E 7→ Rmin satisfying infy Cxy = 0 called the transition cost,

3. φ a cost measure on E called the initial cost,

is a decision sequence X = {Xn, n ∈ N} taking its values in EN, such that

cX(x
def
= (x0, x1, . . .)) = φx0 +

∞∑
i=0

Cxixi+1 , ∀x ∈ EN .

Theorem 7.2. For any function f from E to Rmin, a Bellman chain satisfies
the Markov property V{f(Xn) | X0, . . . , Xn−1} = V{f(Xn) | Xn−1} .

The analogue of the forward Kolmogorov equation giving a way to compute
recursively the marginal probability to be in a state at a given time is the
following Bellman equation.

Theorem 7.3. The marginal cost vnx = K(Xn = x) of a Bellman chain is

given by the recursive forward equation: vn+1 = vn ⊗ C
def
= minx∈E(vnx + Cx.)

with v0 = φ.

Remark 7.4. The cost measure of a Bellman chain is normalized which means
that its infimum on all the trajectories is 0. In some applications we would
like to avoid this restriction. This can be done by introducing the analogue
of the multiplicative functionals of the trajectories of a stochastic process.

We can easily define continuous time decision processes which correspond
to deterministic controlled processes. We discuss here only decision processes
with continuous trajectories.

Definition 7.5. 1. A continuous time Bellman process Xt with continu-
ous trajectories is a decision variable with values in C(R+)8 having the
cost density

cX(x(·)) def
= φ(x(0)) +

∫ ∞
0

c(t, x(t), x′(t))dt ,

with c(t, ·, ·) a family of transition costs (that is a function c from R3

to Rmin such that infy c(t, x, y) = 0, ∀t, x) and φ a cost density on R.
When the integral is not defined the cost is by definition equal to +∞.

2. The Bellman process is said homogeneous if c does not depend on time
t.

3. The Bellman process is said with independent increments if c does not
depend on state x. Moreover if this process is homogeneous, c is reduced
to the cost density of a decision variable.

8C(R+) denotes the set of continuous functions from R+ to R.
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4. The p-Brownian decision process, denoted by Bp
t , is the process with

independent increments and transition cost density c(t, x, y) = 1
p
|y|p .

As in the discrete time case, the marginal cost to be in state x at time t
can be computed recursively using a forward Bellman equation.

Theorem 7.6. The marginal cost v(t, x)
def
= K(Xt = x) is given by the Bell-

man equation:
∂tv + ĉ(∂xv) = 0, v(0, x) = φ(x) , (7.1)

where ĉ means here [ĉ(∂xv)](t, x)
def
= supy[y∂xv(t, x)− c(t, x, y)].

Let p > 1 and 1/p + 1/p′ = 1. For the Brownian decision process Bp
t

starting from 0, the marginal cost to be in state x at time t satisfies the
Bellman equation

∂tv + (1/p′)|∂xv|p
′
= 0, v(0, ·) = χ .

Its solution can be computed explicitly, it is v(t, x) =Mp

0,t1/p
′ (x), therefore

V[f(Bp
t )] = inf

x

[
f(x) +

xp

pt
p
p′

]
. (7.2)

8 Tightness in C([0, 1]) and Brownian Approx-

imation

Theorem 8.1. A sequence of decision variables {Xn, n ∈ N} with values in
C([0, 1]) is tight if Xn(t) ∈ Lp for t ∈ [0, 1], ‖Xn(0)‖p is bounded and

lim
δ→0+

sup
t∈[0,1−δ],n∈N

‖Xn(t + δ)−Xn(t)‖p = 0 . (8.1)

Proof. By Ascoli theorem, we know that relatively compact subsets of C([0, 1])
coincide with equi-continuous subsets taking bounded values in 0 . Therefore,
we can deduce a necessary and sufficient condition of tightness for a sequence
of decision variables {Xn} in C([0, 1]). The sequence {Xn} is tight iff i) Xn(0)
is tight, that is for all η there exists a such that K(|Xn(0)| ≥ a) ≥ η and ii)
for all η, ε > 0 there exists δ > 0 such that

inf
n

inf
t,s∈[0,1]

|s−t|≤δ

K(|Xn(t)−Xn(s)| ≥ ε) ≥ η .

Then, condition i) is a direct consequence of the fact that ‖Xn(0)‖p is bounded
and of the Chebyshev inequality applied to Xn(0) and condition ii) is a direct
consequence of (8.1) and of the Chebyshev inequality applied to Xn(t) −
Xn(s).
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The following result shows that weak convergence in C([0, 1]) may be charac-
terized by the convergence of finite dimensional marginal costs.

Theorem 8.2. 1. There may exists different cost measures K and K′ on
C([0, 1]) such that

Kπ = K′π ∀π : C([0, 1])→ Rk, x 7→ (x(t1), . . . , x(tk)). (8.2)

2. If K is tight and K and K′ satisfy (8.2), then K = K′.

3. If the sequence Kn is asymptotically tight and if (Kn)π
w−→ Kπ for all

π : C([0, 1])→ Rk, x 7→ (x(t1), . . . , x(tk)), then Kn
w−→ K.

Proof. Condition (8.2) is equivalent to K(U) = K′(U) for any open set U
of the form U = {x, x(t1) ∈ U1, . . . , x(tk) ∈ Uk} where the Ui are open
subsets of R, that is for any open set of the pointwise convergence topology.
Since any ball of C([0, 1]) is a nonincreasing limit of such open sets, we may
have conclude K = K′ if cost measures were continuous for the nonincreasing
convergence of sets as in classical probability. This is not the case in general,
but it remains true for a sequence of closed sets if K is tight.

1. Let us prove the second assertion. Let B(x, ε) denotes the closed ball of
center x and radius ε for the uniform convergence norm. There exists open
sets Un for the pointwise convergence topology such that B(x, ε) = ∩nUn =
∩nUn. Then, if K is tight

K(B(x, ε)) = sup
n
K(Un) ≤ sup

n
K(Un)

= sup
n
K′(Un) ≤ K′(∩nUn) = K′(B(x, ε)) .

As any open set of C([0, 1]) is a countable union of closed balls, we obtain
K(U) ≤ K′(U). Then, the tightness of K implies the tightness of K′ which
implies the converse inequality.

2. For the first assertion, it is sufficient to exhibit a cost measure K such
that K(G) 6= 0 for some open set G and K(G) = 0 for any open set G
of the pointwise convergence topology. Since K has necessarily a density
c, K(G) = inf

x∈G
c(x) = 0 for any open set G of the pointwise convergence

topology. This means that the l.s.c. envelope of c for this topology is equal
to 0, whereas those for the uniform convergence topology is non equal to 0.
The function c(x) = exp(−‖x‖∞) satisfies this property.

3. As Kn is asymptotically tight, there exists a weakly converging subse-
quence that we denote also Kn. Let K′ be the limit. By the tightness of Kn,
K′ is also tight and from Kn

w−→ K′ we have (Kn)π
w−→ K′π and therefore

Kπ = K′π for any finite dimensional projection π. By the previous result and
the tightness of K′ we obtain K = K′. From the unicity of the limit we obtain
Kn

w−→ K.
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The next result is the analogue of Donsker’s theorem about time discretization
of Brownian motion.

Theorem 8.3. Given an i.i.c. sequence Xn of real decision variables centered
with sensibilities of order p equal to Sp(X1) = σ, let Si = X1 + · · ·Xi be the
partial sums and Zn be the decision variable with values in C([0, 1]) defined
by :

Zn(t) =
1

σn1/p′
(S[nt] + (nt− [nt])X[nt+1]) ,

with 1/p + 1/p′ = 1. Suppose in addition that X1 ∈ Lp . Then, Zn weakly
converges towards the p-Brownian decision process :

Zn
w−→ Bp .

Proof. From Theorem 8.2, we only have to prove tightness of Zn on the one
hand and convergence of finite dimensional distributions of Zn towards those
of Bp on the other hand. For second point, we follow the same technique
as in Billingsley’s proof of the probabilistic version [13], whereas tightness is
proved by using the sufficient conditions of Theorem 8.1.

The tightness of Zn(0) is obvious since Zn(0) ≡ 0. Using Theorem 3.2 we
obtain for any s, t ∈ [0, 1]

‖Zn(t)− Zn(s)‖p ≤ (t− s)1/p′‖X1‖p/σ ,

then supn,t ‖Zn(t + δ)− Zn(t)‖p tends to 0 when δ tends to 0.

Let us prove now that the finite dimensional distributions of Zn converge
towards those of Bp, that is π(Zn)

w−→ π(Bp) for any function of the form
π : x 7→ (x(t1), . . . x(tk)).

We first prove Zn(t)
w−→ Bp(t) for t > 0 (it is clear for t = 0). By Theo-

rem 7.6, Bp(t) has cost densityMp

0,t1/p
′ . However, by central limit theorem,

we have S[nt]/[nt]1/p
′ w−→Mp

0,σ, then

Yn
def
=

t1/p′S[nt]

σ[nt]1/p′
w−→ Bp(t) .

Since

Zn(t) = (
[nt]

nt
)1/p′Yn + (

nt− [nt]

σn1/p′
)X[nt]+1 ,

limn ‖Zn(t) − Yn‖p = 0 and by Chebyshev inequality Zn(t)− Yn
K−→ 0, then

the convergence of Zn(t) towards Bp(t) follows from Theorem 5.10.

Let us prove now π(Zn)
w−→ π(Bp) for any function π. By using a bicontin-

uous transformation, we may replace π by x 7→ (x(t1), x(t2)−x(t1), . . . x(tk)−
x(tk−1)) that we also denote π. Now, by the same type of approximation as
before, we may replace Zn(ti)− Zn(ti−1) (with i = 1, . . . , k and t0 = 0) by

Yn,i =
(ti − ti−1)

1/p′(S[nti] − S[nti−1])

σ([nti]− [nti−1])1/p′
.
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The decision variables Yn,i with i = 1, . . . , k are independent for any n and
separately tend to Bp(ti) − Bp(ti−1) which are also independent. Since the
sequences Yn,i are tight for any i, the convergence of π(Zn) follows from
Proposition 5.9.

See Maslov [24] for a weaker result when p = 2. See Dudnikov and Samborski
[17] for an analogous result when the state space is also discretized.

9 Inf-Convolution and Cramer Transform

Definition 9.1. The Cramer transform C is a function from M, the set of

positive measures on E = Rn, to Cx defined by C def
= F ◦ log ◦L, where L

denotes the Laplace transform9.

From the properties of the Laplace and Fenchel transforms the following
result is clear.

Theorem 9.2. For µ, ν ∈M we have C(µ ∗ ν) = C(µ) � C(ν).

The Cramer transform transforms convolutions into inf-convolutions and
consequently independent random variables into independent decision vari-
ables. In Table 1 we summarize the main properties and examples concerning
the Cramer transform when E = R. The difficult results of this table can be
found in Azencott [6]. In this table we have denoted

H(x)
def
=

{
0 for x ≥ 0,
+∞ elsewhere.

Let us give an example of utilization of these results in the domain of par-
tial differential equations (PDE). Processes with independent increments are
transformed into decision processes with independent increments. This im-
plies that a generator ĉ(−∂x) of a stochastic process is transformed into the
generator of the corresponding decision process v 7→ −ĉ(∂xv).

Theorem 9.3. The Cramer transform v of the solution r of the PDE on
E = R

−∂tr + [ĉ(−∂x)](r) = 0, r(0, .) = δ ,

(with ĉ ∈ Cx) satisfies the HJB equation

∂tv + ĉ(∂xv) = 0, v(0, .) = χ . (9.1)

This last equation is the forward HJB equation of the control problem of dy-
namic x′ = u, instantaneous cost c(u) and initial cost χ.

9µ 7→
∫
E
e〈θ,x〉µ(dx).
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Table 1: Properties of the Cramer transform.

M log(L(M)) = F (C(M)) C(M)
µ ĉµ(θ) = log

∫
eθxdµ(x) cµ(x) = supθ(θx− ĉ(θ))

0 −∞ +∞
δa θa χa

λe−λx−H(x) H(λ− θ) + log(λ/(λ− θ)) H(x) + λx− 1− log(λx)
pδ0 + (1− p)δ1 log(p+ (1− p)eθ) x log( x

1−p)
+(1− x) log( 1−x

p )
+H(x) +H(1− x)

stable distrib. mθ + 1
p′ |σθ|p

′
+H(θ) c(x) =Mp

m,σ , x ≥ m
1 < p′ < 2 c(x) = 0, x < m,

1/p+ 1/p′ = 1
Gauss distrib. mθ + 1

2 |σθ|2 M2
m,σ

µ ∗ ν ĉµ + ĉν cµ � cν
kµ log(k) + ĉ c− log(k)
µ ≥ 0 ĉ convex l.s.c. c convex l.s.c.

m0
def=
∫
µ ĉ(0) = log(m0) infx c(x) = − log(m0)

m0 = 1 ĉ(0) = 0 infx c(x) = 0

Sµ
def= cvx(supp(µ)) ĉstrictly convex in Dĉ

◦
Dc=

◦
Sµ

m0 = 1 ĉisC∞in
◦
Dĉ cisC1in

◦
Dc

m0 = 1, m def=
∫
xµ ĉ′(0) = m c(m) = 0

m0 = 1, m2
def=
∫
x2µ ĉ′′(0) = σ2 def= m2 −m2 c′′(m) = 1/σ2

m0 = 1, 1 < p′ < 2 ĉ(p′)(0+) = Γ(p′)σp
′

c(p)(0+) = Γ(p)/σp

ĉ = |σθ|p′/p′ + o(|θ|p′)
+H(θ)

Remark 9.4. First let us remark that ĉ is convex l.s.c. and not necessarily
polynomial which means that fractional derivatives may appear in the PDE.

Proof. The Laplace transform of r denoted q satisfies:

−∂tq(t, θ) + ĉ(θ)q(t, θ) = 0, q(0, .) = 1 .

Therefore w = log(q) satisfies:

−∂tw(t, θ) + ĉ(θ) = 0, w(0, .) = 0 , (9.2)

which can be easily integrated. As soon as ĉ is l.s.c and convex w is l.s.c and
convex and can be considered as the Fenchel transform of a function v. The
function v satisfies a PDE which can be easily computed. Indeed we have:

w(t, θ) = sup
x

(θx− v(t, x)) =⇒
{

θ = ∂xv ,
∂tw = −∂tv .
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Therefore v satisfies equation (9.1). This equation is the forward HJB equa-
tion of the control problem with dynamic x′ = u, instantaneous cost c(u) and
initial cost χ because ĉ is the Fenchel transform of c and the HJB equation
of this control problem is

−∂tv + min
u
{−u∂xv + c(u)} = 0, v(0, .) = χ .

If ĉ is independent of time the optimal trajectories are straight lines and
v(x) = tc(x/t). This can be obtained by using (9.2).

Solution of linear PDE with constant coefficients can be computed explic-
itly by Fourier transform. The previous theorem shows that that nonlinear
convex first order PDE with constant coefficients are isomorphic to linear
PDE with constant coefficients and therefore can be computed explicitly.
Such explicit solutions of HJB equation are known as Hopf formulas [9]. Let
us develop the computations on a non trivial example.

Example 9.5. Let us consider the HJB equation

∂tv +
1

2
(∂xv)2 +

2

3
(|∂xv|)

3
2 = 0, v(0, .) = χ .

From (9.2) we deduce that :

w(t, θ) = t(
1

2
θ2 +

2

3
|θ| 32 ) ,

therefore using the fact that the Fenchel transform of a sum is an inf-convo-
lution we obtain:

v(t, x) =
x2

2t
�

|x|3
3t2

.

We can verify on this explicit formula a continuous time version of central
limit theorem. Using the scaling x = yt2/3, we have

lim
t→+∞

v(t, yt2/3) = y3/3 ,

since the shape around zero of the corresponding instantaneous cost c(u) =
(u2/2) � (|u|3/3) is |u|3/3. Indeed a simple computation shows that c(u) is
obtained from {

c = y4/2 + |y|3/3 ,
u = |y|y + y ,

by elimination of y. This system may be also considered as a parametrical
definition of c(u) .

Notes and Comments. Bellman [11] was aware of the interest of the
Fenchel transform (which he calls max transform) for the analytic study of the
dynamic programming equations. The bicontinuity of the Fenchel transform
has been well studied in convex analysis [22, 5, 4].
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Maslov has started the study of idempotent integration in [24]. He has
been followed in particular by [23, 25, 26, 16, 15, 10, 3, 1, 2] and indepen-
dently by [28]. In [27] idempotent Sobolev spaces have been introduced as
a way to study HJB equation as a linear object. In this paper the min-
plus weak convergence has been also introduced but for compact support test
functions. This weak convergence is used in [17] for the approximation of
HJB equations. In [29] and [7] the law of large numbers and the central limit
theorem for decision variables has been given in the particular case p = 2. In
two independent works [16, 15] and [10] the study of decision variables has
been started. The second work has been continued in [3]. A lot of results
announced in [3] are proved in [1] and [2].

The Cramer transform is an important tool in large deviations literature
[6, 21, 31, 18]. In [16, 7, 3] Cramer transform has been used in the min-plus
context.

Some aspects of [32, 33, 8, 12], for instance the morphism between LQG
and LEQG problems presented in [32, Section 6.1] and the separation prin-
ciple developed in [12], provide other illustrations of the analogy between
probability and decision calculus.
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