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Abstract

We study the relation between the average traffic flow and the vehicle density on road networks

that we call 2D-traffic fundamental diagram. We show that this diagram presents mainly four

phases. We analyze different cases. First, the case of a junction managed with a priority rule is

presented, four traffic phases are identified and described, and a good analytic approximation of

the fundamental diagram is obtained by computing a generalized eigenvalue of the dynamics of

the system. Then, the model is extended to the case of two junctions, and finally to a regular city.

The system still presents mainly four phases. The role of a critical circuit of non-priority roads

appears clearly in the two junctions case. In Section 4, we use traffic light controls to improve the

traffic diagram. We present the improvements obtained by open-loop, local feedback, and global

feedback strategies. A comparison based on the response times to reach the stationary regime

is also given. Finally, we show the importance of the design of the junction. It appears that if

enough space is available in the junction, the traffic is almost not slowed down by the junction.

1 Introduction

The purpose of this paper is the discussion of the traffic phases appearing in road networks. These
phases appear clearly on what we call the 2D traffic fundamental diagram. This diagram gives the
relation between the average flow and the car density in the network. . The 2D traffic fundamental
diagram is an extension to road networks of the well-known fundamental diagram studied mainly for
a unique road in traffic literature such as in [13, 21, 33, 3, 34, 8, 26, 30]. This relation between the
car density and the car flow has been observed on a highway since 1935 by Greenshields [25]. .

Microscopic traffic on a road network has been studied in statistical physics with a cellular au-
tomata point of view in [8, 4, 32, 7, 31] similar to the modeling done here. These works are mainly
about numerical simulations showing a threshold density where blocking appears for somewhat differ-
ent modeling, often stochastic. The case of two roads with one junction without turning possibilities
with a stochastic modeling has been studied in detail in [21, 23, 22]. In [5], the traffic light optimization
of a city is done with an automatic control point of view.

Recently, other attempts to extend this fundamental diagram to the 2D cases have been done
in [10, 11, 12, 6, 27] in traffic literature.
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Daganzo and Geroliminis [11], using a variational traffic theory [9, 10, 12] have shown the existence
of a concave macroscopic fundamental diagram first on a ring, then on a network using an aggregation
method. Experimental studies [6] have shown that heterogeneity in traffic measurements may have a
strong impact on the shape of the fundamental diagram built using this aggregation approach of [11].

More recently, Helbing [27], using queuing theory, has derived fundamental diagrams for a traffic
model with junctions in the saturated and unsaturated cases.

Here we propose a new 2D traffic model obtained from Petri net modeling and maxplus algebra.
This paper belongs to a sequence of works presented in conferences [18, 19], available online [16, 17],
a thesis [15], and a companion paper available at [20]. We give the first full synthesis of what we
have understood on the traffic phases. In [18, 19, 16, 15, 20] the models are presented using these
formalisms. Here we avoid these formalisms and use only dynamical systems in the standard algebra
framework. The point of view is close to cellular automata one where interactions of a large number
of simplified vehicles are studied in asymptotic regimes. The point of view is different of the two
approaches (Daganzo-Geroliminis and Helbig) discussed previously. The models are more simple
but the systems can be analyzed more deeply. In particular the fundamental diagram is obtained
(sometimes analytically) for the complete set of possible densities. The different traffic phases can
be deduced from the diagram obtained instead of making a specific analysis for each different traffic
situation (under or over saturated traffic for example in the Helbig work).

We consider various closed regular road networks cut in cells which can contain at most one car.
At a junction, a car leaving can turn. To enter in the junction, we consider the priority to the right
policy (a vehicle gives way to vehicles approaching from the right at intersections) or the use of traffic
lights with various strategies. The roads are one-way streets without possibility of overtaking. A car
in a section enters in the next section as soon as it is freed. We observe through simulation or by
mathematical analysis (in the simplest case) four phases :

• Free phase: This phase corresponds to low densities. After a transitory phase the vehicles
separate enough to be able to move freely. The average flow is equal to the density.

• Saturation phase: This phase corresponds to average densities. The junctions serve with their
maximal speed. There is no jam downstream of the junctions. The average flow is constant with
the density.

• Recession phase: This phase corresponds to densities large enough for jamming places down-
stream of the junctions. The average flow decreases with the density.

• Freeze phase: This phase corresponds to high densities where the number of vehicles is large
enough to fill a circuit of roads. Once these roads are filled, the traffic is frozen and the average
flow is zero.

The simplest case studied is a system of two circular roads with only one junction managed with
the priority to the right rule. In this case, the dynamics is given. It is additively homogeneous of degree
one. We can prove the existence of an average flow which is close to a generalized eigenvalue obtained
analytically. We are particularly interested in the dependence of these quantities with respect to the
density, but the ratio (r) between the number of sections of the non-priority road and the number of
sections of the priority road also plays an important role in the determination of the four phases.
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Then, we study the case of four roads with two junctions. We show numerically that the funda-
mental diagram has the same shape as in the previous case, but now r has to be interpreted as the
ratio between the length of a non-priority road circuit and the length of a priority road circuit. When
we extend the analysis to a larger network, the same kind of results persists.

The four phases exist in the presence of traffic light control, but the length of the saturation phase
can be enlarged and the freeze phase reduced almost without any impact on the free phase. Moreover,
we show that the number of places in the junction plays an important role. In our simple model, two
places are enough to suppress the saturation phase and multiply by two the maximal flow possible
reached at the average density.

Throughout this paper, we consider closed networks with a fixed number of vehicles and wait until
a stationary or periodic regime is established1 to compute the average flow as a function of a given
density. Nevertheless, the fundamental diagrams have a sense for open systems when the density
evolves slowly with respect to the car speed. The diagram can be useful to describe the behavior of
zones of real towns with homogeneous structure of roads and junctions.

Numerical simulations are done with the Scicoslab software. They use the maxplus arithmetic of
this software very useful to describe large dynamical systems in a matrix may. These simulations have
played an important role to understand the different phases of the system before being able to derive
them sometimes analytically.

2 Traffic Modeling and Analysis of a Road with one Junction

We consider a road in the shape of the numeral 8. The road is closed with one junction as shown on
Figure 1. At the junction, the priority to the right rule is applied to enter, and the vehicles have the
possibility to go straight or to turn. Thus, the northwest road has priority over the southeast road.

Each road is cut in cells. We denote by m and n the sizes (in number of cells) of the priority and of
the non-priority roads, respectively. The cells are numbered. The junction is considered as a special
cell having two inputs and two outputs with two sub-cells inside (n and n+m containing the vehicles
going respectively West and South), see Figure 1. Each cell, including the junction, can contain at
most one vehicle. In a unit of time, on the roads outside the junction, a vehicle moves to the cell
ahead if the latter is free, and stays unmoved otherwise. At the junction, the proportion of vehicles
leaving and traveling west is equal to the proportion of vehicles traveling south, and thus equal to
1/2. To enter to the junction, the priority to the right rule is applied. That is, a vehicle coming from
the north has priority over a vehicle coming from the east.

2.1 The Dynamics

The car positions at the initial time (time 0) are given by numbers ai, 1 ≤ i ≤ n+m. For i 6= n, n+m,
ai gives the number of cars in the cell i at time 0. an (resp. an+m) gives the number of cars being in
the junction at time 0, and that are going West (resp. South). Therefore the total number of cars in
the junction at time 0 is an + an+m.

1We have not seen clearly chaotic regime though its presence is not excluded by the fact that the dynamics are

always additively homogeneous of degree 1 but not monotone.
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Figure 1: Two circular roads crossing on a junction with possibility of turning.

To describe the car dynamics on this system, we use the variable xki which denotes: – for i 6=
n, n+m, the cumulative car inflow into cell i up to time k,
– for i = n, the cumulative inflow of vehicles coming from the non-priority road (from cell n− 1), into
the junction up to time k,
– for i = n+m, the cumulative inflow of vehicles coming from the priority road (from cell n+m− 1),
into the junction up to time k.

1. For each cell i, i 6= 1, n, n + 1, n + m, the cumulative car inflow into cell i up to time k + 1,
denoted by xk+1

i satisfies:

• xk+1
i is less than or equal to ai−1 + xki−1, which is the number of vehicles present at cell
i − 1 at time 0, given by ai−1, plus the cumulative car inflow into cell i − 1 up to time k,
given by xki−1.

• xk+1
i is less than or equal to 1 − ai + xki+1, which is the number of free places at cell i at

time 0, given by 1− ai, plus the cumulative car outflow of cell i (that is the cumulative car
inflow into cell i+ 1 up to time k), given by xki+1.

• xk+1
i is given by one of these two bounds since a car enters to a cell as soon as possible.

Thus, we have:
xk+1
i = min{ai−1 + xki−1, 1− ai + xki+1}. (1)

2. For cell 1:

• xk+1
1 is less than or equal to an+m+(xkn+xkn+m)/2, which is the number of vehicles being in

the junction and going south at time 0, given by an+m, plus one half of the total cumulative
car inflow into the junction up to time k, given by (xkn + xkn+m)/2.
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• xk+1
1 is less than or equal to 1 − a1 + xk2 which is the number of free places in cell 1 at

time 0, given by 1 − a1, plus the cumulative car outflow of cell 1 (that is the cumulative
car inflow into cell 2 up to time k), given by xk2 .

• xk+1
1 is given by one of these two bounds since a car enters to a cell as soon as possible.

Hence:

xk+1
1 = min{an+m +

xkn + xkn+m

2
, 1− a1 + xk2}. (2)

If we want to maintain the integer property of counting events and obtain a discrete version of
equation (2), we could use the dynamics:

xk+1
1 = min{an+m +

⌈
xkn + xkn+m

2

⌉
, 1− a1 + xk2}, (3)

where d·e is the rounding up operator to the nearest integer. Equation (3), together with
equation (5) given below, tell that, with respect to the total counting of vehicles entered into
the junction, the odd vehicles go south and the even vehicles go west.

3. For cell n+ 1, similarly with cell 1, we obtain:

xk+1
n+1 = min{an +

xkn + xkn+m

2
, 1− an+1 + xkn+2}. (4)

xk+1
n+1 = min{an +

⌊
xkn + xkn+m

2

⌋
, 1− an+1 + xkn+2}. (5)

where b·c is the rounding down operator to the nearest integer.

4. For cell n+m:

• xk+1
n+m is less than or equal to an+m−1 +xkn+m−1, which is the number of vehicles present at

cell n+m−1 at time 0, given by an+m−1, plus the cumulative car inflow into cell n+m−1
up to time k, given by xkn+m−1.

• xk+1
n+m is less than or equal to 1− an − an+m + xk1 + xkn+1 − xkn, which is the number of free

places in the junction at time 0, given by 1 − an − an+m, plus the cumulative car inflow
into cell 1 up to time k, given by xk1 , plus the cumulative car inflow into cell n + 1 up to
time k, given by xkn+1, minus the cumulative car inflow into cell n up to time k, given by
xkn. Indeed, 1− an − an+m + xk1 + xkn+1 − xkn gives the number of entry authorizations by
the North into the junction up to time k (there is authorization when the junction is free).
The number xk1 + xkn+1 gives the cumulative inflow of cars having left the junction up to
time k. The number xkn is subtracted here because entry authorizations to the junction
are also used by vehicles entering from the East, and here, vehicles coming from the North
have priority to use these authorizations.

• xk+1
n+m is given by one of these two bounds since a car enters to a cell as soon as possible.

Thus:
xk+1
n+m = min{an+m−1 + xkn+m−1 , 1− an − an+m + xk1 + xkn+1 − xkn}. (6)
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5. For cell n:
Similarly with cell n+m, we obtain :

xk+1
n = min{an−1 + xkn−1 , 1− an − an+m + xk1 + xkn+1 − xk+1

n+m}. (7)

where we have to subtract the number of authorizations used by entering cars from the North
up to time k + 1, since these cars have priority.

The dynamics of the whole system, in the continuous case (equations (2) and (4) are considered rather
than equations (3) and (5)), is then given by:

xk+1
i = min{ai−1 + xki−1, 1− ai + xki+1}, i 6= 1, n, n+ 1, n+m , (8)

xk+1
n = min{an−1 + xkn−1 , 1− an − an+m + xk1 + xkn+1 − xk+1

n+m} , (9)

xk+1
n+m = min{an+m−1 + xkn+m−1 , 1− an − an+m + xk1 + xkn+1 − xkn} , (10)

xk+1
1 = min{an+m + (xkn + xkn+m)/2 , 1− a1 + xk2} , (11)

xk+1
n+1 = min{an + (xkn + xkn+m)/2 , 1− an+1 + xkn+2} . (12)

The parameters ai satisfy the constraints0 ≤ ai ≤ 1, 1 ≤ i ≤ n+m ,

0 ≤ an + an+m ≤ 1.
(13)

The car density denoted by d is given by

d =
1

n+m− 1

n+m∑
i=1

ai. (14)

In Table 1, we show a short simulation of the system (8)–(12), with the parameters n = m = 5,
a = [0, 1, 0, 1, 0, 1, 0, 0, 1, 0], and the initial condition x0 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

Time x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 1 0 0 1
2 1/2 0 1 0 0 1/2 1 1 0 1
3 1/2 1/2 1 0 1 1/2 3/2 1 1 1
4 1 1/2 1 1 1 1 3/2 3/2 1 1
5 1 1 3/2 1 1 1 2 3/2 1 2

Table 1: A simulation of the system (8)–(12) (continuous dynamics).

In table 2, we show a simulation of the discrete version of this system that is a simulation of ((8),
(9), (10), (3), (5)).

Using the discrete dynamics, we can compute the car positions on the roads. Let us denote by
yki the boolean variable telling whether if there is a car in cell i at time k (yki = 1) or not (yki = 0).
The value ykn (resp. ykn+m) gives the presence of a car in the junction going west (resp. south). The
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Time x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 1 0 0 1
2 1 0 1 0 0 0 1 1 0 1
3 1 1 1 0 1 0 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1
5 1 1 2 1 1 1 2 1 1 2

Table 2: A simulation of the system ((8), (9), (10), (3), (5)) (discrete dynamics).

presence of a car in the junction, no matter if it is going south or west, is given by ykn + ykn+m. The
values of yki , 1 ≤ i ≤ n+m, k ∈ N are deduced from the values of xki , 1 ≤ i ≤ n+m, k ∈ N as follows:

yki = ai + xki − xki+1, i 6= n, n+m,

ykn+m = an+m + d(xkn + xkn+m)/2e − xk1 ,

ykn = an + b(xkn + xkn+m)/2c − xkn+1.

(15)

Note that, with the initial condition x0 = 0 (which is natural here since xki is a cumulative flow) we
have y0

i = ai,∀1 ≤ i ≤ n + m. This is also true for any initial condition x0 satisfying x0
p = x0

q,∀1 ≤
p, q ≤ n+m. Indeed, this property comes from the additive homogeneity of degree 1 of the dynamical
system, as it is mentioned below. In Table 3, we give the car positions computed using (15) where
xki , 1 ≤ i ≤ n+m, 0 ≤ k ≤ 5 are the values given in Table 2.

Non-priority road Junction Priority road
−→ West South ←−

Time y1 y2 y3 y4 y5 y10 y9 y8 y7 y6

0 0 1 0 1 0 0 1 0 0 1
1 0 0 1 1 0 1 0 0 1 0
2 1 0 1 1 0 0 0 1 0 0
3 0 1 1 0 1 0 1 0 0 0
4 0 1 0 1 0 0 1 0 0 1
5 0 0 1 1 0 1 0 0 1 0

Table 3: Car positions deduced from the simulation of the discrete dynamics.

Let us remark that some car flow bounds can be obtained. Outside the junction, at most one
vehicle can pass through each cell in two units of time (one time unit to enter in the cell, one time
unit to leave the cell). Thus the flow is bounded by 1/2 on the roads. The junction having to serve
the two roads it is natural to think that the junction induces a bound of 1/4 on the flow. This is
justified in Theorem 1 below.

To discuss the properties of the system (8)–(12), let us recall some definitions. A dynamical
system xk+1 = f(xk) is additive homogeneous of degree 1 if the function f is such that ∀x ∈ Rn,∀α ∈
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R, f(α1 + x) = α1 + f(x), where we denote 1 = t(1, 1, ..., 1). It is monotone if the function satisfies
∀x, y ∈ Rn, x ≤ y ⇒ f(x) ≤ f(y). It admits a growth rate if the vector defined by χ = limk→+∞ xk/k,

exists. It admits an additive eigenvalue if there exists x ∈ Rn such that λ+ x = f(x).
The dynamical system (8)–(12) is additive homogeneous of degree 1 but not monotone (because

of equations (9) and (10)). It is known (see [28]) that if an additive homogeneous system is monotone
and connected2, the average growth rate of the dynamical system is unique (independent of the initial
state of the system) and coincides with its unique additive eigenvalue. In our case, we have the
following result (see [20, 15] for the proof).

Theorem 1. The system (8)-(12) with the initial condition x0 = 0 have the following properties :

1. The trajectories of the states are non-negative and non-decreasing.

2. The distances between any pair of states stay bounded : ∃c ∈ R, supk |xki − xkj | ≤ c,∀i, j.

3. If a growth rate χ exists, then χ ≤ 1/4.

From Theorem 1 and from the property of homogeneity, it is easy to apply the ergodic theorem
and prove the existence of a growth rate (see [20]). Moreover, the eigenvalue problem can be solved
explicitly as a function of the vehicle density (see [15, 16]). In our case this eigenvalue is not equal to
the growth rate, but we can derive a good approximation (justified my numerical simulations) of the
growth rate from its analytic expression.

2.2 The eigenvalue as a function of the density

We are interested in this subsection by solving the additive eigenvalue problem associated to the
dynamical system (8)–(12). The objective of determining the eigenvalue is to compare it to the growth
rate of the dynamical system, which is interpreted in terms of traffic as the average car flow. We will
see that, although the eigenvalue is different from the average car flow, it gives a good approximation
of it. This approximation helps a lot to identify and understand all the phases of traffic.

The eigenvalue problem associated to the dynamical system (8)–(12) is the computation of the
couple (λ, x) solution of:

λ+ xi = min{ai−1 + xi−1, 1− ai + xi+1}, i 6= 1, n, n+ 1, n+m , (16)

λ+ xn = min{an−1 + xn−1 , 1− an − an+m + x1 + xn+1 − (λ+ xn+m)}. (17)

λ+ xn+m = min{an+m−1 + xn+m−1 , 1− an − an+m + x1 + xn+1 − xn} , (18)

λ+ x1 = min{an+m +
xn + xn+m

2
, 1− a1 + x2} , (19)

λ+ xn+1 = min{an +
xn + xn+m

2
, 1− an+1 + xn+2} . (20)

Let us use the notations r = n/(n + m − 1) and ρ = 1/(n + m − 1) = r/n. The following results
are proved in [16].

2A dynamical system xk+1 = f(xk) is connected if: ∀1 ≤ i, j ≤ n, limα→∞ fi(αej) =∞, where ej is the jth vector

of the canonical basis of Rn.
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Theorem 2. There exists a non-negative additive eigenvalue λ solution of the system (16)–(20)
satisfying:

0 = max
{

min
{
d− (1 + ρ)λ,

1
4
− λ, r − d− (2r − 1 + ρ)λ

}
, −λ

}
.

Remark 1. Using the notations:

d1 = (n+m)/[4(n+m− 1)] = (1 + ρ)(1/4) ,

d2 = (3n+m− 2)/[4(n+m− 1)] = (2r + 1− ρ)/4 ,

we can explain the eigenvalues given by Theorem 2 as follows (see Figure 2):

• If 0 ≤ d ≤ d1 then λ = d/(1 + ρ) ,

• If d1 ≤ d ≤ d2 then λ = 1/4 ,

• If d2 < d ≤ r or r ≤ d < d2 which cases correspond respectively to r > 1/2 or r < 1/2 then
λ = (r − d)/(2r − 1 + ρ) ,

• If r ≤ d ≤ 1 then λ = 0 .

Corollary 1. In the case r ≥ 1/2, the non negative eigenvalue λ solution of the system (16)–(20) is
given by:

λ = max
{

min
{

1
1 + ρ

d ,
1
4
,

r − d
2r − 1 + ρ

}
, 0
}
.

Corollary 2. For large values of n and m such that n > m − 2 (which is the case r ≥ 1/2), a non
negative eigenvalue λ solution of the system (16)–(20) is given by:

λ = max
{

min
{
d,

1
4
,
r − d
2r − 1

}
, 0
}
.

Remark 2. We can check that as soon as we assume m > 1, we get d1 < d2. The position of r with
respect to d1 and d2 gives three cases given in Figure 2:

A. d ∈ [0,min(d1, r)) ⇒ λ = 1
1+ρ d,

B. d ∈ [min(d1, r), d1) ⇒


λ = 1

1+ρ d,

or λ = r−d
2r−1+ρ ,

or λ = 0.

,

C. d ∈ [d1,min(d2, r)) ⇒ λ = 1
4 ,

D. d ∈ [max(d1, r), d2) ⇒


λ = 1

4 ,

or λ = r−d
2r−1+ρ ,

or λ = 0.

,

E. d ∈ [d2,max(d2, r)) ⇒ λ = r−d
2r−1+ρ ,

F. d ∈ [max(d2, r), 1] ⇒ λ = 0.
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Figure 2: The curve of λ given in Theorem 2 depending on d.

2.3 The traffic fundamental diagram

The system (8)–(12) admits a growth rate f = limk→+∞ xk/k for trajectories starting from 0. This
quantity has the interpretation of the average car flow, for which it is difficult to obtain an analytical
expression. Nevertheless, it is easy to compute an approximation by numerical simulation. Choosing
a K large enough, we have f ' xK/K. Clearly this quantity depends on the car density and the
car positions at initial time. However, we have remarked by simulation that the dependence with the
initial car positions is not very important and disappears when the size of the system (size of the roads
and number of cars) increases. Asymptotically, the average car flow depends only on the density d

and on the relative sizes of the roads r. Moreover, since the system is not monotone, the eigenvalue
is not equal to the growth rate (see [20]). However, we see by simulation that the average car flow
f is always close to one of the eigenvalues λ. The left side of Figure 3 shows numerical simulations
for different values of r. This figure tells that when the eigenvalue is not unique, the average car flow
chooses the eigenvalue zero (see also Figure 4 below). In the right side of Figure 3, we show that λ
and f are very close to each other when λ is unique (i.e. when r > 1/2). This figure shows that f
and λ differ mainly in one phase among from the four traffic phases (see the traffic phases analysis in
section 2.4 below). In the left side of Figure 3, we give the dependence of f with d and r. For a given

��

��������

�� ��������

f

d

0.25

0.5 1
0

0 0.75

Figure 3: On the left side: The fundamental diagram of 2D-traffic depending on the ratio r, where
r takes the values: 0.15, 0.20, 0.25, 0.35, 0.40, 0.45, 0.50, 0.60, 0.70, 0.75, 0.85 and 0.95, respectively
from the left to the right. On the right side: Comparison of f and λ in the case n = 45,m = 15, i.e.
r = 3/4 > 1/2.
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r the function f(d) is a generalization to 2D-traffic systems (presence of junctions) of what is called
fundamental diagram in traffic literature.

The eigenvalue, when it is unique, gives a good analytical approximation of the average flow. When
it is not unique, we have to choose the good one (in this case the eigenvalue 0). Finally, we obtain a
good approximation of the flow by the formula :

f = max
{

min
{
d,

1
4
,

r − d
max{2r − 1, 0}

}
, 0
}
, (21)

where a/0 = sign(a)∞. Therefore when r ≤ 1/2 we have max{2r − 1, 0} = 0, then, for d < r we
obtain f = min{d, 1/4} and for d ≥ r we obtain f = 0.

In Figure 4 (to be compared with Figure 2), we give a graphic summary of the different possible
cases.

1/4

0
r d d 1

1 2

d

CASE 1 :  r < 1/4

f

1/4

0 rd d 1
1 2

d

CASE 2 :  1/4 < r < 1/2

f

1/4

0 rd d 1
1 2

d

CASE 3 :  r > 1/2

f

Figure 4: Summary of the fundamental diagrams obtained numerically.

2.4 The traffic phases of the global fundamental diagram

When r > 1/2 there are four phases. When r < 1/2 the third phase vanishes, and when r < 1/4 even
the second phase vanishes. Let us discuss the physical interpretation of these four phases.

1. Free phase: 0 ≤ d ≤ d1.

In this case, in the stationary regime, the cars are separated by free places and move freely.
There is no effect of the intersection, and the behavior of the system is similar to a simple
circular road. The flow is f = d.

priority

time : 0

priority

time : 52

Figure 5: Positions of cars in the free phase: initial and periodic asymptotic. Sizes: n = 40,m = 20.
The number of vehicles is 12.
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2. Saturation phase: d1 ≤ d ≤ d2.

This phase appears as soon as r > 1/4. In this case, the intersection is never free, and its
output flow is maximum and equal to 1/4. Thanks to the priority rule, after an initial transition
period, the flow on the priority road is regular, and the density of cars on this road is given
by the maximal output flow of the intersection (which is 1/4). All the other cars are on the
non-priority road. N being the total number of cars, m/4 cars stay on the priority road and
N − m/4 stay on the non-priority road. The flow on the non-priority road must be equal to
1/4 in such a way that the junction be always fed. The non-priority road is seen as a circular
road with a retarder (a slow section), see [18]. The role of the retarder is played here by the
intersection. Thanks to the works presented in [18], it is understood that the flow 1/4 is reached
when the density belongs to [1/4, 3/4] on circular roads with retarder. This last constraint gives
n/4 ≤ N −m/4 ≤ 3n/4, which is obtained when d1 ≤ d ≤ d2.

priority

time : 0

priority

time : 53

Figure 6: Positions of cars in the saturation phase: initial and periodic asymptotic. Sizes: n = 40,m =
20. The number of vehicles is 30.

3. The recession phase: d2 ≤ d ≤ r.

This phase appears only when the non-priority road is longer than the priority road, that is
when r > 1/2. In this case, this phase appears when the global density exceeds d2, that is
when the number of vehicles in the system exceeds m/4 + 3n/4. The flow on the non-priority
road is less than 1/4 because the density of vehicles on this road exceeds 3n/4. The sections
immediately downstream from the junction in the non-priority road are crowded, and thus the
junction cannot serve with its maximal speed, so the global flow is less than 1/4. Since the
density of vehicles in the priority road is given by the output flow of the junction, this density is
less than 1/4 and it decreases by increasing the global density. So when we increase the global
density slowly in this phase, the whole number of added vehicles is added to the non-priority
road, and moreover, vehicles on the priority road are pumped onto the non-priority road.

This phase starts when the density is such that m/4 vehicles are in the priority road, and 3n/4
vehicles are on the non-priority road. Thus, we have N = m/4 + 3n/4, which gives d = d2.

Since this phase is characterized by the pumping of the priority road vehicles, the end of this
phase appears when the density is such that no vehicle stays on the priority road. When we
have n vehicles on the non priority road its density is 1. Thus we get N = n, which gives d = r,
thus d2 < d < r.

4. The freeze phase: r ≤ d ≤ 1.
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priority

time : 0

priority

time : 107 and 157

priority

time : 132

Figure 7: Positions of cars in the recession phase: initial and periodic asymptotic. Sizes: n = 40,m =
20. The number of vehicles is 37.

When the total number of cars exceeds the size of the non- priority road, a jam appears. In this
case, the non-priority road fills up. When a car in the intersection wants to enter to this road,
the system blocks.

priority

time : 0

priority

time > 54

Figure 8: Positions of cars in the freeze phase: initial and periodic asymptotic. Sizes: n = 40,m = 20.
The number of vehicles is 50.

2.5 The fundamental diagram of the individual roads

Let us discuss the fundamental diagrams for the two roads. For this we need the densities dm on the
priority road and dn on the non-priority road. It is easy to check that:

d = rdn + (1− r)dm. (22)

Using (22) we get the diagrams plotted on Figure 9.

1. Free phase: In this phase, we have d = dm = dn = f . Thus, the diagrams are f = dm and
f = dn with 0 ≤ dm ≤ 1/4 and 0 ≤ dn ≤ 1/4.

2. Saturation phase: In this case, the global flow f and the density dm are constant and are equal
to 1/4. Then the diagram of the priority road is restricted to the point (1/4, 1/4).

From (22), we get dn = d/r − (1 − r)/4r, then 1/4 ≤ dn ≤ 3/4 from d1 ≤ d ≤ d2. Hence the
diagram of the non-priority road is given by the segment [(1/4, 1/4) , (3/4, 1/4)].

3. Recession phase: Let us give a simplified description of what happens in this phase. In fact, we
see on numerical simulations a more complicated periodic regime where the densities of the car
do not stay approximately constant as in the other phases.
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Figure 9: Approximate fundamental diagram on each road. 1: Free phase, 2: Saturation phase, 3:
Recession phase, 4: Freeze phase.

The pumping phenomena makes the density of the priority road low. Thus the vehicles are
moving freely on this road. We have dm = f = (r − d)/(2r − 1). Then d2 ≤ d ≤ r gives
0 ≤ dm ≤ 1/4. Therefore, the diagram for the priority road is the segment [(1/4, 1/4) , (0, 0)].

From (22), we get dn = d/(2r − 1)d − (1 − r)/(2r − 1), which must satisfy 3/4 < dn < 1 to be
crowded enough. That is implied by d2 < d < r. Moreover, we have f = 1−dn = (r−d)/(2r−1)
for a road without intersection (see [18]). Therefore, the diagram for the non-priority road is
the segment [(3/4, 1/4) , (1, 0)].

4. Freeze phase: In this case, we have dn = 1 and f = 0, and the diagram of the non-priority
road is restricted to the point (1, 0). From (22), we get dm = d/(1− r)− r/(1− r). Therefore,
r ≤ d ≤ 1 gives 0 ≤ dm ≤ 1. The diagram for the priority road in this phase is the segment
[(0, 0) , (1, 0)].

In this study, the turning movement percentage is taken equal to 1/2, but the same approach can
be used to study the general case, where this percentage is a parameter α. Preliminary works, show
that a function of r and α could play the same role as r here in this general case.

3 Extension to more than one junction

In this section, we extend the one junction model to the case with two junctions first, then to a
regular city on a torus. We use the same vehicle dynamics and junction management (right priority,
turning policy) as in the case of one junction. To be able to fix the car densities, we consider, as
in section 2, closed systems. In the case of a city, the simplest way to obtain a closed system is to
consider a regular city on a torus (see Figure 19). We show that the shape of the fundamental diagram
is mainly the same as in the case of one junction.

3.1 The case of two junctions

We consider a system of two circular roads crossing on two junctions, as shown on Figure 10. This
configuration gives four roads without intersections (R1, R2, R3 and R4). The road R2 (resp. R3)
has priority over the road R1 (resp. R4).
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R3R4R1R2

Figure 10: Two circular roads crossing on two junctions.

Using the same approach as in the case of one junction, we can derive easily the dynamics of this
system. A systematic way to determine such a kind of model is described in [15] . Here we will discuss
only the fundamental diagram obtained and its phases.
• The first important observation that we can make is that the fundamental diagram depends on

the sizes of the four roads only through the ratio between the sum of the priority road sizes and the
sum of the non-priority road sizes called r (see Figure 11).

0.25
f

0.20

0.15

0.10

0.05

0.00
0.0 0.2 0.4 0.6 0.8 1.0

d

0.25
f

d

0.20

0.15

0.10

0.05

0.00
0.0 0.2 0.4 0.6 0.8 1.0

Figure 11: On the left side: the fundamental diagram on the whole system for various sizes
of the four roads with r maintained constant: r = 1/2. On the right side: the fundamen-
tal diagram on the whole system for different values of r, respectively from the left to the right:
2/10, 3/10, 4/10, 5/10, 6/10, 7/10, 8/10, 9/10, 9.5/10.

• The second important observation is that in terms of the fundamental diagram of traffic, a system
of four roads with two junctions with a ratio r between the sum of the priority road sizes and the
sum of the non-priority road sizes behaves like a system of two roads with one junction with the same
ratio r between the size of the priority road and the size of the non-priority road (see Figure 12).
• The third observation is that the traffic phases are similar to those obtained in the case of one

junction. Here also, the asymptotic regimes are well understood. Figures (13), (14), (15) and (16)
show the stationary regimes corresponding to the four phases.

1. Free phase: After a mixing regime where the cars split on the different roads in equal populations,
a periodic regime appears where the vehicles move freely and where the priority rule is never
applied (see Figure (13)). During the periodic regime, the vehicles are sufficiently separated so
as to not disturb each other on the roads or in the intersections. Thus, all the vehicles move
every time. That gives the same flow on all the roads, which is equal to the density of vehicles

15



0.25

0.20

0.15

0.10

0.05

0.00
0.0 0.2 0.4 0.6 0.8 1.0

f

d

Figure 12: Comparison of the fundamental diagrams for one and two junctions with the same r = 1/2.

on the network. This phase corresponds to densities from 0 to 1/4.

1010

20

20

Time :  1
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Time :  50

P

P

Figure 13: Initial and asymptotic periodic configurations during the free phase. The size of each
priority road is 10. The size of each non-priority road is 20. The total number of vehicles is 10.

2. Saturation phase: A periodic regime is reached where the junctions serve with their maximal
speed applying the priority rule. Thus, the vehicles are accumulated in the non-priority roads
(see Figure 14). During the periodic regime, the average number of vehicles moving on the
priority roads remains the same as in the case of the density d = 1/4. This means that all the
added vehicles, with respect to the density 1/4, are absorbed by the non-priority roads. The
junctions serve with the maximal speed. Hence, the average flow is equal to 1/4. The saturation
phase is given by a horizontal segment on the global diagram (Figure 11) and on the diagrams
corresponding to the non-priority roads (Figure 17, Roads 1 and 4. Figure 18, left side). The
saturation phase is given by a dot on the diagrams corresponding to the priority roads, because
the number of vehicles in the priority roads is unchanged (Figure 17, Roads 2 and 3. Figure 18,
right side).

3. Recession phase: This phase appears only when the sum of the priority road sizes is less than
the sum of the non-priority road sizes. In this case, the vehicles continue to be accumulated in
the non-priority roads by increasing the density (with respect to the saturation phase). At the
periodic regime, the number of vehicles on the non-priority roads is so big that the flow is less
than 1/4, but this number is insufficient to fill up the non-priority roads and freeze the traffic
(which corresponds to the freeze phase, see below).
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Figure 14: Initial and asymptotic periodic configurations during the saturation phase. The size of
each priority road is 10. The size of each non-priority road is 20. The total number of vehicles is 30.
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Figure 15: Initial and asymptotic periodic configurations during the recession phase. The size of each
priority road is 10. The size of each non-priority road is 20. The total number of vehicles is 37.
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During this phase, a phenomenon of pumping vehicles from priority roads to non-priority roads
is observed. This can be seen on the fundamental diagram of the priority roads where the density
of vehicles on these roads decreases when the global density in the whole system is increased
(Figure 17, Roads 2 and 3. Figure 18, right side.).

Since the density of vehicles in the non-priority roads exceeds 3/4, the global flow is less than
1/4 (see 1D-traffic phases in [15, 18]). Since the priority roads are served by a flow less than 1/4
and the output flow of these roads is bounded by the maximum speed of the junctions (which is
1/4), the density on these roads is equal to the global flow. The global flow is less than 1/4 and
decreases by increasing the global density. Hence, the density on the priority roads decreases
when we increase the global density.

4. Freeze phase: A freeze appears as soon as the number of vehicles on the whole system reaches
the sum of the sizes of the non-priority roads. In this case, the traffic freeze traffic from the
non-priority roads filling up and blocking the two junctions (see Figure 16).

10 10
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Time :  1
P

P

10 10

20

20

Time >  26
P

P

Figure 16: Initial and asymptotic periodic configurations during the freeze phase. The size of each
priority road is 10. The size of each non-priority road is 20. The total number of vehicles is 50.

In Figure 17, we give the fundamental diagram of each road.
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Figure 17: Fundamental diagram on the roads 1, 2, 3 and 4.

3.2 A Regular city on a torus

In this section, we extend the model described in section 2 to the case of a regular city. To fix the
density, the city is set on a torus (see Figure 19). We will consider here only the case where all the
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Figure 18: The fundamental diagram of the priority roads (2 and 3) and that of the non priority roads
(1 and 4).

streets have the same sizes which catch the main qualitative results (that is the presence of mainly
four phases).. It is not easy to obtain the dynamics of the city but this has been done in a modular
way. Details on the construction are available in [15]. From this dynamics, by numerical simulation,
we see that the average flow mainly does not depend on the car initial positions, but only on the car
density. Therefore the fundamental diagram associated to the city exists empirically. We discuss here
these numerical results.

Figure 19: A 4 × 4 regular city, and a 2 × 4 regular city on a torus.

As above, we simulate the system for different global densities of vehicles and we derive the traffic
fundamental diagram. Numerically we observe the existence of the average flow becoming independent
of the initial car distribution when the size of the system grows. As above, numerical diagrams give
two, three, or four traffic phases depending on the sizes of the roads. We confirm the observations
made in the case of two junctions on the dependence of this diagram on the ratio between the sum
of the sizes of the non-priority roads and the sum of the sizes of the priority roads. However, we
observed that the beginnings of the recession and of the freeze phases depend also on the lengths of
road circuits. Indeed, besides the free density phase where the vehicles move freely, more vehicles
circulate on the non-priority roads during the other phases. As soon as the average density of vehicles
on a circuit made by non-priority roads exceeds 3/4, the recession phase appears3. Similarly, for much
higher densities, as soon as a circuit of non-priority roads fills up, the traffic is frozen. However, we

3Note that a non-priority road circuit is more susceptible to be filled than a priority-road circuit. The filling of the

latter is non stable, and is considered as a singular case.
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Table 4: The periodic regime in the cases: (a) free phase (d = 64/304 ≈ 0.21), (b) saturation phase
(d = 120/304 ≈ 0.39), and (c) freeze phase (d = 188/304 ≈ 0.61). NPC: non-priority road circuit,
FNPC: full non-priority road circuit.

think that this dependence of the traffic phases on the lengths of the non-priority road circuits may
disappear when the size of the system grows. To confirm or reverse this assumption, we shall extend
the analytical results obtained on small systems to larger ones.

In Table 4, we show the initial and the asymptotic positions of the vehicles in the regular city for
the three phases (free, saturation, and freeze phases) appearing in the symmetric case (where all the
roads have the same size, so r = 1/2, and where the turning percentages are all equal to 1/2). The
traffic behavior during the free and the saturation phases are almost the same as in the case of two
junctions. However, the recession and the freeze phases can appear for smaller densities comparing
to the case of two junctions. Note that in the case of two junctions only one non-priority road circuit
exists, whose length is also the sum of the sizes of all the non-priority roads of the system. In the case
of a regular city or a system with more than two junctions, the blocking state can be reached before
all the non-priority roads fill up, that is, when the global density d satisfies d < r.

4 Traffic Control

To control the traffic in a regular city, we use traffic lights. We suppose the existence of a traffic light
at the exit of each road, that is also an entry to a junction. The traffic lights have only green and red
colors with the standard traffic meaning. To construct a regular city controlled by traffic lights, we
follow the same approach as in the case of a regular city managed with the priority rule. That is, we
develop a model of one junction controlled by a traffic light (see [15] where we have presented many
Petri net models with traffic lights), then we generalize it to a regular city on a torus (see also [15]
where the construction of the controlled regular city is explained.) From the numerical simulation of
these models we see that the fundamental diagram makes sense, that is the car initial position has
not notable influence on the average flow. The average flow depends only on the car density and on
the light strategy. In this section we discuss the different light strategies used and their corresponding
fundamental diagrams for a city on a torus.
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4.1 Open loop control

In applying an open-loop control, we consider a periodic traffic plan over time for each junction or a
periodic plan for all the network. Here we consider the latter case. First, we fix the period called the
cycle. Then we fix the duration of time assigned to the green color and the duration of time assigned
to the red color. The timings are chosen with consideration of the traffic on each road, but they are
chosen only once and used thereafter.

Here, we test this approach on regular cities where all the roads have the same size, and all the
turning proportions are equal to 1/2. We fix the cycle to 4 units of time. Indeed, since the car flow
cannot exceed 1/4 at the junctions (see subsection 2.1), 4 units of time is the shortest possible value
of the cycle for our model. This cycle time is not realistic but gives the largest flow. The durations
of green and red colors are fixed to 2 units of time.

The fundamental diagram obtained with this policy is shown in Figure 21, where we compare it
to the other policies described below. For the right priority policy the freeze phase starts at density
1/2. Therefore the open-loop control extends the saturation phase and reduces the freeze phase, the
free phase being almost unchanged. .

4.2 Local feedback control

This control depends on the state of the traffic on the roads. By local feedback we mean that at every
instant and at every junction the control depends only on the traffic on the roads entering into the
junction and not on the other roads. Let us clarify it. Denoting by :

• R1 and R2 the two roads entering into the junction,

• n1 and n2 their sizes,

• zk1 and zk2 the number of vehicles on the corresponding road at time k,

• bk1 and bk2 given by


1 if at time k there is a vehicle entending to enter to the junction,

on the corresponding road,

0 otherwise.

The feedback control uk at time k is given by:

uk =

green for R1 and red for R2 if n2b
k
1 + zk1 ≥ n1b

k
2 + zk2 ,

green for R2 and red for R1 otherwise.

This feedback gives the green color to the road with a vehicle intending to enter into the junction
when there is only one such a road, and to the more crowded road (relatively to its size) in the other
cases. This policy is applied to all the junctions.

The fundamental diagram obtained is given in Figure 21. We can see that the local feedback
control is clearly better than the open-loop control since the freeze phase range is reduced to zero
without any worsening of the other phases.
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Figure 20: Stationary regimes. On the left side: open loop light control. On the right side: local
feedback light control.

In Figure 20, we compare open-loop and feedback traffic controls in terms of the distribution of
vehicles at the periodic regime. We see that the local feedback induces a stationary regime where the
vehicle are more uniformly distributed on the roads than in the open loop control case.

The objective in this example is to show the existence of initial car configurations, for which it is
better (in terms of car distribution on the city) to manage the traffic by a local feedback control than
by an open-loop control.

4.3 Global feedback control

In this section, we follow the point of view developed in TUC (Traffic Urban Control, see [14]) and use
a global feedback based on a linear quadratic stabilization around a nominal trajectory of the traffic
in a city. In this modeling, the streets are seen as car inventories flowing from one road to another.
We suppose the existence of a traffic light that we can control at each ingoing street of the junctions.

At time k for road i we denote xki as the number of vehicles, x̄i as the nominal number of vehicles
wanted, uki as the flow outgoing from the road i during the green phase, and ū as the nominal flow
wanted in this road. We solve the linear quadratic control problem :

min
u∈U

+∞∑
k=0

(xk − x̄)′Q(xk − x̄) + (uk − ū)′R(uk − ū)

(xk+1 − x̄) = (xk − x̄) +B(uk − ū). (23)

where B is a matrix describing the interconnections of the streets (each junction has a proportion
to enter in the outgoing street), and Q and R are weight diagonal matrices that we have to choose
empirically to obtain a regulator working in a satisfactory way. The result of this optimization is a
global feedback used to determine the timing of the traffic light in the microscopic modeling of the
city. The fundamental diagram obtained with this control is given in Figure 21.
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4.4 Fundamental diagram comparison of traffic light policies

Figure 21 shows the fundamental diagrams obtained with the four junction policies: – priority to the
right rule (diagram 1), – open-loop control (diagram 2), – local feedback control (diagram 3), and –
global feedback control (diagram 4). For low densities, the flows are almost the same and are equal
to the density. However, during this phase, the open-loop control policy (diagram 2) and the global
feedback control policy (diagram 4) slow down slightly the flow with respect to the right policy control
(diagram 1) or to the local feedback control policy (diagram 3). In the case of open-loop control policy,
this can be explained by the fact that at each junction, a vehicle can be stopped by the traffic light
on a road even if there is no vehicle intending to move into the junction from the other road. This
fact is also observed in the case of global feedback control. It is due to the implementation constraint
of these feedback control policies which impose a minimum green and red time.

The critical density at which the freezing appears in the case of the priority to the right policy is
1/2. This value represents also the ratio between the sum of the sizes of the non-priority roads and
the sum of the sizes of the priority roads for a symmetric city. (All the roads have the same size, thus
the ratio is equal to 1/2.) All the other policies improve the density at which appear the recession
and the freeze phases. The best one is the global feedback.

The maximal flow, obtained in the saturation phase, corresponds to the saturation of the junctions
which are all the same in this regular city case.

As it can be easily predicted, the flow obtained for low densities (densities less than 1/4) and by
using any of the policies, is equal to the car density. Indeed, for low densities, the vehicles reach
asymptotic regimes where they can move freely, independently of the traffic control policy applied
at the junctions. Thus, for densities d in [0, 1/2), the fundamental diagram is the same for all the
control policies. We have understood from simulations that in the case of priority to the right rule,
we need to increase considerably the sizes of the roads in order to obtain the value 1/4 of the flow
for a density less than but very close to 1/2. On the diagram 1 of Figure 21, the maximal density for
which we obtained the value 1/4 of the flow is around 0.4. It is possible to obtain a maximal density
much closer to 1/2 by increasing the sizes of the roads, but long time would be required to simulate
the system.

The result obtained for the feedback control policies is surprising. The global feedback always
should be better than the local feedback, but the implementation is different. In the global feedback
case, we impose a light cycle that we do not impose for the local feedback case. This is the reason
why the local feedback seems better than the global one at the end of the recession phase. Up to
this consideration the global feedback is the best strategy. The improvement with respect to the
open-loop appears only for high densities. All these remarks are quite natural but we see that the
light control –even with the open-loop policy– significantly improves the diagram with respect to the
priority to the right managing without large deterioration at low densities.

4.5 Response time comparison

Figure 22 gives the response times (i.e. time to recover the stationary or periodic regime after a
disturbance) obtained for the open-loop, local and global feedback policies. In this figure, we plot the
distance between the present vehicle distribution and a uniform car distribution on the streets as a
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Figure 21: Comparison of traffic control policies on a regular city (set on a torus). 1. Priority rule.
2. Open loop signal light control. 3. Local feedback signal light control. 4. Global feedback signal
light control.

time function. The city has four horizontal and four vertical roads.
Independently from the density, the feedback control gives a better time of response than the

open loop control. Both feedback controls are quite similar in terms of time response, but the global
feedback asymptotic regime is closer to the uniform distribution.

5 Junction Design Improvement

As explained above in section 2, the flow is limited by the maximal junction speed which is equal to
1/4. It is possible to improve the traffic by adding one car place in the junctions. It is easy to check
that with this improvement, the bound will be 1/2 instead of 1/4.

Let us give the analytical result obtained for the elementary system of one circular road taking
shape of the numeral eight (8), with one junction. The only change on the model is on the constraints
(13): 0 ≤ ai ≤ 1, 1 ≤ i ≤ n+m ,

0 ≤ an + an+m ≤ 1.
becomes

0 ≤ ai ≤ 1, 1 ≤ i ≤ n+m ,

0 ≤ an + an+m ≤ 2.
(24)

In this new case, we are able to obtain results analogous to Theorem 2 and Corollary 2.

Theorem 3. There exists an additive eigenvalue λ satisfying:

0 = max {min {d− (1 + ρ)λ, r − d− (2r − 1 + ρ)λ} , −λ} .

Corollary 3. For large values of n and m such that n > m − 2 (which is the case r ≥ 1/2), a non
negative eigenvalue λ is given by:

λ = max
{

min
{
d,

r − d
2r − 1

}
, 0
}
.

24



1000 200
0

20

distance between the car distribution at time t
and the uniforme car distribution.

Low density case

t
0 200100

0

22

distance between the car distribution at time t
and the uniforme car distribution.

Middle density case

t

Figure 22: Distance of the vehicle distribution to the uniform distribution as function of time. On
the left side: a low density case. On the right side: a middle density case. Continuous line: open
loop control. Bold discontinuous line: local feedback control. Alternated discontinuous line: global
feedback control.

1/4

0
r d d 1

1 2

λ

d

CASE 1 :  r < 1/4

1/2

1/2

1/4

0 rd d 1
1 2

λ

d

CASE 2 :  1/4 < r < 1/2

1/2

1/2

1/4

0 rd d 1
1 2

λ

d

CASE 3 :  r > 1/2 

1/2

1/2

Figure 23: The curve of λ given in Theorem 3 depending on d, in the case of a large junction.

From this result, we deduce a good approximation of the fundamental diagram

f = max
{

min
{

1
1 + ρ

d ,
r − d

max{2r − 1 + ρ, 0}

}
, 0
}
, (25)

which is shown in Figure 24.

6 Conclusion

The main contribution of this paper is the discussion of the phases that can appear in the traffic on
a road network. We discuss in detail the four traffic phases (free, saturation, recession and freeze
phases) first on elementary systems and then on larger road systems. We identify a key parameter
that is a ratio between the sum of the sizes of the non-priority roads and the sum of the sizes of
the priority roads. We discuss how the freeze phase appears when a circuit of non-priority road jam
is created. On the fundamental diagram, we study the improvement obtained thanks to open loop,
local and global feedback traffic light policies. The importance of the junction capacity optimization
is revealed clearly by this diagram.
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Figure 24: Summary of the fundamental diagrams obtained numerically in the case of a large junction.

The analytic results are obtained only in the case of two roads with one junction. It would be
interesting to analyze the simplest case of two circuits of non-priority roads of different sizes in greater
detail to find out if there exists a new phenomenon.

More realistic models should confirm the very natural qualitative results obtained here, but it
would be worthwhile to see them on a large set of more sophisticated simulations.

The fundamental diagram should have sense also in the case of open networks for zones of a system
where the car density stay almost fixed. The fundamental diagram must be considered, for traffic,
as the analogue of the ideal gas law. It should be useful to build 2D fluid macroscopic traffic models
based on this law but this possibility has not been explored for the moment.
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