
Max-plus Linear Algebra with Scilab
Stéphane Gaubert and Max P. Scilab

ALAPEDES Max-Plus SOFTWARE WORKSHOP
INRIA June 18-19, 1998

Abstract

This document is a tutorial session in Scilab, which presents
the max-plus linear algebra facilities currently under develop-
ment. The implementation is more than tentative: remarks and
suggestions are welcome.

All this session is contained in the Scilab exec file
TPALGLIN.sce , that you can be execute via the command
exec TPALGLIN.sce or, if you wish a step by step demon-
stration, viaexec(’TPALGLIN.sce’,7)

The notions and mathematical notations used here can be
found in standard books on max-plus algebra (e.g. [1]), or are
detailed in [6], [5].

Contents

I Solving Linear Equations of the Form x = Ax⊕ b 1

II Solving the Spectral Problem Ax = λx 4
II-A Computing the Maximal Circuit Mean 4
II-B Computing the Cycle Time via Karp’s and

Howard’s algorithms 6
II-C Computing the Eigenspace 9
II-D Computing the Spectral Projector 10
II-E Displaying the Critical Graph 12

III Solving the Inverse Problem Ax = b via Residuation 12
III-A Mere Residuation 12
III-B Computing Minimal Generating Families . . . 13

IV Solving Ax = Bx 15

A Loading the Max-plus Environment 15

B Availability 15

I. Solving Linear Equations of the Form x = Ax⊕ b

Let us first recall the following celebrated result:
Theorem 1:Let A denote an × n matrix, and b a n-

dimensional column vector, all with entries in the semir-
ing Rmax = (R ∪ {−∞,+∞},max,+). The minimal n-
dimensional column vectorx with entries inRmax, such that

x = Ax⊕ b

is given by

x = A∗b
Stéphane.Gaubert@inria.fr, http://amadeus.inria.fr/gaubert
Scilab@inria.fr, http://www-rocq.inria.fr/scilab

where, by definition,

A∗ = A0⊕ A⊕ A2⊕ A3⊕ · · · .
Moreover, if all the entries ofA are strictly less than+∞, then
all the entries ofA∗ are strictly less than+∞ iff A∗ = A0 ⊕
· · · ⊕ Ak, for all k ≥ n − 1. The syntax inScilab is simply
star(A) , whereA is a full max-plus matrix. Let us try some
basic values:

a=#(2)
a =

2.
b=star(a)

b =
Inf

a=#(-1)
a =

- 1.
b=star(a)

b =
0.

a=%0
a =

-Inf
b=star(a)

b =
0.

a=%1
a =

0.
b=star(a)

b =
0.

The same syntax is valid for matrices (our implementation uses
Jordan algorithm [7, Ch. 3,§ 4.3], which requiresO(n3) time).

a=%zeros(2,2)
a =

! -Inf -Inf !
! -Inf -Inf !

b=star(a)
b =

! 0. -Inf !
! -Inf 0. !

type(b)

ans =

257.

(the type of usual full matrices is 1, the type of max-plus full
matrices is 257). Here is a more complicated example:

a=#([-1 2; %0 -3])
a =

! - 1. 2. !
! -Inf - 3. !

star(a)
ans =

! 0. 2. !
! -Inf 0. !

Yet a more complicated example:

a=#([%0 2 3 ; -2 -10 -1 ; -5 -2 %1])
a =

! -Inf 2. 3. !
! - 2. - 10. - 1. !
! - 5. - 2. 0. !

b=star(a)
b =

! 0. 2. 3. !
! - 2. 0. 1. !
! - 4. - 2. 0. !

We check that the star operation is idempotent:

star(star(a))==star(a)
ans =

! T T T !
! T T T !
! T T T !

We perform a second consistency check:

star(a)==(aˆ0+a)ˆ2
ans =

! T T T !
! T T T !
! T T T !

Since star(a) is finite, the answer to the following test must be
true

(aˆ0+a)ˆ2==(aˆ0+a)ˆ3
ans =

! T T T !

! T T T !
! T T T !

Here,star(a) is finite because all the circuits ofa have neg-
ative or zero weight. To find nodes in circuits with exactly zero
weight, we have to compute the zero diagonal entries of the ma-
trix

A+ = A⊕ A2⊕ A3⊕ · · · = AA∗ .

b=plus(a)
b =

! 0. 2. 3. !
! - 2. 0. 1. !
! - 4. - 2. 0. !

Is it correct ?

b==a*star(a)
ans =

! T T T !
! T T T !
! T T T !

Sinceb(1,1) = b(2,2) = b(3,3) = 0, each entry ofa belongs
to a circuit of weight 0. Let us modify this:

a(2,1)=-10
a =

! -Inf 2. 3. !
! - 10. - 10. - 1. !
! - 5. - 2. 0. !

plus(a)
ans =

! - 2. 2. 3. !
! - 6. - 3. - 1. !
! - 5. - 2. 0. !

What happens if a circuit has strictly positive weight ?

a(3,1)=6
a =

! -Inf 2. 3. !
! - 10. - 10. - 1. !
! 6. - 2. 0. !

plus(a)
ans =

! Inf Inf Inf !
! Inf Inf Inf !
! Inf Inf Inf !

Mixing +∞ and−∞:

a=#([2 3; %0 -1])
a =

! 2. 3. !
! -Inf - 1. !

star(a)
ans =

! Inf Inf !
! -Inf 0. !

Random large example:

a=#(rand(64,64))
a =

column 1 to 5

! 0.2113249 0.3760119 0.6212882...
! 0.7560439 0.7340941 0.3454984...
[suppressed output]

b=star(a)
b =

column 1 to 11

! Inf Inf Inf Inf Inf Inf...
! Inf Inf Inf Inf Inf Inf...
[supressed output]

To makea∗ convergent, we have to make sure that all circuits
have at most zero weigth, e.g. by using the following normal-
ization:

a=(%ones(1,size(a,1))*a*..
%ones(size(a,2),1))ˆ(-1)*a;

We check that the new matrix has maximum 0:

max(plustimes(a))==0
ans =

T

Since it seems correct, let us put it in a macro:

deff(’[b]=normalize(a)’,..
’b=(%ones(1,size(a,1))*a..
*%ones(size(a,1),1))ˆ(-1)*a’)

We check that the macro is correct (empty answer=ok)

find(a<>normalize(a))
ans =

[]

Now, star(a) should be finite. Indeed,

b=star(a)
b =

column 1 to 5

! 0. - 0.0410985 - 0.0491906...
! - 0.1255879 0. - 0.0943671...
[suppressed output]

Let us check the answer (recall thatA∗ = (Id⊕A)n−1, provided
that it converges).

find(b<>((aˆ0+a)ˆ8)ˆ8)
ans =

[]

The naive(·)64 operation would have been a bit slow for such
a “large” matrix. Indeed,a∗ is computed inO(n3) time, and
(a0 + a)n requires anO(n4) time, unless we use dichotomic
powers.

Most probably, the star converges in less than 64 steps

c=(aˆ0+a)ˆ8;

The following shows how many entries ofb = a∗ are distinct
from c = (Id⊕ a)8, andc2, respectively:

size(find(b<>c),2)
ans =

2.

size(find(b<>cˆ2,2))
ans =

0

Hence,a∗ = (Id⊕ a)16. This raises the interesting question of
understanding how fast the star of a random matrix converges.
Finally, we find the minimal solution of the equationx = ax⊕b
using Theorem 1 above.

a=#(-1)
a =

- 1.
b=#(2)

b =

2.

x=star(a)*b
x =

2.

Idem for matrices

a=#([%0 %1 %0; %0 %0 -1; %1 %0 %0])
a =

! -Inf 0. -Inf !
! -Inf -Inf - 1. !
! 0. -Inf -Inf !

b=#([10; %0; %0])
b =

! 10. !
! -Inf !
! -Inf !

x=star(a)*b
x =

! 10. !
! 9. !
! 10. !

x==a*x+b
ans =

! T !
! T !
! T !

The star of sparse matrices is not implemented yet (by the way,
computing the star of sparse matrices is not allways a sensible
thing to do, since the result is generically full).

Among desirable further developments, let us mention the de-
velopment of sparse algorithms to computex = a∗b, whena is
a sparse matrix andb a full or sparse column vector. We plan to
implement two algorithms:

1. value iteration, which computes the sequencex(k) =
ax(k − 1) ⊕ b, x(0) = 0. If a∗b is finite, the sequence
converges in a finite (possibly small) time to the minimal
solution. Of course, Gauss-Seidel refinements can be im-
plemented (all this is fairly easy to do).

2. policy iteration. This is a joint work with Jean Cochet-
Terrasson: there is a fixed point analogue of the max-plus
spectral policy iteration algorithm `a la Howard which is de-
tailed below. In the case of the equationx = ax⊕b, we can
prove that this policy iteration algorithm allways requires
less steps than value iteration. It remains to implement it.

II. Solving the Spectral Problem Ax = λx

A. Computing the Maximal Circuit Mean

We first recall the following classical result.
Theorem 2:An irreducible matrixA with entries in the max-

plus semiringRmax has a unique eigenvalueρ(A), which is
given by the maximal mean weight of the circuits ofA.
In algebraic terms, for ann× n matrix:

ρ(A) = tr(A)⊕ (tr(A2))(1/2) ⊕ · · · ⊕ (tr(An))(1/n) ,

where tr(A) = A11⊕ · · · ⊕ Ann. This formula yields a naive
algorithm to compute the eigenvalue:

file: naiveeigenv.sci

function t=mptrace(a)
//max-plus trace

d=diag(a)
t=%ones(1,size(d,1))*d

//we overload the entrywise
//exponent operator, named .ˆ
//so that it works for maxplus matrices
//(see help overload)

function b=%talg_j_s(a,s)
b=#(plustimes(s)*plustimes(a))

function rho=naiveeigenv(a)
n=size(a,1)
x=a
t=mptrace(a)
for i=2:n
x=x*a
t=t + (mptrace(x)).ˆ(1/i)
end
rho=t

We can load this macro in Scilab with:

getf(’naiveeigenv.sci’)

Let us check the macro for scalars

naiveeigenv(#(1))
ans =

1.
naiveeigenv(%0)

ans =

-Inf
naiveeigenv(%top)

ans =

Inf

Let us try now matrices

a=#([1,4;-1,%0])
a =

! 1. 4. !
! - 1. -Inf !

rho=naiveeigenv(a)
rho =

1.5

Is it correct ?

b=rhoˆ(-1)*a
b =

! - 0.5 2.5 !
! - 2.5 -Inf !

c=plus(b)
c =

! 0. 2.5 !
! - 2.5 0. !

The answer should be zero:

mptrace(c)
ans =

0.

Let us try a larger matrix

a=#([-1 -3 0 ; -10 -5 2; -1 -4 0])
a =

! - 1. - 3. 0. !
! - 10. - 5. 2. !
! - 1. - 4. 0. !

// Guess what the eigenvalue is...

naiveeigenv(a)

[answer suppressed]

Sincea is irreducible, the cyclicity theorem tells us thatak+c =
ρcak, for somek, c ≥ 1. Let us look manually for the leastk
andc (in fact, we know from the theory thatc = 1).

a==aˆ2
ans =

! T F T !
! F F T !
! T T T !

aˆ2==aˆ3
ans =

! T T T !
! T T T !
! T T T !

Hence,k = 2, c = 1. In general, the length of the transient (i.e.
the minimal value ofk) can be arbitrarily large. Let us build
such a pathological example:

a(1,3)=-1
a =

! - 1. - 3. - 1. !
! - 10. - 5. 2. !
! - 1. - 4. 0. !

aˆ2==aˆ3
ans =

! T F T !
! T T T !

! T T T !

aˆ3==aˆ4
ans =

! T T T !
! T T T !
! T T T !

//

a(2,3)=-5
a =

! - 1. - 3. - 1. !
! - 10. - 5. - 5. !
! - 1. - 4. 0. !

a(1,3)=-5
a =

! - 1. - 3. - 5. !
! - 10. - 5. - 5. !
! - 1. - 4. 0. !

aˆ3==aˆ4
ans =

! F F T !
! T T T !
! T T T !

aˆ8==aˆ7
ans =

! T T T !
! T T T !
! T T T !

aˆ7==aˆ6
ans =

! T F T !
! T T T !
! T T T !

Exercise: explain why, for this example, the length of the tran-
sient increases to infinity whena(1,3) anda(2,3) both decrease
to−∞.

(Of course, the use of hash tables in SEMIGROUPE allows
much more efficient algorithms to compute the leastk, and its
non-commutative generalizations).

Let us try now a big matrix

a=#(rand(64,64));

timer(); rho=naiveeigenv(a)
rho =

0.9913730
timer()

ans =

7.316374

The execution time is not brilliant. Fortunately, there are faster
algorithms, e.g., Karp’s [8].

timer(); rho2=karp(a)
rho2 =

0.9913730
timer()

ans =

0.349986

This is much better, but is the result ofkarp correct ?

rho==rho2
ans =

F

The answer is false, but we should not panic... we did quite
complex computations innaiveeigenv , and arithmetical er-
rors have accumulated. Let us check that this is the case ...

plustimes(rho)-plustimes(rho2)
ans =

- 1.110D-16

B. Computing the Cycle Time via Karp’s and Howard’s algo-
rithms

Now, it is time to give more technical details about Karp’s
algorithm. Karp proved that ifA is irreducible, for all indexi ,

ρ(A) = max
1≤ j≤n

(An)i j 6=−∞
min

1≤k≤n

(An)i j − (An−k)i j

k
. (1)

In fact, the original redaction of Karp exchanges the role ofi and
j , but this is a detail, and we will see soon why (1) is preferable.

The purists wanting to avoid this (rather monstruous) crossing
of algebras should write, with the max-plus notation:

ρ(A) =
⊕

1≤ j≤n
(An)i j 6=0

∧
1≤k≤n

(
(An)i j

(An−k)i j

) 1
k

It turns out that Karp’s algorithm is also interesting in the case
of reducible matrices. To explain the more general quantity that
it computes, we need the following definition.

Definition 1: Thecycle timeof an× n matrix A with entries
in the max-plus semiringRmax is then-dimensional column vec-
tor χ(A), given by

χi (A) = lim
k
(Akx)(1/k)

i , i = 1 . . .n,

wherex is an arbitraryfinitevector.

Theorem 3(SG, unpublished) Karp’s formula (1), invoked at
index i , returns thei -th coordinate of the cycle time vector of
the matrixA.
The functionkarp that we have implemented here takes a sec-
ond optional argument, which is precisely the indexi . By de-
fault, i = 1. The function returns thei -th coordinate of the cycle
time of A.

a=#([2 %0; %0 3])
a =

! 2. -Inf !
! -Inf 3. !

karp(a)
ans =

2.
karp(a,1)

ans =

2.
karp(a,2)

ans =

3.
a(1,2)=2

a =

! 2. 2. !
! -Inf 3. !

karp(a,1)
ans =

3.
karp(a,2)

ans =

3.

Is it correct ?

aˆ100*%ones(2,1)
ans =

! 299. !
! 300. !

We know from the theory thatχi (A) is equal to the max of the
eigenvalues of the strongly connected components of the graph
of A to whichi has access. Let us check this.

a(2,2)=1
a =

! 2. 2. !
! -Inf 1. !

karp(a,1)

ans =

2.
karp(a,2)

ans =

1.
aˆ100*%ones(2,1)

ans =

! 200. !
! 100. !

Fine ... but if we want to compute then entries of the cycle time
vector, shall we invokekarp n times ? Of course, no ... the
cycle time vector is constant on each strongly connected com-
ponent of the graph ofA, hence, it is enough to invokekarp
only onceper strongly connected component.

We next show how we can compute these components using
metanet. First, we build the adjacency matrix of the graph ofA
(the first argument thatspget returns is an× 2 vectori j : the
k-th arc of the graph goes fromi j (k,1) to i j (k,2)).

ij=spget(sparse(a))
ij =

! 1. 1. !
! 1. 2. !
! 2. 2. !

We turn it to a 0-1 adjacency matrix for use by metanet

adjacency=sparse(ij,ones(1,size(ij,1)))
adjacency =

(2, 2) sparse matrix

(1, 1) 1.
(1, 2) 1.
(2, 2) 1.

Let us see how it looks

full(adjacency)
ans =

! 1. 1. !
! 0. 1. !

g=mat_2_graph(adjacency,1,’node-node’)
g =

g(1)

column 1 to 8

!graph name directed node_number

[suppressed output]

The argument 1 in the last expression stands for directed. This is
a huge list... for the graph may contains much more information
than its adjacency structure.

show_graph(g)
ans =

1.
[ncomp,nc]=strong_connex(g)

nc =

! 2. 1. !
ncomp =

2.

We found that the graph has 2 strongly connected components,
which are{2} and {1}, respectively. Let us see what happens
if we modify the graph. First, we automatize the process, by
creating the macromp 2 graph , which transforms a max-plus
matrix to a graph for use in metanet.

getf(’mp_2_graph.sci’)

a(1,3)=2
a =

! 2. 2. 2. !
! -Inf 1. -Inf !

a(3,3)=1
a =

! 2. 2. 2. !
! -Inf 1. -Inf !
! -Inf -Inf 1. !

g2=mp_2_graph(a);

show_graph(g2);

[ncomp,nc]=strong_connex(g2)
nc =

! 3. 2. 1. !
ncomp =

3.
a(3,1)=0

a =

! 2. 2. 2. !
! -Inf 1. -Inf !
! 0. -Inf 1. !

g3=mp_2_graph(a);

show_graph(g3);

[ncomp,nc]=strong_connex(g3)
nc =

! 2. 1. 2. !
ncomp =

2.

It is now easy to buil the irreducible blocks ofA. E.g., here is
the second connected component of the graph:

I=find(nc==2)
I =

! 1. 3. !

and here is theI × I submatrix ofa:

A=a(I,I)
A =

! 2. 2. !
! 0. 1. !

We could use this to compute efficiently the cycle time ofa.
However, another algorithm, namely, Howard’s policy iteration,
computes directlyall the coordinates of the cycle time vector,
and in a faster way. The algorithm is documented in [3]. The
Scilab primitive is namedhoward :

chi=howard(A)
chi =

! 2. !
! 2. !

Optionnaly,howard returns abias vector(which is defined be-
low):

[chi,v]=howard(A)
v =

! 2. !
! 0. !

chi =

! 2. !
! 2. !

WhenA is irreducible, the bias vectorv is nothing but an eigen-
vector:

A*v
ans =

! 4. !
! 2. !

v
v =

! 2. !
! 0. !

In the reducible case, by definition, the bias vectorv is such that

a(v + k× χ) = v + (k+ 1)χ ,

for all k large enough. Let us check this with the above reducible
matrix:

[chi,v]=howard(a)
v =

! 2. !
! 1. !
! 0. !

chi =

! 2. !
! 1. !
! 2. !
//(tentative dirty conversions...)

v1=plustimes(v)+plustimes(chi)
v1 =

! 4. !
! 2. !
! 2. !

a*#(v1)==#(plustimes(v1)+plustimes(chi))
ans =

! T !
! T !
! T !

v1=plustimes(v1)+plustimes(chi)
v1 =

! 6. !
! 3. !
! 4. !

a*#(v1)==#(plustimes(v1)+plustimes(chi))
ans =

! T !
! T !
! T !

Let us see how fast these three algorithms are for large matrices.

a=#(rand(100,100));

timer();h=howard(a);timer()
ans =

0.08333

timer();k=karp(a);timer()
ans =

0.266656

k==h(1)
ans =

T

karp and howard yield less numerical errors than
naiveeigenv , hence, the answer was true here. Much
of the time is spent in the interface for such relatively small
matrices. The advantage ofhoward becomes clear for large
matrices, particularly for sparse ones.

a=#(sprand(500,500,0.02));

timer();h=howard(a);timer()
ans =

0.066664

//karp

timer();k=karp(a);timer()
ans =

0.91663

k==h(1)
ans =

T

Yet a larger one:

timer();a=#(sprand(2000,2000,0.01));timer()
ans =

0.983294

h=howard(a);timer()
ans =

0.783302

In other words, computing the cycle time vector viahoward
takes a time which is comparable to the generation of the
random matrix. Usingkarp here would be too slow
for the demo (howard takes experimentally an almost
linear (=O(number of arcs)) time, karp takes an O(n ×
number of arcs) time).

C. Computing the Eigenspace

Possibly after dividingA by ρ(A), we may always assume
that ρ(A) = 1(= 0). We will only consider here the case an
an irreducible matrix (the reducible case involves decomposing
first A in irreducible blocks, see [4][chap 4] and [6] for the char-
acterization of the spectrum in this case). Then, the minimal

generating family1 of the eigenspace is obtained by selecting
exactly one column ofA∗ per strongly connected component of
thecritical graphof A (which is the subgraph of the graph ofA
composed of the circuits whose mean weight isρ(A)).

Consider

a=#([0 -2 -10 ; 0 -3 -5; -1 5 -8])
a =

! 0. - 2. - 10. !
! 0. - 3. - 5. !
! - 1. 5. - 8. !

We first compute an eigenvector ofa usinghoward

[chi,v]=howard(a)
v =

! 0. !
! 0. !
! 5. !

chi =

! 0. !
! 0. !
! 0. !

Then, we perform a diagonal change of variables

getf(’mpdiag.sci’)

deff(’[b]=dadinv(a,v)’,..
’b=mpdiag(vˆ(-1))*a*mpdiag(v)’)

b=dadinv(a,v)
b =

! 0. - 2. - 5. !
! 0. - 3. 0. !
! - 6. 0. - 8. !

We compute the saturation graph, whose non-trivial strongly
connected components form the critical graph.

[ir,ic]=find(b==#(0))
ic =

! 1. 1. 2. 3. !
ir =

! 1. 2. 3. 2. !

adjacency=sparse([ir’,ic’],..
ones(1,size(ir,2)))

adjacency =

(3, 3) sparse matrix

(1, 1) 1.
(2, 1) 1.

1The minimal generating family is unique, up to a permutation and a scaling.

(2, 3) 1.
(3, 2) 1.
full(adjacency)

ans =

! 1. 0. 0. !
! 1. 0. 1. !
! 0. 1. 0. !

g=mat_2_graph(adjacency,1,’node-node’);

show_graph(g)
ans =

1.
[ncomp,nc]=strong_connex(g)

nc =

! 1. 2. 2. !
ncomp =

2.
c=plus(b)

c =

! 0. - 2. - 2. !
! 0. 0. 0. !
! 0. 0. 0. !

We select one node per strongly connected component of the
saturation graph.

critical=[]
critical =

[]

basis=#([])
basis =

[]

for i=1:ncomp
j=min(find(nc==i))
critical(i)=j
if (c(j,j)==#(0))
basis=[basis,c(:,j)]
end
end

j =

1.
critical =

1.
basis =

! 0. !

! 0. !
! 0. !

j =

2.
critical =

! 1. !
! 2. !

basis =

! 0. - 2. !
! 0. 0. !
! 0. 0. !

Now, basis is a minimal generating family of the eigenspace.
Let us automatize this process

getf(’eigenspace.sci’)

a=#([3 0 %0; 0 3 %0 ; 2 1 2])
a =

! 3. 0. -Inf !
! 0. 3. -Inf !
! 2. 1. 2. !

[v,rho]=eigenspace(a)
rho =

3.
v =

! 0. - 3. !
! - 3. 0. !
! - 1. - 2. !

// Consistency check

a*v==rho*v
ans =

! T T !
! T T !
! T T !

The first output argument ofeigenspace is (of course) a gen-
erating family of the eigenspace for the maximal eigenvalue of
the matrix. The second (optional) output argument is the maxi-
mal eigenvalue of the matrix.

D. Computing the Spectral Projector

If A has maximal eigenvalue1, the matrixP, defined by

lim
k→∞

Ak A∗ = P

satisfiesAP = P A = P = P2. The matrixP is called the
spectral projector of A, for its image is precisely the eigenspace

of A (we call image ofA its column space, i.e. the set of vec-
tors of the formAx, wherex is an arbitrary column vector of
appropriate size).

getf(’projspec.sci’)
P=projspec(a)

P =

! 0. - 3. -Inf !
! - 3. 0. -Inf !
! - 1. - 2. -Inf !

Let us check this value by simulation

b=rhoˆ(-1)*a
b =

! 0. - 3. -Inf !
! - 3. 0. -Inf !
! - 1. - 2. - 1. !

Q=bˆ100*(bˆ0+b)ˆ100
Q =

! 0. - 3. -Inf !
! - 3. 0. -Inf !
! - 1. - 2. - 100. !

Let us now enlargea, creating another strongly connected com-
ponent of the critical graph. First, we add a circuit with mean
6/2= 3= ρ(a).
a(4,5)=5;
a(5,4)=1;

a =

! 3. 0. -Inf -Inf -Inf !
! 0. 3. -Inf -Inf -Inf !
! 2. 1. 2. -Inf -Inf !
! -Inf -Inf -Inf -Inf 5. !
! -Inf -Inf -Inf 1. -Inf !

Second, we add other non-critical arcs

a(1,4)=-8;
a(5,3)=-7

a =

! 3. 0. -Inf - 8. -Inf !
! 0. 3. -Inf -Inf -Inf !
! 2. 1. 2. -Inf -Inf !
! -Inf -Inf -Inf -Inf 5. !
! -Inf -Inf - 7. 1. -Inf !

Let us compute the eigenspace

[v,rho]=eigenspace(a)
rho =

3.
v =

! 0. - 3. - 11. !
! - 3. 0. - 14. !
! - 1. - 2. - 12. !
! - 9. - 10. 0. !
! - 11. - 12. - 2. !

a*v==rho*v
ans =

! T T T !
! T T T !
! T T T !
! T T T !
! T T T !

Let us compute the spectral projector

P=projspec(a)
P =

! 0. - 3. - 19. - 11. - 9. !
! - 3. 0. - 22. - 14. - 12. !
! - 1. - 2. - 20. - 12. - 10. !
! - 9. - 10. - 8. 0. 2. !
! - 11. - 12. - 10. - 2. 0. !

Let us compare it with the result of simulation

b=rhoˆ(-1)*a;
Q=bˆ100*(bˆ0+b)ˆ100

Q =

! 0. - 3. - 19. - 11. - 9. !
! - 3. 0. - 22. - 14. - 12. !
! - 1. - 2. - 20. - 12. - 10. !
! - 9. - 10. - 8. 0. 2. !
! - 11. - 12. - 10. - 2. 0. !

P==Q
ans =

! T T T T T !
! T T T T T !
! T T T T T !
! T T T T T !
! T T T T T !

Let us check that the spectral projector leaves the eigenspace
invariant:

P*v==v
ans =

! T T T !
! T T T !
! T T T !
! T T T !
! T T T !

E. Displaying the Critical Graph

Finally, the macrospectral analysis generates the
graph of a matrix, and distinguishes the different strongly con-
nected components of the critical graph by colors.

getf(’spectral_analysis.sci’)
g=spectral_analysis(a);
show_graph(g)

We edited the graph via metanet, saved it in a file, and generated
a xfig file via plot graph . Currently, the .fig output is less
nice than what we see on the metanet window. Thus, we had
to modify it slightly in xfig to make it prettier: we choosed
better colors, fonts of appropriate size, made the nodes opaque,
and slightly reshaped some arcs (of course this should be autom-
atized). Here is the result:

0
2

3

4 5

1

1

2

2

-8

5

1

3
3

-7

0

III. Solving the Inverse Problem Ax = b via Residuation

A. Mere Residuation

Let A, B, X denote matrices with entries in the completed
max-plus semiringRmax. We recall the following basic result of
residuation theory.

Theorem 4:The maximal solution ofAX ≤ B is given by
X = A\B, where

(A\Bi j = min
k
(−Aki + Bkj)

Generically,AX = b has no solution. The matrixA\B is called
the left residualof A and B. Dually, the maximal solution of
Y A ≤ B is denoted by theright residual B/A. When A is
invertible,A\B coincides withA(−1)B.

a=#(3)
a =

3.
b=#(4)

b =

4.
a/b

ans =

- 1.
a==(a/b)*b

ans =

T
a/%0

ans =

Inf
a/%top

ans =

-Inf
%0/%0

ans =

Inf
%top/%top

ans =

Inf

Matrix case:

a=#([2,3;%0,1])
a =

! 2. 3. !
! -Inf 1. !

b=#([10; 100])
b =

! 10. !
! 100. !

a\b
ans =

! 8. !
! 7. !

Exercise: prove that:

(a/a)a = a; (a/a)2 = a/a .

These properties allow a consistency check:

p=a/a
p =

! 0. 2. !
! -Inf 0. !

p*a==a
ans =

! T T !
! T T !

p==pˆ2
ans =

! T T !
! T T !

Invertible case:

a=#([%0 %1 %0; %0 %0 %1; %1 %0 %0])
a =

! -Inf 0. -Inf !
! -Inf -Inf 0. !
! 0. -Inf -Inf !

b=#([1;2;3])
b =

! 1. !
! 2. !
! 3. !

a\b
ans =

! 3. !
! 1. !
! 2. !

a’*b
ans =

! 3. !
! 1. !
! 2. !

(the inverse of the permutation matrixa is its transpose).
Residuation allows us to determine if a vectorb belongs to the

image of a matrixA. Indeed,b belongs to ImA iff b = A(A\b).
Exercise: draw the image of the following matrix:

a=#([0,2;%0,0])
a =

! 0. 2. !
! -Inf 0. !

Answer

b=#([4;0])
b =

! 4. !
! 0. !

b==a*(a\b)
ans =

! T !
! T !

b=#([3;0])
b =

! 3. !
! 0. !

b==a*(a\b)
ans =

! T !
! T !

b=#([2;0])
b =

! 2. !
! 0. !

b==a*(a\b)
ans =

! T !
! T !

b=#([1;0])
b =

! 1. !
! 0. !

b==a*(a\b)
ans =

! T !
! F !

b=#([0;0])
b =

! 0. !
! 0. !

b==a*(a\b)
ans =

! T !
! F !

(Im a is the set of column vectors(x1, x2) such thatx1 ≥ 2+x2).

B. Computing Minimal Generating Families

Let F denote a finite set of pairwise non-proportional vectors
of (Rmax)

n. We say that a vectorv in this setF is redundant
if it belongs the the semimodule generated by the vectors ofF
distinct ofv.

Theorem 5:By deleting redundant vectors of the finite setF ,
we obtain a minimal generating setG of the semimodule that
it generates. This setG is unique, up to multiplication of its
elements by invertible constants.

Since residuation allows us to determine redundant vectors, we
can easily build minimal generating families. In fact, we do
not check thatb = A(A\b), but we rather use the “east-europe”
variant of this algorithm (which can be found e.g. in U. Zimmer-
mann’s book [9] or in P. Butkovic’s survey [2]). The algorithm
is readily obtained from the following result:

Theorem 6:The vectorb ∈ (Rmax)
n belongs to the image of

A ∈ (Rmax)
n×p iff⋃

1≤i≤p

arg min
1≤ j≤n

(−Aj i + bj) = {1, . . . ,n} .

Checking this is twice faster than checking thatA(A\b) = b.
The Scilab macro is namedinspan . inspan (a,b) returns
true if the vectorb is in the image of the matrixa.

inspan(a,b)
ans =

F
b=#([3;0])

b =

! 3. !
! 0. !

inspan(a,b)
ans =

T

Similarly, includespan (A, B) returns true if ImB is in-
cluded in ImA, andequalspan (A, B) returns true if ImA is
equal to ImB.

includespan(a,b)
ans =

T
includespan(b,a)

ans =

F
b=%ones(2,1)

b =

! 0. !
! 0. !

includespan(a,b)
ans =

F
equalspan(a,b)

ans =

F
equalspan(a,a)

ans =

T

equalspan(b,b)
ans =

T

weakbasis (A) returns a matrix whose colums form a minimal
generating set of the column space ofA:

weakbasis(a)
ans =

! 2. 0. !
! 0. -Inf !

Finitely generated subsemimodules of(Rmax)
2 have minimal

generating sets with 0,1, or 2 elements

a=#([0 2 3; 7 5 2])
a =

! 0. 2. 3. !
! 7. 5. 2. !

b=weakbasis(a)
b =

! 3. 0. !
! 2. 7. !

a=#(rand(2,20))
a =

column 1 to 5

! 0.7093614 0.2281042 0.5695345...
! 0.3137576 0.3097598 0.0957654...
[output suppressed]
b=weakbasis(a)

b =

! 0.0405107 0.7819632 !
! 0.7767725 0.1604007 !

equalspan(a,b)
ans =

T

Finitely generated subsemimodules of(Rmax)
3 can have mini-

mal generating sets of arbitrarily large cardinality.

a=#([0,0,0;0,-1,-2;0,1,2])
a =

! 0. 0. 0. !
! 0. - 1. - 2. !
! 0. 1. 2. !

weakbasis(a)
ans =

! 0. 0. 0. !

! - 2. 0. - 1. !
! 2. 0. 1. !

a=[a,#([0;-3;3])]
a =

! 0. 0. 0. 0. !
! 0. - 1. - 2. - 3. !
! 0. 1. 2. 3. !

weakbasis(a)
ans =

! 0. 0. 0. 0. !
! - 3. 0. - 1. - 2. !
! 3. 0. 1. 2. !

a=[a,#([0;-4;4])]
a =

! 0. 0. 0. 0. 0. !
! 0. - 1. - 2. - 3. - 4. !
! 0. 1. 2. 3. 4. !

weakbasis(a)
ans =

! 0. 0. 0. 0. 0. !
! - 4. 0. - 1. - 2. - 3. !
! 4. 0. 1. 2. 3. !

For ann× p matrix,weakbasis runs innp2 time

a=#(rand(10,200));

timer();

b=weakbasis(a);

timer()
ans =

1.33328
size(b)

ans =

! 10. 195. !

equalspan(a,b)
ans =

T

IV. Solving Ax = Bx

This is an interesting research subject. Please ask privately to
see the demo of the currently implemented algorithm.

Appendix

I. Loading the Max-plus Environment

The following Scilab command, which can be executed di-
rectly in Scilab, or put in thẽ/scilab.star initialization
file, links incrementally Scilab with the max-plus libraries, and
defines some max-plus macros.

exec(SCI+’/routines/maxplus/mploader.sce’)

II. Availability

The max-plus toolbox requires the version 2.4 of Scilab,
which will be released in the next few days. The max-plus tool-
box will be made available via the web pages of the authors, as
soon as released (hopefully not much later than the version 2.4
of Scilab).

References
[1] F. Baccelli, G. Cohen, G.J. Olsder, and J.P. Quadrat.Synchronization and

Linearity. Wiley, 1992.

[2] Peter Butkovič. Strong regularity of matrices — a survey of results.Discrete
Applied Mathematics, 48:45–68, 1994.

[3] J. Cochet-Terrasson, Guy Cohen, St´ephane Gaubert, Michael Mc Gettrick,
and Jean-Pierre Quadrat. Numerical computation of spectral elements in
max-plus algebra. InIFAC Conference on System Structure and Control,
Nantes, France, July 1998.

[4] S. Gaubert.Théorie des syst`emes linéaires dans les dio¨ıdes. Thèse,École
des Mines de Paris, July 1992.

[5] S. Gaubert. Two lectures on max-plus algebra. InProceedings of the 26-
th Spring School on Theoretical Computer Science and Automatic Control,
Noirmoutier, May 1998.

[6] S. Gaubert and M. Plus. Methods and applications of (max,+) linear algebra.
In R. Reischuk and M. Morvan, editors,STACS’97, number 1200 in LNCS,
Lübeck, March 1997. Springer.

[7] M. Gondran and M. Minoux.Graphes et algorithmes. Eyrolles, Paris, 1979.
Engl. transl.Graphs and Algorithms, Wiley, 1984.

[8] R.M. Karp. A characterization of the minimum mean-cycle in a digraph.
Discrete Maths., 23:309–311, 1978.

[9] U. Zimmermann.Linear and Combinatorial Optimization in Ordered Al-
gebraic Structures. North Holland, 1981.

Index of Primitives for Max-plus Linear Algebra

howard , 8
includespan , 14
inspan , 14
karp , 6
plus , 2
star , 1
weakbasis , 14
These primitives are written in C and interfaced with Scilab.
The other functionalities presented here (except basic ma-
trix operations, including residuation, which are at FOR-
TRAN level) are Scilab macros, which make use of the
above primitives and of the general Scilab facilities for han-
dling max-plus objects.

