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Abstract. We present in this paper a road traffic model based on Petri nets and min-
plus algebra in order to study the fundamental traffic diagram of regular city (american
like city). The obtained dynamic is simulated using an extension of the maxplus tool-
box of Scilab able to simulate general Petri nets with negative multipliers. The Petri
net model corresponding to an intersection with traffic lights is described first. Then
the construction of the regular city dynamics is done. An algebra point of view is
used. Systems are seen as operators corresponding to Petri nets with named inputs
and outputs which can be represented by a set of matrices in standard and maxplus
algebra. On such systems standard operations parallel series composition feedback and
contraction (a feedback generalization) are defined. Then a regular city dynamic is
obtained by combining three elementary systems with these combinators. The funda-
mental diagrams of some regular cities are shown to illustrate the possibilities of the
toolbox.

1 Introduction

Two modeling approaches of road traffic can distinguished : – the macroscopic
point of view where the traffic is seen as a gas with a comportment law given by a
diagram called the fundamental traffic diagram, – the microscopic point of view
where each individual vehicle with a specific comportment is distinguished. The
cellular automata approach is a microscopic one with very simplified individual
comportment where large simulations are done to make macroscopic laws stand
out. In this paper, we present a microscopic model based on Petri net [8] whose
dynamic is written using minplus algebra [1]. Our approach is microscopic, not
far from the cellular automata approach [11,12]. As in statistical physics [10,14–
16], we study the individual movement of vehicles to derive macroscopic laws.
The effectiveness of this type of model in determining fundamental traffic dia-
grams has been shown on a system without intersection [9].

First, we show that crossings with traffic lights can be modeled using time
invariant Petri nets with negative multiplicities on some arcs. Indeed with nega-
tive multiplicities we can model tokens staying only a finite time in a place. This
property is necessary to be able to represent the phases of the traffic light by
tokens. An alternative way of modeling is to consider that the Petri net change
with the phases but in this case the Petri nets become time variant.

Second, we use a system point of view to build a large Petri net representing a
regular city. A regular city is an american like, one-way parallel streets regularly
spaced, one in a direction the next one in the other direction.
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To build the dynamics of a regular city we introduced a new system theory.
Systems are seen as operators corresponding to Petri nets with named inputs
and outputs. The dynamics of such systems can be defined by three standard
matrices and three maxplus algebra matrices. On such systems some operations
can be defined parallel and series composition and different sort of feedbacks.
Then a regular city dynamic is obtained by combining three elementary systems
with these combinators. The dynamics of free choice Petri nets with negative
multiplicites is also introduced, it is useful to model crossings with control lights.

Third, by simulation of the built system the fundamental diagrams of regular
cities can be computed using the maxplus algebra toolbox of Scilab. Some dia-
gram examples are given. On these diagram appears clearly three phases which
have been previously commented on simple systems see [2]-[3].

2 Minplus algebra

The structure Rmin = (R ∪ {+∞} ,⊕,⊗) is defined by the set R∪{+∞} endowed
with the operations min (denoted by ⊕, called minplus sum) and + (denoted by
⊗, called minplus product). The element ε = +∞ is the zero element, it satisfies
ε⊕ x = x and is absorbing ε⊗ x = ε. The element e = 0 is the unity, it satisfies
e ⊗ x = x. The main difference with respect to the conventional algebra is the
idempotency of the addition x ⊕ x = x and the fact that addition cannot be
simplified, that is: a⊕ b = c⊕ b 6⇒ a = c. It is called minplus algebra.

This minplus structure on scalars induces an idempotent semiring structure
on m×m square matrices with the element-wise minimum and matrix product
defined by (A⊗B)ik = minj (Aij + Bjk) , where the zero and unit matrices are
still denoted by ε and e.

Event Graph (Petri nets (see next section) with places having only one input
and one output arcs) are linear dynamical system in this algebra and can be
represented by a triple (A,B,C) of minplus matrices. The throughput of the
event graph is then given by the minplus eigenvalue of the A matrix see [1].

Traffic on a circular road can be described in term of event graph and then
the fundamental diagram giving the average flow as a function of the car density
correspond to compute the eigen value of A as a function of the number of
tokens. Then, the graph interpretation of the eigen value of the matrix A gives
explicitly the fundamental diagram see [9].

3 Petri Net Dynamics

A Petri net N is a graph with two set of nodes: the transitions Q (with Q
elements) and the places P (with P elements) and two sorts of arcs, the syn-
chronization arcs (from a place to a transition) and the production arcs (from a
transition to a place).

A minplus P ×Q matrix D, called synchronization (decision) matrix is asso-
ciated to the synchronization arcs. Dpq = ap if there exists an arc from the place
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p ∈ P to the transition q ∈ Q, and Dpq = ε elsewhere, where ap is the initial
marking and is represented graphically by the tokens in the places. We suppose
here that the sojourn time in all the places is one time unit1.

A standard algebra Q × P matrix H, called production (hazard) matrix is
associated with the production arcs. It is defined by Hqp = mqp if there exists
an arc from q to p, and 0 elsewhere, where mqp is the multiplicity of the arc.

Therefore a Petri net is characterized by the quadruple :

(P,Q,H, D) .

It is a dynamic system in which the token evolution is partially defined by the
transition firings saying that a transition can fire as soon as all its upstream
places contain at least a token having stayed at least one unit of time. When a
transition fires, it generates a number of tokens in each downstream place equal
to the multiplicity of the arc joining the transition to the place.

In the case of a deterministic Petri net, where all the places have only one arc
downstream, the dynamic is well defined, that is, there is no token consuming
conflict between the downstream transitions2. Then, denoting Q = (Qk

q )q∈Q,k∈N
the vector of sequences of cumulated firing numbers of transitions and P =
(P k

p )p∈P,k∈N the vector of sequences of cumulated tokens numbers arrived in the
places we have : [

P k+1

Qk+1

]
=

[
0 H
D ε

]
�

[
P k+1

Qk

]
,

[
HQk

D ⊗ P k+1

]
. (1)

From this dynamics we can deduce the dynamics transition by eliminating the
places variables and the dynamics of transition by eliminating the transition
vraiables :

Qk+1 = D ⊗ (HQk), P k+1 = H(D ⊗ P k) .

In the case of event graphs, particular deterministic Petri nets where all the
multiplicities mqp are equal to 1 and all the places have exactly one arc upstream,
the dynamics is linear in the minplus sense. It is :

Qk+1 = A⊗Qk,

where Aqq′ = ap with p the unique place connected to the transitions q and q′.

3.1 Input-Output Petri nets

In this section, we partition the transition (V,Q,Z) [resp. the places (U ,P,Y)] in
three sets : – the inputs, – the states, – the outputs. The inputs are the transitions
1 When different integer sojourn times are considered, an equivalent Petri net with a

unique sojourn time can obtained by adding places and transitions and solving the
implicit relations.

2 In the nondeterministic case, we have to precise the rules which resolve the conflicts
by, for example, giving priorities to the consuming transitions or by imposing ratios
to be respected. As soon as this rules are added, the initial nondeterministic Petri
net becomes a deterministic one.
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[resp. places] without upstream arcs. The outputs are the ones without output
arcs. Then the dynamics can be rewritten :

P k+1

Qk+1

Y k+1

Zk+1

 =


0 A 0 B
C ε D ε
0 E 0 0
F ε ε ε

 �


P k+1

Qk

Uk+1

V k

 ,


AQk + BV k

C ⊗ P k+1 ⊕D ⊗ Uk+1

EQk

F ⊗ P k+1

 ,

This dynamics denoted S, defined by the matrices (A, · · · , F ), associates to the
input signals (Uk, V k)k∈N the output signals (Y k, Zk)k∈N : (Y, Z) = S(U, V ) .

On these systems we can define operations :

• Parallel Composition. Given two systems S1 and S2 we define the system
S = S1 � S2 obtained by putting in common the entries and by adding3 the
output places. The dynamics of S is defined by :

A =
[
A1 0
0 A2

]
, B =

[
B1

B2

]
, C =

[
C1 ε
ε C2

]
, D =

[
D1

D2

]
,

E = [E1 E2], F = [F1 F2] .

• Series Composition. Given two systems S1 and S2 we define the sys-
tem S = S1 � S2 obtained by composition of the two systems S(U, V ) =
S1(S2(U, V )). The dynamics is defined by :

A =

A1 0 B1

0 A2 0
0 E2 0

 , B =

 0
B2

0

 , C =

C1 ε D1

ε C2 ε
ε F2 ε

 , D =

 ε
D2

ε

 ,

E =
[
E1 0 0

]
, F =

[
F1 ε ε

]
.

• Feedback. Given a system S, we define the feedback system S� as the
solution in (Y,Z) of (Y, Z) = S((U, V ) � (Y,Z)) = (S1(U ⊕ Y ), S2(V + Z)).
Its dynamics is defined by :

A� =
[
A B
E 0

]
, B� =

[
B
0

]
, C� =

[
C D
F ε

]
, D� =

[
D
ε

]
,

E� =
[
E 0

]
, F� =

[
F ε

]
.

• Contraction. To define contraction we have first to partition the inputs
(denoted in the case of a partition in two set by (i, i′)) and the outputs
(dented (o, o′)) of a system. Then a system S with the previous partition of
inputs and outputs is denoted Sii′

oo′ .

3 The output-places are added in the standard algebra and the transition in the min-
plus algebra.
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Given two partitioned systems Sii′

oo′ and S̄o′i′′

i′o′′ we define the contracted system
Ŝii′′

oo′′ , Sii′

oo′ S̄o′i′′

i′o′′ as the solution in Y, Y ′′, Z, Z ′′ of the system :{
(Y Y ′, ZZ ′) = S(UU ′, V V ′) ,

(U ′Y ′′, V ′Z ′′) = S̄(Y ′U ′′, Z ′V ′′) ,

where the partition of the input places associated to the input partition (i, i′)
is denoted UU ′ with the analogous notations for the outputs Y Y ′ and for
the input and output transitions V V ′ and ZZ ′. The dynamic of Ŝ is defined
by :

Â =


A 0 0 B′

0 Ā B̄′ 0
E′ 0 0 0
0 Ē′ 0 0

 , B̂ =


B 0
0 B̄′′

0 0
0 0

 , Ĉ =


C ε ε D′

ε C̄ D̄′ ε
F ′ ε ε ε
ε F̄ ′ ε ε

 , D̂ =


D ε
ε D̄′′

ε ε
ε ε

 ,

Ê =
[
E 0 0 0
0 Ē′′ 0 0

]
, F̂ =

[
F ε ε ε
ε F̄ ′′ ε ε

]
,

Where the input matrices of S and S̄ have been partitioned in :[
BB′

]
,

[
B̄′B̄′′

]
,

[
DD′] ,

[
D̄′D̄′′] ,

and the output matrices have been partitioned in :[
E
E′

]
,

[
Ē′

Ē′′

]
,

[
F
F ′

]
,

[
F̄ ′

F̄ ′′

]
.

3.2 Some Simple Input Output Petri Nets

It is clear that these systems can be specialized in the standard linear systems
or in maxplus linear systems. There is also other classes where composition
operators become simpler for example the system4 :{

Qk+1 = C ⊗ (AQk + BV k),
Zk+1 = EQk.

.

has a simple feedback :{
Qk+1 = C ⊗ (AQk + BEQk−1 + BW k),
Zk+1 = EQk.

.

The openloop dynamics corresponds to the system defined by :

Ā = A + BE, B̄ = B, C̄ = C, D̄ = ∅, Ē = E, F̄ = ∅ .

4 A better example would be Zk = EQk, it could be dealt with an implicit version of
systems studied here
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3.3 Petri Nets with Consumption Arcs

To increase the modeling power of Petri net it is useful to accept arcs with
negative production or consuption arcs (negative entries in H). For example,
let us suppose that from a place leaves two arcs it is useful to consider that
one arc is leaving the place and the other arc is an input in the place with a
negative production (each time the transition to which is connected this arc fires
it consumes one token 5. Therefore using this consumption arc we can resolve
“choice” problem but new difficulties appears to prove the existence of stationary
regimes because we can describe by this way more general dynamics.

Let us discuss a small example. The time variant Petri net in Figure-1-left
has the dynamics :

Zk+1 = min{V k+1, ak + Zk}, with ak =
(−1)k+1 + 1

2
. (2)

When V k+1 ≥ 1+Zk for all k. This dynamics can be reduced to : Zk+1 = ak+Zk

which implies that Zk+2 = 1 + Zk = min{V k+2, 1 + Zk} which corresponds to
the time-invariant Petri net of Figure-1-right. But there exist sequences of V k

for which the sequences Zk are different whatever the initial conditions are. See
the following sequences where we have denoted Z̄ the sequence associated to the
time invariant system and we have chosen the initial condition Z̄0 = Z0 and
Z̄1 = Z1 :

k 0 1 2 3 4 5 6
ak 0 1 0 1 0 1 0
V k 0 0 1 1 1 2 2
Zk 0 0 1 1 1 1 2
Z̄k 0 0 1 1 1 2 2

V

Z
ak

V

Z

Fig. 1. Time variant (left) and time invariant (right) clock.

As soon as we accept consumption arcs it is possible to generate, by Petri net,
non increasing sequences like ak as the difference of two increasing sequences.

5 Input arc of a transition consume also tokens but they are different because they
are combined with a minimum (they participate to the firing condition, the output
arc of a transition with negative production consume tokens in the place where it is
connected but it does not participate to the firing condition).
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The Petri net of Figure 3.3 has the dynamics :
Qk+1

1 = 1 + Qk
2 , Q0

1 = 0,

Qk+1
2 = Qk

1 , Q0
2 = 0,

Zk+1 = min{V k+1, Zk + Qk
1 −Qk

2},

and we have

Qk
1 −Qk

2 =
(−1)k+1 + 1

2
= ak .

Therefore it has an output equal to the one of time variant Petri net (Figure-
3.3-left). This kind of Petri net will be used to model traffic lights in the next
section. In the following we will accept the consumption arcs which implies that

V

Z

−1

Q2

Q1

k

Q −  Q1 2

0
0

1

1

2 3 4 5 6 7

Fig. 2. Time invariant with consumption arc clock.

some entries of the matrices A,B,E could be negative which introduce a lot of
difficulties to study the existence of stationary regimes.

4 Traffic modeling

In this section, we build the Petri describing the traffic of a regular city. For that,
we use three elementary Petri nets that we combine with the previous combina-
tors. Then we use this Petri net to obtain the fundamental traffic diagram of a
regular city which links the average flow to the density of vehicles.

First, let us give the assumptions done on the traffic in a regular city (Figure
3) is discribed as follows:

• Each road is made up of sections, which can contain only one vehicle.
• A crossing is a section with two possible outputs which can contain at most

one vehicle.
• If a vehicle is not hampered by another one before, it remains one unit of

time in a section, before moving.
• The vehicles move forward without overtaking, and at a crossing, one goes

forward, the next on right or left depending of the crossing type.
• At each crossing there is a traffic light giving the moving authorizations.
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Fig. 3. A regular city.

4.1 Two roads with one joint crossing

Before building the Petri net of the complete regular town let us give the dynamic
of a system composed of two circular road with one crossing and light control at
the crossing (see Figure 4). A model of two circular roads with one crossing and
right-priority has been presented in [2].

Each road is modelled by a set of sections. Each section is represented by two
places a and ā in the Petri net. If a = 1, the section is occupied by one vehicle
and we have ā = 0. If a = 0, the section is free, and ā = 1 gives the permission
to enter in this section.

q

q

q
v−1

qv

1

2

q
v+1q

v+2

q
2v−1

q
2v

a1 a1

av−1a v−1

av

a2v
av+1

av+1

a2v−1

a 2v−1

q
N

q
Ea c

a c

a

a
1/2

1/2

1/2

1/2

−1 −1

−1

−1

av

a2v

g

g

Fig. 4. Tow circular roads with one crossing managed by traffic lights.
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The traffic light is described in Figure 4 by the transition qN , qE and the
places connected to these transitions. We have, at the initial time, ac = ag and
āc = āg = 1 − ac. If ag = 1, then āg = 0, and the light is green for the vehicles
coming from the north, red for the vehicles coming from the east. We assume
that the phase times of the traffic light takes one time unit 6. At the end of the
first phase qE fires and consumes the token in ac and products one token in āc,
one token in āg, and minus one token in ag (it consumes the token). The light
commute to the other phase where āg = āc = 1, which corresponds to a green
light for the vehicles coming from the east, red light for the vehicles coming from
the north. This phase takes also one unit of time, then qN fires and the system
come back to the first phase.

Before entering in the crossing we have to know if it is free, this is done by
the tokens in places āν and ā2ν which must be counted correctly. The negative
multiplicities is necessary for that. Thanks to the negative multiplicity each
time a vehicle enter by the North (for example) the authorization by the east is
consumed until the vehicle leaves the crossing. In Figure 4, when aν = 1 (resp.
a2ν = 1), then the intersection is occupied by a vehicle which wants to go South
(resp. West), and we have āν = ā2ν = 0. When aν = a2ν = 0, the intersection is
free, and āν = ā2ν = 1 gives the permission to enter into the crossing.

We consider that half of the vehicles entered in the crossing want go West
(by entering in place a2ν) and half want go South (by entering in place aν). In
fact, by rounding in appropriate way the number of vehicles in these two places,
the even vehicles entered in the crossing go towards the South, and the odd ones
go towards the West.

The dynamic of this system is then given by :

Qk+1
i = ai−1Q

k
i−1 ⊕ āiQ

k
i+1, i ∈ {2, . . . , ν − 1, ν + 2, . . . , 2ν − 1},

Qk+1
ν = āνQk

1Qk
ν+1/Qk

2ν ⊕ aν−1Q
k
ν−1 ⊕ agQ

k
νQk

N/Qk
E ,

Qk+1
2ν = ā2νQk

1Qk
ν+1/Qk

ν ⊕ a2ν−1Q
k
2ν−1 ⊕ āgQ

k
2νQk

E/Qk
N ,

Qk+1
1 = aν

⌊√
1Qk

νQk
2ν

⌋
⊕ ā1Q

k
2 ,

Qk+1
ν+1 = a2ν

⌊√
Qk

νQk
2ν

⌋
⊕ āν+1Qk

ν+2,

Qk+1
N = ācQ

k
E ,

Qk+1
E = acQ

k
N .

where b/a means the largest x such that x⊗a ≤ b, that is the standard subtrac-
tion when b and a are finite. Similarly, the square root minplus denoted by

√
· is

the standard division by 2, while b·c indicates the rounding down operator. For
example Equation (4.1) is written in standard algebra as follows :

Qk+1
1 = min

{
aν +

⌊
1 + Qk

ν + Qk
2ν

2

⌋
, ā1 + Qk

2

}
.

6 In fact the bar numbers in ac and āc.
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4.2 Regular City Modeling.

To model a regular city, we use the three elementary systems given in Figure 5 :

• A traffic section denoted by T V V̄
ZZ̄

(a, b),

• A crossing entry denoted by EV VnVeV0V1V2
ZZsZwZ0Z1Z2

(a, b, c, d),

• A crossing exit denoted by X VnVeV
ZsZwZ(a, b),

a

b

V

V

Z

ZT

a

−1

b

c
−1

d
V

Z

V

Vn

e Z0 Zs
wZ

V0

V1

V2

Z

Z

1

2

E

a

b

Ve

VnV

Zs
Z
Zw

X

Fig. 5. Elementary systems

In the following, we give the construction of a regular city on a torus. That
means that the East West roads and North South roads are circular and have
been cut in Figure 3 representation.

To build the Petri Net we need only the three elementary systems that we
compose with what we have called the composition operator.

A road with n sections is defined by recurrence:

1T = T , nT V V̄
ZZ̄ (a, c) = n−1T 1V̄

2Z̄ (a, b̄)T V 2
Z1 (b, c).

One road with n− 1 places and one crossing is given by :

RV V̄ VeV0V1V2V ′
e

ZZ̄ZwZ0Z1Z2Z′
w
(a, d, e, f) = n−1T 1V̄

2Z̄ (a, b̄)E23VeV0V1V2
14ZwZ0Z1Z2

(b, c̄, d, e)X 4V ′
e V

3Z′
wZ(c, f).

A system of two roads with one joint crossing is given by:

CV̄ V V̄ ′V ′

ZZ̄Z′Z̄′ (a, b, e, f) = RV̄ V 01234
ZZ̄56789 (a, b, c, d)RV̄ ′V ′56789

Z′Z̄′01234 (e, b̄, c̄, f).

A block of four crossings as shown on Figure 6 is given by :

BV̄ V
ZZ̄ = C1V̄ nV w2

3Z̄nZw4 C
4V̄ wV s5
2Z̄wZs6 C

6V̄ sV e7
5Z̄sZe8 C

8V̄ eV n3
7Z̄eZn1 ,
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V

__

_

_

_

_

_ _

V

V

V

V

V

V

V

Z

Z

Z

ZZ

Z

Z

Ze

e

e

e

w
w

s

n n n n

s s s

w

w

1 1

2

2

3 3

4

4

5 5
6 6

7

7

8

8

C

C

C

C2

1

3

4

B

Fig. 6. One block of four crossings.

where we denote without index the vector of North West South East components
for example Z = (Zn, Zw, Zs, Ze).

Proceeding like above, we construct horizontal lines of blocks, then the reg-
ular city is the vertical contraction of lines of blocks. Finally the city on the
torus Figure 7 is obtained by applying a feedback operation associated to the
connection of the North input to the South output and the East in put to the
West output.

Fig. 7. Regular City on a Torus.
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5 Fundamental Diagram and Stationary Regime

5.1 Fundamental Diagram

By simulation of the Petri net, the fundamental traffic diagram of a regular
city is obtained 7, the density d being the number of vehicles p divided by the
capacity of the city m (d = p/m), and the flow f being the average number of the
vehicle displacements, given by: f = fi = limk→+∞Qi

k/k which is independent
of transition i. The fundamental diagram is shown on Figure 8. This diagram
present phases similar to the ones obtained on small systems [2,3]. See these
references for discussion on the traffic interpretation of the different phases.

f

0 1/4

1/4

1/2 1
d

Fig. 8. The fundamental traffic diagram.

5.2 Light Control feedback

Let us discuss the significance of traffic light feedbacks for improving the traffic.
Given an open loop traffic light policy the vehicles reach a periodic regime

which gives the average flow. This average flow does not depend8 on the initial
position of the vehicles but the periodic regime may depends on it. This is shown
on a small system composed of two roads with one crossing (the roads have the
same size, and the routings and the green time durations being equidistributed).

Let us compare the periodic regime reached from an intial position using
traffic lights, first in an open loop, and second in feedback on the number of
vehicles in each road. In the feedback case, the controller compares the number
of vehicles on each roads that it controls and gives more green light time to the
road which has the largest vehicle number.

On Figure 9 and Tables 5.2 the letter G means green, R red for the corre-
sponding traffic light L. We conclude that even for a symmetrical system, there
7 The light phase time is chosen equal to two units of time for all crossings.
8 At least asymptotically on the scale of the system.
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LL LL

Fig. 9. Asymmetric (left) periodic regime, and symmetric one (right) on a symmetrical
system.

k L road I road II

0 G 1 0 0 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 1
1 G 0 1 0 0 0 1 0 0 0 1 0 1 0 1 1 1 0 1 1
2 R 0 0 1 0 0 0 1 0 0 0 1 0 1 1 1 0 1 1 1
3 R 0 0 0 1 0 0 0 1 0 1 0 1 1 1 0 1 1 1 0
4 G 1 0 0 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 1

mean=5/2 mean=6

k L road I road II

0 R 1 0 0 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 1
1 R 0 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 0 1 0

10 R 0 0 1 0 0 1 1 0 1 0 1 0 0 0 1 0 1 1 1
11 R 0 0 0 1 0 1 0 1 1 1 0 1 0 0 0 1 1 1 0
12 G 1 0 0 0 1 0 1 1 1 0 0 0 1 0 0 1 1 0 1

mean=17/4 mean=17/4

Table 1. Asymmetric (left) and symmetric (right) periodic regimes.

exist initial distributions for which the vehicles are not distributed in a uniform
way in the periodic regime but using a stabilizing feedback this uniform distribu-
tion can be obtained. This is also observed for the complete regular city (Figure
10).
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Fig. 10. Periodic Regime : – open loop lights (left), – feedback lights (right).

6 Conclusion.

We have built a traffic model of regular cities with traffic lights using input-
output Petri nets with negative multiplicities. The construction is based on a
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system theory where Petri nets are represented by matrices defined on a mixed
algebra (some components live in the standard algebra the other ones in the
minplus algebra). The calculus is not associative but the standard combinators
(parallel series feedback composition) can be easily defined.

Using this construction the fundamental diagram of regular city can be com-
puted and the interest of the feedback traffic light control can be shown.
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