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Abstract. Exotic semirings such as the (thax,+) semiring” (R U
{—o0}, max, +), or the “tropical semiring”(N U {400}, min, +), have been
invented and reinvented many times since the late fifties, in relation with various
fields: performance evaluation of manufacturing systems and discrete event system
theory; graph theory (path algebra) and Markov decision processes, Hamilton-
Jacobi theory; asymptotic analysis (low temperature asymptotics in statistical
physics, large deviations, WKB method); language theory (automata with multi-
plicities).

Despite this apparent profusion, there is a small set of common, non-naive, basic
results and problems, in general not known outside(thex, +) community,

which seem to be useful in most applications. The aim of this short survey paper
is to present what we believe to be the minimal cordmafix, +) results, and

to illustrate these results by typical applications, at the frontier of language the-
ory, control, and operations research (performance evaluation of discrete event
systems, analysis of Markov decision processes with average cost).

Basic techniques include: solving all kinds of systems of linear equations, some-
times with exotic symmetrization and determinant techniques; usingthe, +)
Perron-Frobenius theory to study the dynamicaedx, +) linear maps. We point

out some open problems and current developments.

1 Introduction: the (max, +) and tropical semirings

The “max-algebra” or {max, +) semiring"R,x, is the seR U {—occo}, equipped with
max as addition, and+ as multiplication. It is traditional to use the notatignfor
max (2@ 3 = 3), and® for + (1 ® 1 = 2). We denoté by 0 the zeroelement for
@ (such thatd ® a = a, here0 = —o0) and by1 the unit element for® (such that
1®a=a®1=a, herel = 0). This structure satisfies all the semiring axioms,&e.
is associative, commutative, with zero elemenis associative, has a unit, distributes
over®, and zero is absorbing (all the ring axioms are satisfied, exceptthaed not
be a group law). This semiring@®mmutativéa @ b = b® a), idempotenta ® a = a),

* Max Plus is a collective name for a working group @A) algebra, at INRIA Rocquencourt,
comprising currently: Marianne Akian, Guy Cohen, S.G., Jean-Pierre Quadrat and Michel Viot.
! The notation for the zero and unit is one of the disputed questions of the community. The
symbolse for zero, anct for the unit, often used in the literature, are very distinctive and well
suited to handwritten computations. But it is difficult to renounce to the traditional use of
in Analysis. The notatio®, 1 used by the Idempotent Analysis school has the advantage of
making formulae closer to their usual analogues.



and non zero elements have an inversefgwe callsemifieldshe semirings that satisfy
this property). The terrdioid is sometimes used for adempotensemiring.

Using the new symbols and® instead of the familiamax and+ notation is the
price to pay to easily handle all the familiar algebraic constructions. For instance, we
will write, in the (max, +) semiring:

ab=a®b, a"=a® --®a (ntimey, 22 =6, V3=15,
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Ber)Y =B0r)30r)=603r®2° =6 2> (=max(6,2 x )) .

We will systematically use the standard algebraic notions (matrices, vectors, linear
operators, semimodules — i.e. modules over a semiring—, formal polynomials and
polynomial functions, formal series) in the context of theax,+) semiring, often
without explicit mention. Essentially all the standard notions of algebra have obvious
semiring analogues, provided they do not appeal to the invertibility of addition.

There are several useful variants of theax, +) semiring, displayed in Table 1.

In the sequel, we will have to consider various semirings, and will universally use the

Rmax (R U {—00}, max, +) (max, +) semiring idempotent semifield
max algebra
Rimax (R U {£o0}, max, +) completed —0 + (+00) = —o0,
(max, +) semiring for0®a=0
Rmax, x (R*, max, x) (max, x) semiring|lisomorphic toR max (z — log x)
Rmin (R U {400}, min, +) (min, +) semiring| isomorphic toR max (x — —x)
Nin (N U {400}, min, +) tropical semiring | (famous in Language Theory)
Rmax,min| (R U {£o0}, max, min) | bottleneck algebra not dealt with here
B ({false truet, or, and) Boolean semiring| isomorphic to({0,1}, &, ®),
for any of the above semirings
Ry, (RU{—=oc0},®n,+) Maslov semirings|  isomorphic to(R ", +, x)
a®n b= hlog(e¥" + /M) lim;, o+ Ry = Ro = Ruax

Table 1. The family of (max, +) and tropical semirings. .

notation®, ®, 0,1 with a context dependent meaning (edg.= max in R,,,, but
@ = min in Ry, 0 = —o00 in Ry, but0 = 400 in Ryiy).

The fact thatd is idempotent instead of being invertiblR,( is an exception, for
h # 0), is the main original feature of these “exotic” algebras, which makes them so
different from the more familiar ring and field structures. In fact the idempotence and
cancellativity axioms are exclusive: if for all b,¢, (a @b = a ® ¢ = b = ¢) and
a®a = a,we geta = 0, for all a (simplify a ® a = a ® 0).

This paper is not a survey in the usual sense. There exist several comprehensive books
and excellent survey articles on the subject, each one having its own bias and motivations.



Applications of(max, +) algebras are too vast (they range from asymptotic methods to
decidability problems), techniques are too various (from graph theory to measure theory
and large deviations) to be surveyed in a paper of this format. But there is a small common
set of useful basic results, applications and problems, that we try to spotlight here. We
aim neither at completeness, nor at originality. But we wish to give an honest idea of
the services that one should expect frammx, +) techniques. The interested reader is
referred to the books [15,44,10,2,31], to the survey papers listed in the bibliography,
and to the recent collection of articles [24] for an up-to-date account of the maxplusian
results and motivations. Bibliographical and historical comments are at the end of the
paper.

2 Seven good reasons to use tl{enax, +) semiring

2.1 An Algebra for Optimal Control

A standard problem of calculus of variations, which appears in Mechanics (least action
principle) and Optimal Control, is the following. Given a Lagrangiamnd suitable
boundary conditions (e.g(0), ¢(7T") fixed), compute

T
inf/ L(q,q¢)dt . Q)
q() Jo

This problem is intrinsicallymin, +) linear. To see this, consider the (slightly more
general) discrete variant, witlup rather tharinf,

§(n) =z, £(k) = f(&(k —1),u(k), k=n+1,... N, (2a)
N
T (@u) = Y €k = 1),u(k)) + E(N)) (2b)
k=n-+1
V.V () = sup J)Y (z,u) , (2c)
where thesup is taken over all sequencesadntrolsu(k),k =n+1,--- , N, selected
in afiniteset of controld/, £(k), fork = n,... , N, belongs to afinite set of statesx

is adistinguishedhitial state, f : X xU — X isthedynamicsc : X xU — RU{—o0}
is theinstantaneous rewar@énd® : X — RU{—oo} is thefinal reward(the —oo value
can be used to code forbidden final states or transitions). These data form a deterministic
Markov Decision Proces@vIDP) with additive reward.

The functionV, " (-), which represents the optimal reward from tim¢o time IV,
as a function of the starting point, is called treduefunction. It satisfies the backward
dynamic programming equation

Vi =8, V@) =max {cle,0) + VL ()} ©)

Introducing thetransition matrixA € (Ryax )~ * ¥,

Apy = sup c(x,u), 4)
wel, f(z,u)=y

(the supremum over an empty setisc), we obtain:



FacT 1 (DETERMINISTIC MDP = (max, +)-LINEAR DYNAMICS). The value func-
tion V;V of a finite deterministic Markov decision process with additive reward is given
by the(max, +) linear dynamics:

VY =, VN =AVN,. (5)

The interpretation in terms of paths is elementary. If we must end at fjode take
@ = 1, (the vector with all entrie® except thgi-th equal tol), Then, the value function
VeV (i) = (AN),; is the maximal (additive) weight of a path of length from to 5, in
the graph canonically associateaith A.

Example 1 (Taxicab)Consider a taxicab which operates between 3 cities and one airport,
as shown in Fig. 1. At each state, the taxi driver has to choose his next destination, with
deterministic fares shown on the graph (for simplicity, we assume that the demand is
deterministic, and that the driver can choose the destination). The taxi driver considers
maximizing his reward oveN journeys. Thémax, 4+) matrix associated with this MDP

is displayed in Fig. 1.
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Fig. 1. Taxicab Deterministic MDP and its matrix
Let us consider the optimization of the average reward:
. 1 N
x(x) = suplimsup —Jj' (z,u) . (6)
u  N—oo N

Here, thesup is taken over infinite sequences of contrg($), «(2), . . . and the trajectory
(2a) is defined fok = 0,1,.... We expect/}¥ to grow (or to decrease) linearly, as a
function of the horizonV. Thus,x(z) represents the optimal average reward (per time
unit), starting frome. Assuming that theup andlim sup commute in (6), we get:

x(z) = limsup 1N x (AN®), (7)

N —o0

(this is an hybrid formulad ¥ @ is in the(max, +) semiring ,1/N x (-) is in the conven-
tional algebra). To evaluate (7), let us assume that the mataigmits areigenvectow

2 With aX x X matrix A we associate the weighted (directed) graph, with set of n&demd
an arc(z, y) with weight A, , wheneverA, , # 0.



in the (max, +) semiring:

Av = Mo, i.e. max{A;; +v;} =X\ +v; (8)
J

(the eigenvector must be nonidenticallg, A € R,,,.. is the eigenvalue). Let us assume
thatv and® have only finite entries. Then, there exist two finite constantssuch that
v4+v <P < p+ o In (max, +) notation,yy < & < pwv. ThenvANoy = vANy <
AN® < ANy = pANv, or with the conventional notation:

v+ NA+v < ANG < i+ N+ . (9)
We easily deduce from (9) the following.

FAacT 2 (“EIGENELEMENTS = OPTIMAL REWARD AND Poricy”). If the final
reward @ is finite, and if A has a finite eigenvector with eigenvalie the optimal
average rewardy(z) is a constant (independent of the starting paifit equal to the
eigenvalueX. An optimal control is obtained by playing in stateany v such that
c(i,u) = A;; and f(i,u) = j, wherej is in thearg maxof (8) at statei.

The existence of a finite eigenvector is characterized in Theorems 11 and 15 below.
We will not discuss here the extension of these results to the infinite dimensional
case (e.g. (1)), which is one of the major themes of Idempotent Analysis [31]. Let us just
mention that all the results presented here admit or should admit infinite dimensional
generalizations, presumably up to important technical difficulties.
There is another much simpler extension, to the (discrete) semi-Markov case, which
is worth being mentioned. Let us equip the above MDP with an additionalmap
X x U — R\ {0}; 7(z(k — 1), u(k)) represents the physical time elapsed between
decisionk and decisiont + 1, when controlu(k) is chosen. This is very natural in
most applications (for the taxicab example, the times of the different possible journeys
in general differ). The optimal average reward per time unit now writes:

S ek — 1), u(k)) + B(x(N))
x) = sup lim su .
x(@) = suplimsup SN (k- 1), u(k))

Of course, the specializatian= 1 gives the original problem (6). Let us defifig =
{r(i,u) | f(i,u) =7}, and fort € T;;,

(10)

Apij= sup c(i,u) . (11)
wel, f(i,u)=4,7(i,u)=t

Arguing as in the Markov case, it is not too difficult to show the following.

FAacT 3 (GENERALIZED SPECTRAL PROBLEM FOR SEMI-MARKOV PRO-
CESSES). If the generalized spectral problem

mjax tIIgl%f{At’i)j — At +o} = (12)
has a finite solutior, and if @ is finite, then the optimal average rewardyigz) = A,

for all z. An optimal control is obtained by playing amyin the arg maxof (11), with
Jj,t in thearg maxof (12), when in staté



Algebraically, (12) is nothing but a generalized spectral problem. Indeed, with an obvious
definition of the matricesl,, we can write:

@ N tAw =, whereT = UTU . (13)

teT (2]

2.2 An Algebra for Asymptotics

In Statistical Physics, one looks at the asymptotics when the tempekhatmds to zero
of the spectrum ofransfer matriceswhich have the form

Ap = (exp(h™ " Aij))1<ij<n -

The real parameterd;; represent potential terms plus interaction energy terms (when
two adjacent sites are in statesand j, respectively). The Perron eigenvalyg.A;)
determines the free energy per sitg = hlog p(Ay). Clearly, A\, is an eigenvalue of

A in the semiringR,,, defined in Table 1. Lep,,..(A) denote the maximglmax, +)
eigenvalue ofd. Sincelim;,_,o+ Ry, = Ry = Ryax, the following result is natural.

Fact 4 (PERRON FROBENIUS AsYMPTOTICS). The asymptotic growth rate of the
Perron eigenvalue afl;, is equal to the maximdimax, +) eigenvalue of the matrix:

hlirg+ hlog p(An) = pmax(4) - (14)

This follows easily from thémax, +) spectral inequalities (24),(25) below. The nor-
malized Perron eigenvectoy, of A;, also satisfies

}}E& hlog(vp)i = u; ,

whereu is a specialmax, +) eigenvector ofA which has been characterized recently

by Akian, Bapat, and Gaubert [1]. Precise asymptotic expansiop&4f) as sum of

exponentials have been given, some of the terms having combinatorial interpretations.
More generally(max, +) algebra arises almost everywhere in asymptotic phenom-

ena. Often, thémax, +) algebrais involved in an elementary way (e.g. when computing

exponents of Puiseux expansions using the Newton Polygon). Less elementary applica-

tions are WKB type asymptotics (see [31]), which are related to Large Deviations (see

e.g. [17]).

2.3 An Algebra for Discrete Event Systems

The (max, +) algebra is popular in the Discrete Event Systems community, since
(max, +) linear dynamics correspond to a well identified subclass of Discrete Event
Systems, with only synchronization phenomena, called Timed Event Graphs. Indeed,
consider a system with repetitive tasks. We assume that th¢h execution of task

(firing of transitions) has to waitr;; time units for the(k — v;;)-th execution of task.

E.g. tasks represent the processing of parts in a manufacturing sysfeapresents an
initially available stock, and;; represents a production or transportation time.

% The Perron eigenvalyg B) of a matrix B with nonnegative entries is the maximal eigenvalue
associated with a nonnegative eigenvector, which is equal to the spectral radius of



FacT 5 (TIMED EVENT GRAPHS ARE (max, +) LINEAR SYSTEMS). The earliest
date of occurrence of an evenin a Timed Event Graphy; (&), satisfies

LL'Z(]{) = mjax [Tij + xj(k — Vij)] . (15)

Eqn 15 coincides with the value iteration of the deterministic semi-Markov Decision
Process ii§ 2.1, that we only wrote in the Markov version (3). Therefore, the asymptotic
behavior of (15) can be dealt with asifl. 1, using max, +) spectral theory. In particular,

if the generalized spectral problem= max;[r;; — Av;; +v;] has afinite solutioQ\, v),
then)\ = limy,_.. k! x ;(k), for alli (\ is thecycle time or inverse of th@symptotic
throughpu}. The study of the dynamics (15), and of its stochastic [2], and non-linear
extensions [11,23] (fluid Petri Nets, minmax functions), is the major therhef, +)
discrete event systems theory.

Another linear model is that dfeaps of pieced et R denote a set gbositionsor
resourcegsayR = {1,... ,n}). A piece(ortashk a is a rigid (possibly non connected)
block, represented geometrically by a set of occupied positions (or requested resources)
R(a) C R, alower contour (starting timé)a) : R(a) — R, an upper contour (release
time) h(a) : R(a) — R, such thatva € R(a), h(a) > ¢(a). The piece corresponds
to the region of thek x R plane:P, = {(r,y) € R(a) xR | £(a), <y < h(a),},
which means that taskrequires the set of resources (machines, processors, operators)
R(a), and that resource € R(a) is used from tim&(a), to time h(a),. A piece P,
can be translated vertically of any which gives the new region defined B¥a) =
A+ £4(a), h'(a) = X+ h(a). We can execute a task earlier or later, but we cannot
change the differences(a), — ¢(a)s which are invariants of the task. groundor
initial conditionis a row vectoy € (R,,.x)~. Resource becomes initially available at
time g... If we dropk piecesa; . .. ag, in this order, on the groung (letting the pieces
fall down according to the gravity, forbidding horizontal translations, and rotations, as
in the famous Tetris game, see Fig 2), we obtain what we ch#ap of piecesThe
upper contour:(w) of the heapy = a; . . . ay, is the row vector iR ,.x ), whoser-th
component is equal to the position of the top of the highest piece occupying resource
Theheightof the heap is by definitiop(w) = max,cr z(w),. Physically,y(w) gives
themakesparf= completion time) of the sequence of tasksandz(w), is the release
time of resource-.

With each piecen within a set of pieces, we associate the matri’/(a) €
(Runax)®*®, M(a), s = h(a)s — l(a), if r,s € R(a), andM (a),., = 1 for diagonal
entries not inR(a) (other entries ar@). The following result was found independently
by Gaubert and Mairesse (in [24]), and Brilman and Vincent [6].

Fact 6 (TETRIS GAME IS (max,+) LINEAR). The upper contour(w) and the
heighty(w) of the heap of pieces = qa; . .. ag, piled up on the ground, are given by
the (max, +) products:

z(w) =gM(ar)...M(ar),  y(w)=2z(w)lg,
(1x denotes the column vector indexedXwith entriesl).
In algebraic terms, the height generating seéps ... y(w)w is rational over the

(max,+) semiringT * is the free monoid off’, basic properties of rational series can be
found e.g. in [38]).



R(c) ={2,4}, ¢(c) = [,0,-,0], h(c) = [, 2, -, 2]
R(b) = {15 2}' ﬁ(b) = [070’ ) ']’ h(b) = [272’ ) ]

ﬂ R(a) ={1,2,3}, 4(a) =[0,0,0,], h(a) = [1,1,3,"]

Em
b=E L

Fig. 2. Heap of Pieces

Let us mention an open problem. If an infinite sequence of pieces. ..ay . ..
is taken at random, say in an independent identically distributed way with the uniform
distribution on7, it is known [14,2] that there exists an asymptotic growth pate R

1
A= klim Ey(al ...ag) as. (16)

The effective computation of the constan{Lyapunov exponent) is one of the main
open problems in (max,+) algebra. The Lyapunov exponent problem is interesting for
general random matrices (not only for special matrices associated with pieces), but the
heap case (even with unit height,a) = 1 + ¢(a)) is typical and difficult enough to
begin with. Existing results on Lyapunov exponents can be found in [2]. See also the
paper of Gaujal and Jean-Marie in [24], and [6].

2.4 An Algebra for Decision

The “tropical” semiringNyi, = (N U {400}, min, +), has been invented by Simon
[39] to solve the following classical problem posed by Brzozowskiit decidable
whether a rational languagé has the Finite Power Property (FPPE¥m € N, L* =
L°ULuU---UL™. The problem was solved independently by Simon and Hashiguchi.

Fact 7 (Smmon). The FPP problem for rational languages reduces to the finiteness
problem for finitely generated semigroups of matrices with entrids,ig,, which is
decidable.

Other (more difficult) decidable properties (with applications to the polynomial closure
and star height problems) are tfinite sectionproblem, which asks, given a finitely
generated semigroup of matric®ver the tropical semiring, whether the set of entries

in positions, j, {s;; | s € S} is finite; and the more generhitation problem, which

asks whether the set of coefficients of a rational seri@g,ip,, with noncommuting in-
determinates, is finite. These decidability results due to Hashiguchi [25], Leung [29] and
Simon [40] use structural properties of long optimal word¥ig:,-automata (involv-

ing multiplicative rational expressions), and combinatorial arguments. By comparison
with basic Discrete Event System and Markov Decision applications, which essentially
involve semigroups with a single generatsr€ {A* | k > 1}), these typically non-
commutative problems represent a major jump in difficulty. We refer the reader to the



survey of Pin in [24], to [40,25,29], and to the references therein. However, essential in
the understanding of the noncommutative case is the one generator case, covered by the
(max, +) Perron-Frobenius theory detailed below.

Let us point out an open problem. The semigroupraar projective map®z <"

max

is the quotient of the semigroup of matric8g>, by the proportionality relationd ~

B & 3XeZ, A= AB (i.e. A;; = A+ B;;). We askcan we decide whether a finitely
generated semigroup of linear projective maps is finitén& motivation is the following.
If the image of a finitely generated semigroup with generaldia) € Z"X" a € X

max ?

by the canonical morphisrd <> — PZ} X7 is finite, then the Lyapunov exponent
A =as.lim_. k™! x |[|[M(ay)... M(ay)| (same probabilistic assumptions as for
(16), || A[| = sup,; A;;, by definition) can be computed from a finite Markov Chain on

the associated projective linear semigroup [19,20].

3 Solving Linear Equations in the (max, +) Semiring

3.1 A hopeless algebra?

The general system af (max, +)-linear equations witlp unknownsey, . . . , z,, writes:
Az @ b= Cx ® d, A, C € Rupax)™?, b,d € (Rpax)™ - a7)

Unlike in conventional algebra, a square linear systers (p) is not generically solvable
(consideBz®2 = x®0, which has no solution, since for alle Ry,.x, max(3+zx,2) >
max(z,0)).

There are several ways to make this hard reality more bearable. One is to give
general structural results. Another is to deal with natural subclasses of equations, whose
solutions can be obtained by efficient methods. ivwerseproblem Az = b can be
dealt with usingesiduation Thespectralproblem Az = Az (A scalar) is solved using
the (max, +) analogue of Perron-Frobenius theory. Tixed poinfproblemz = Az ®b
can be solved via rational methods familiar in language theory (introducing the “star”
operationd* = A @ A @ A2 @ ---). Alast way, which has the seduction of forbidden
things, is to say: “certainly, the solution 8% ¢ 2 = = ¢ 0 isx = © — 1. For if this
equation has no ordinary solution, the symmetrized equation (obtained by putting each
occurrence of the unknown in the other side of the equality} 2 = 32’ @ 0 has the
unique solutiont’ = —1. Thus,x = © — 1 is the requested solution.” Whether or not
this argument is valid is the object sfymmetrizationtheory.

All these approaches rely, in one way or another, omtHer structure of idempotent
semirings that we next introduce.

3.2 Natural Order Structure of Idempotent Semirings
An idempotent semiring can be equipped with the followingatural order relation
a=b <= adb=hb. (18)

We will write a < b whena < b anda # b. The natural order endowS with a
sup-semilattice structure, for whiehd® b = a vV b = sup{aq, b} (this is the least upper



10

bound of the sefa,b}), and0 < a, Va,b € S (0 is thebottomelement). The semiring
laws preserve this order, i.€a,b,c € S, a <b = aPc 2 bDc, ac = be. For
the (max, +) semiringR,,.x, the natural ordex coincides with the usual one. For the
(min, +) semiringR i, the natural order is the opposite of the usual one.

Since addition coincides with the sup for the natural order, there is a simple way to
define infinite sums, in an idempotent semiring, set@Pg. ; z; = sup{z; | i € I},
for any possibly infinite (even non denumerable) farjily } ; ; of elements of, when
the sup exists. We say that the idempotent semifing completeif any family has
a supremum, and if the product distributes over infinite sums. Whéncomplete,
(S, =) becomes automatically a complete lattice, the greatest lower bound being equal
to \;erzi =sup{y € S| y < x;, Vi € I}. The (max, +) semiringR . is not
complete (a complete idempotent semiring must have a maximal element), but it can be
embedded in the complete semiriRg, .

3.3 SolvingAx = b using Residuation

In general, Az = b has no solutiohy but Az < b always does (take = 0). Thus,

a natural way of attackinglxz = b is to relax the equality and study the set of its
subsolutions. This can be formalized in termsrediduation[5], a notion borrowed
from ordered sets theory. We say that a monotone fnipm an ordered sel to an
ordered sef’ isresiduatedf forall y € F',thesef{z € E | f(z) <y} has amaximal
element, denoted?(y). The monotone may*, calledresidualor residuated mawf

f, is characterized alternatively kfyo f# < Id, f# o f > Id. An idempotent semiring
S is residuatedf the right and left multiplication mapg, : © — az, p, : ¢ — za,

S — S, are residuated, for all € S. A completddempotent semiring is automatically
residuated. We set

def

a\b de def 4

MNo(b) =max{z | ax <b} , b/a= ph(b) = max{z | za < b} .

In the completedmax, +) semiringR,.x, a\b = b/a is equal tob — a whena # 0(=
—o0), and is equal te-co if @ = 0. The residuated character is transfered from scalars
to matrices as follows.

Proposition 2 (Matrix residuation). Let S be a complete idempotent semiring. Let
A € 8P, The maphy : ¢ — Ax,SP — S", is residuated. For any € S",

def .
A\y SN (y) is given by(A\y); = Ay <<, Aji\y;-
In the case oR,,.., this reads:

(A\y)i = 121jign(*Ajvz +yj) (19)

4 Itis an elementary exercise to check that the map Az, (Rumax)? — (Rmax)", is Surjective
(resp. injective) iff the matrixA contains a monomial submatrix of size(resp.p), a very
unlikely event — recall that a square matikis monomialif there is exactly one non zero
element in each row, and in each column, or (equivalently) if it is a product of a permutation
matrix and a diagonal matrix with non zero diagonal elements. This implies that a matrix has
a left or a right inverse iff it has a monomial submatrix of maximal size, which is the analogue
of a well known result for nonnegative matrices [4, Lemma 4.3].
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with the convention dual to that #,., (+00) + = = +oo, for anyz € R U {#o0}.
We recognize in (19) a matrix product in the semiriRg;, = (R U {*oo}, min, +),
involving the transpose of the opposite Af

Corollary 3 (Solving Az = y). LetS denote a complete idempotent semiring, and let
A e §"*P y e 8™ The equatiox = y has a solution iffA(A\y) = y.

Corollary 3 allows us to check the existence of a solutiasf Az = y in time O(np)
(scalar operations are counted for one time unit). In(ihex, +) case, a refinement
(due to the total order) allows us to decide the existence of a solution by inspection of
the minimizing sets in (19), see [15,44].

3.4 Basis Theorem for Finitely Generated Semimodules oVeR .«

A finitely generated semimodulé C (R,,.x)™ is the set of linear combinations of a
finite family {u1, ... ,u,} of vectors of(Rmax)™:

p
V: {@Aﬂt, |)\1,... ,)\p S Rmax} .
=1

In matrix terms,) can be identified to theolumn spacer imageof then x p matrix

A=lur,...,up,V =1ImA o {Az | = € (Ryax)?}. Therow spaceof A is the

column space ofi” (the transpose ofl). The family{u;} is aweak basi®f V if it is a
generating family, minimal for inclusion. The following result, due to Moller [33] and
Wagneur [42] (with variants) states that finitely generated subsemimodul®s,of )"
have (essentially) a unique weak basis.

Theorem 4 (Basis Theorem)A finitely generated semimodule C (R,,.x)" has a

weak basis. Any two weak bases have the same number of generators. For any two
weak base$ui,... ,up}, {vi,... ,v,}, there exist invertible scalark,, ... , A, and a
permutations of {1,... ,p} such thatu; = \jv, ;).

The cardinality of aweak basis is called theak rantof the semimodule, denotedsK.
Theweak column ranKresp. weak row rank) of the matrit is the weak rank of its
column (resp. row) space. Unlike in usual algebra, the weak row rank in general differs
from the weak column rank (this is already the case for Boolean matrices). Theorem 4
holds more generally in any idempotent semirifigatisfying the following axioms:

(a > ascanda #0) = 1> a,(a=aadbanda <1) = a =bh.

The axioms needed to set up a general rank theory in idempotent semirings are not
currently understood. Unlike in vector spaces, there exist finitely generated semimodules
V C (Ruax)™ of arbitrarily large weak rank, if the dimension of the ambient space

is at least3; and not all subsemimodules @R,,.x)™ are finitely generated, even with
n=2.

Example 5 (Cuninghame-Green [15], Th. 16 e weak column rank of theex (i + 1)
matrix
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isequalta+1forall: € N. This can be understood geometrically using a representation
due to Mairesse. We visualize the set of vectors with finite entries of a semimodule
V C (Rmax)® by the subset oR?, obtained by projectiny orthogonally, on any plane
orthogonal to(1, 1,1). SinceV is invariant by multiplication by any scalay, i.e. by

the usual addition of the vectd, A, \), the semimodulé’ is well determined by its
projection. We only loose the points wilrentries which are sent to some infinite end of
theR? plane. The semimodules Iny , Im A,, Im A3 are shown on Fig 3. The generators
are represented by bold points, and the semimodules by gray regions. The lmeken
between any two generatousv represents Infu, v]. This picture should make it clear
that a weak basis of a subsemimodule(&f,.,)® may have as many generators as a
convex set oR? may have extremal points. The notion of weak rank is therefore a very
coarse one.

Im Ay x Im A x Im As x

Fig. 3. An infinite ascending chain of semimodules(@f,..)* (see Ex. 5).

LetA € (Ryax)™*P. Aweak basis of the semimodule ldhcan be computed by a greedy
algorithm. LetA[i] denote thé-th column of4, and letA (i) denote the: x (p— 1) matrix
obtained by deleting columnWe say that colum#of A isredundantf A[i] € Im A(7),
which can be checked by Corollary 3. Replaciitpy A(:) whenA[i] is redundant, we
do not change the semimodule Hn Continuing this process, we terminate(inp?)
time with a weak basis.

Application 6 (Controllability) The fact that ascending chains of semimodules need not
stationnarize yields pathological features in terms of Control. Consider the controlled
dynamical system:

z(0) =0, z(k)=Axz(k—1)® Bu(k), k=1,2,... (20)

where A € (Ruyax)™ ™ B € Rumax)™?, andu(k) € Rupax)%k = 1,2,... is a
sequence of control vectors. Given a state (R,.x)"™, theaccessibilityproblem (in
time N) asks whether there is a control sequencsuch thatz(N) = £. Clearly, ¢
is accessible in timeV iff it belongs to the image of theontrollability matrix Cy =
[B,AB,...,AN=1B]. Corollary 3 allows us to decide the accessibilittoHowever,
unlike in conventional algebra (in which Iy = ImC,, for any N > n, thanks
to Cayley-Hamilton theorem), the semimodule of accessible stat€s; Imay grow
indefinitely asN — oc.
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3.5 SolvingAx = Bx by Elimination

The following theorem is due to Butkavénd Hegeds [9]. It was rediscovered in [18,
Chap. 1l1].

Theorem 7 (Finiteness Theorem)Let A, B € (Ryax)™*?. The sed) of solutions of
the homogeneous systelm = Bz is a finitely generated semimodule.

This is a consequence of the following universal elimination result.

Theorem 8 (Elimination of Equalities in Semirings). Let S denote an arbitrary
semiring. LetA, B € S™*P. If for any ¢ > 1 and any row vectorsi,b € S¢,
the hyperplane{z € S§? | ax = bz} is a finitely generated semimodule, then
V = {x € S? | Az = Bz} is afinitely generated semimodule.

Thefactthat hyperplanes @R,,.x )? are finitely generated can be checked by elementary
means (but the number of generators can be of gfjeTheorem 8 can be easily proved
by induction on the number of equations (see [9,18]). InRhg case, the resulting
naive algorithm has a doubly exponential complexity. But it is possible to incorporate
the construction of weak bases in the algorithm, which much reduces the execution time.
The making (and complexity analysis) of efficient algorithmsAar = Bx is a major
open problem. When only a single solution is needed, the algorithm of Walkup and
Borriello (in [24]) seems faster, in practice.

There is a more geometrical way to understand the finiteness theorem. Consider
the following correspondence between semimodulg$®f,.... ) *")? (couples of row
vectors) andR,., )" ! (column vectors), respectively:

W C ((Rmax)lxn)2 — WT = {l‘ S (Rmax)"Xl | axr = bl‘, V(a’b) c W} ,
V= {(0,8) € (Rmax) ™2 | 0z = bz, V2 €V} — V' C (Runae)™! .
(21)

Theorem 7 states thati is a finitely generated semimodule (i.e. if all the row vectors
[a,b] belong to the row space of a matii4, B]) then, its orthogonalV " is finitely
generated. Conversely, ¥ is finitely generated, so do@s" (since the elements:, b)

of V* are the solutions of a finite system of linear equations). The orthogonal semimodule
V1 is exactly the set ofinear equations(a, b) : ax = bx satisfied by all ther € V.

Is a finitely generated subsemimodMeC (R,,.,)"*! defined by its equations ? The
answer is positive [18, Chap. 1V,1.2.2]:

Theorem 9 (Duality Theorem). For all finitely generated semimodule¥ C
(Rmax)nX1; (VJ_)T =Y.

In general,( W)+ 2 W. The duality theorem is based on the following analogue of
the Hahn-Banach theorem, stated in [18]) C (Ru..)™*! is a finitely generated
semimodule, ang ¢ V, there exist(a,b) € ((Rpax)'*™)? such thatay # by and
ax = bx, Vx € V.

Thekernelof alinear operataf’ should be defined &er C = {(z,y) | Cz = Cy}.
When is the projector on the image of a linear operd&oparallel toker C, defined?
The answer is given in [12].
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3.6 Solvingz = Ax & b using Rational Calculus

Let S denote a complete idempotent semiring, anddet S™*",b € S™. The least
solution ofz = Ax @ bis A*b, where the star operation is given by:

AE@ar (22)

neN

Moreover,x = A*b satisfies the equatian= Ax & b. All this is most well known (see
e.g. [38]), and we will only insist on the features special to(thex, +) case. We can
interpretA;; as themaximal weighof a path fromi: to j of any length, in the grapgh
associated withd. We next characterize the convergencedofin (Ry,.,)"*" (A* is

a priori defined iR . )"*™, but the++oo value which breaks the semifield character
of Rnax iS undesired in most applications). The following fact is standard (see e.qg. [2,
Theorem 3.20]).

Proposition 10. Let A € (Ryyax)™*™. The entries ofA* belong toR,,.. iff there are
no circuits with positive weight in the grapbf A. Then,A* = A9 A@ --- @ A"~ L.

The matrixA* can be computed intim@(n?) using classical universal Gauss algorithms
(see e.g. [21]). Special algorithms exist for theax, +) semiring. For instance, the
sequence:(k) = Axz(k — 1) @ b, (0) = 0 stationarizes before step(with z(n) =
x(n+1) = A*b)iff A*bisfinite. This allows usto comput&*b very simply. Acomplete
account of existing algorithms can be found in [21].

3.7 The(max, +) Perron-Frobenius Theory

The most ancient, most typical, and probably most ugefulx, +) results are relative

to the spectral problemMz = Ax. One might argue that 90% of current applications of
(max, +) algebra are based on a complete understanding of the spectral problem. The
theory is extremely similar to the well known Perron-Frobenius theory (see e.g. [4]).
The (max, +) case turns out to be very appealing, and slightly more complex than the
conventional one (which is not surprising, since theax, +) spectral problem is a
somehow degenerate limit of the conventional one $8e®). The main discrepancy is

the existence of two graphs which rule the spectral elements tfe weighted graph
canonically associated with a matrix, and one of its subgraphs, callestical graph.

First, let us import the notion oirreducibility from the conventional Perron-
Frobenius theory. We say thathas accesso j if there is a path from to j in the
graph ofA, and we writei = j. Theclassef A are the equivalence classes for the
relationiRj < (i — j andj — i). A matrix with a single class isreducible A class
Cis upstreant’ (equivalentlyC’ is downstreant) if a node ofC has access to a node of
C'. Classes with no other downstream classedinad classes with no other upstream
classes armitial .

The following famougmax, +) result has been proved again and again, with various
degrees of generality and precision, see [37,41,15,44,22,2,31].
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Theorem 11 (“(max, +) Perron-Frobenius Theorem”). An irreducible matrix4 €
(Rimax)™*™ has a unique eigenvalue, equal to the maximal circuit meaf of

Pmax(A) = EBtr (Ak)% = max max Aisig + -+ iy . (23)
k=1

1<k<nii,... ik k

We have the following refinements in terms of inequalities [18, Chap V], [3].
Lemma 12 (“Collatz-Wielandt Properties”). For any A € (Rpax)™*",

Pmax(A) = max{A € Ryax | Ju € (Rymax)™ \ {0}, Au = du} . (24)
Moreover, ifA is irreducible,
Pmax(A) = min{\ € Ryax | Ju € (Rpmax)™ \ {0}, Au < Au} . (25)

The characterization (25) implies in particular that, for an irreducible matrig, ., (A)
is the optimal value of the linear program

min \ S.t. VZ,] Aij +Uj < U + ).

This was already noticed by Cuninghame-Green [15]. The standard way to compute
the maximal circuit meam,,,..(A) is to use Karp algorithm [27], which runs in time
O(n?). The specialization of Howard algorithm (see e.qg. [35]) to deterministic Markov
Decision Processes with average reward, yields an algorithm whose average execution
time is in practice far below that of Karp algorithm, but no polynomial bound is known
for the execution time of Howard algorithm. Howard algorithm is also well adapted to
the semi-Markov variants (12).

Unlike in conventional Perron-Frobenius theory, an irreducible matrix may have
several (non proportional) eigenvectors. The characterization of the eigenspace uses the
notion ofcritical graph. An arc(i, j) iscritical ifit belongs to acircuitéy, . . . , ;) whose
mean weight attains theax in (23). Then, the nodes j arecritical. Critical nodes
and arcs form theritical graph. A critical classis a strongly connected component
of the critical graph. Let§,... ,C¢ denote the critical classes. Lét (A)A

= pmax
(i.e. A;; = —pmax(A) + A;;). Using Proposition 10, the existence &f (X' (4)*) is
guaranteed. lfis in a critical class, we call the columif:i of A* critical. The following
result can be found e.g. in [2,16].

Theorem 13 (Eigenspace)Let A € (Ryax)"*™ denote an irreducible matrix. The
critical columns ofd* span the eigenspace 4f If we select only one column, arbitrarily,
per critical class, we obtain a weak basis of the eigenspace.

Thus, the cardinality of a weak basis is equal to the number of critical classes. For any
two 4, 7 within the same critical class, the critical colum&g andfl,ﬁ ; are proportional.

We next show how the eigenvalyg,.x(A) and the eigenvectors determine the
asymptotic behavior afi* ask — oo. Thecyclicity of a critical clas€¢ is by definition
thegced of the lengths of its circuits. Theyclicity ¢ of A is the lcm of the cyclicities of
its critical classes. Let us pick arbitrarily an indexwithin each critical clasg¢, for
s=1,...,r,and letv,, ws denote the column and row of indéx of A* (vs, ws are

right and left eigenvectors of, respectively). The following result follows from [2].
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Theorem 14 (Cyclicity). Let A € (Rpax)™*™ be an irreducible matrix. There is an
integer K such that

k> Ky = AMC = pla(A)Ar (26)

wherec is the cyclicity ofA. Moreover, ifc = 1,

k> Ky = A* = ppax(A)*P, where P = @vsws . (27)
s=1

The matrix P which satisfiesP? = P, AP = PA = pn.x(A)P is called thespec-

tral projector of A. The cyclicity theorem, which write}zif;rc = Pmax(4) X ¢ + Af;

in conventional algebra, implies that*z grows ask x pmax(4), independently of

x € (Rimax)™, and that a periodic regime is attained in finite time. The limit behavior is
known a priori. Ultimately, the sequengg, ... (A)~* A* visits periodicallyc accumu-
lation points, which are), AQ, ... , A 1Q, where( is the spectral projector od°.

The length of the transient behaviéf, can be arbitrarily large. In terms of Markov
Decision, Theorem 14 says that optimal long trajectories stay almost all the time on the
critical graph (Turnpike theorem). Theorem 14 is illustrated in Fig. 4, which shows the
images of a cat (a region of tfR? plane) by the iterates of (4, A%, A3, etc.),B and

C, where
00 20 02
A:M, B:M, 0:[20] . (28)

We havep,,.x(A) = 2. SinceA has a unique critical circuit, the spectral projeckbis
rank one (its column and row spaces are lines). We find4Rat P: every point of the
plane is sent in at most two steps to the eigenjire 2@ x = 2+ x, then itis translated
by (2, 2) at each step. Similar interpretations exist ®andC.

Fig. 4. A cat in a(max, +) dynamics (see (28))

Let us now consider a reducible matuik Given a clasg, we denote by« (C)
the (max, +) eigenvalue of the restriction of the matrikto C. Thesupportof a vector
u is the set supp = {i | u; # 0}. A set of nodesS is closedif j € S,i — j implies
1 € S.We say thata clags C S isfinal in S if there is no other downstream classdn
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Theorem 15 (Spectrum of reducible matrices)A matrix A € (Ry,ax)™*™ has an
eigenvector with suppo§ C {1,... ,n} and eigenvalua\ iff S is closed ) is equal to
pmax(C) for any clas< thatis final inS, and\ = pnax(C’) for any other clasg’ in S.

The proof can be found in [43,18]. See also [3]. In particular, eigenvalues of initial
classes are automatically eigenvaluesiofThe maximal circuit meap,,.x(A) (given

by (23)) is also automatically an eigenvalue4f{but the associated eigenvector need
not be finite). A weak basis of the eigenspace is given in [18, Chap. IV,1.3.4].

Example 16 (Taxicab eigenproblerihe matrix of the taxicab MDP, shown in Fig 1, has
2 classes, namelg; = {c1,a,c2}, Ca = {c3}. SiNCePmax(C2) = 2 < pmax(C1) = 5,
there are no finite eigenvectors (which have supfce C; UCs). The only other closed
setisS = Cy, which is initial. ThuSpmax(4) = pmax(C1) = 5 is the only eigenvalue of
A. Let A’ denote the restriction of toC; . There are two critical circuits:; ) and(a, c2),
and thus two critical class&¥ = {c1 }, C§ = {a, c2}. A weak basis of the eigenspace
of A’ is given by the columns; and (e.g.), of

C1 a C2

C1 0 —1 0

Ay =a -1 0 1
Co -2 -1 0

Completing these two columns bydan row 4, we obtain a basis of the eigenspace of

A. The non existence of a finite eigenvector is obvious in terms of control. If such an
eigenvector existed, by Fact 2, the optimal reward of the taxicab would be independent
of the starting point. But, if the taxi driver starts from City 3, he remains blocked there
with an income oR $ per journey, whereas if he starts from any other node, he should
clearly either run indefinitely in City 1, either shuttle from the airport to City 2, with

an average income &f$ per journey (these two policies can be obtained by applying
Fact 2 to the MDP restricted 1 , taking the two above eigenvectors).

The following extension to the reducible case of the cyclicity theorem is worth being
mentioned.

Theorem 17 (Cyclicity, reducible case)Let A € (Ry,.x)™ ™. There exist two integers
Ky andc > 1, and a family of scalars,;j; € Ryax, 1 < 4,5 <n,0 <1 <c—1,such
that

k>Ky, k=1 modec = AFFrc= )¢ A"

ijl4tig

(29)

Characterizations exist ferand \;;;. The scalars\;;; are taken from the set of eigen-
values of the classes @f. If i, j belong to the same cla€s \;j; = pmax(C) for all 1. If
i, j do not belong to the same class, the theorem implies that the seqhiendg; may
have distinct accumulation points, according to the congruenkearadduloc (see [18,
Chap. VI,1.1.10)).

The cyclicity theorems for matrices are essentially equivalent to the characterization
of rational series in one indeterminate with coefficieriip,, as a merge of ultimately
geometric series, see the paper of Gaubert in [13] and [28]. Transfer series and rational
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algebra techniques are particularly powerful for Discrete Event Systems. Timed Event
Graphs can be represented by a remarkable (quotient) semiring of series with Boolean
coefficients, in two commuting variables, calldd™2*[[v, §]] (see [2, Chap. 5]). The
indeterminatesy and é have natural interpretations akiftsin dating and counting.

The complete behavior of the system can be represented by simple —often small—
commutative rational expressions [2],[18, Chap. VII-IX] (see also [28] in a more general

context).

3.8 Symmetrization of the(max, +) Semiring

Letus try to imitate the familiar construction@ffromN, for an arbitrary semiring. We
build the set of couples?, equipped with (componentwise) suat, =) & (v',y") =
(xl @ y/’ :L,// @ y//)’ and pl’OdUC(x',x”) ® (y/7yll) — (‘,L,Iy/ @ x/lyll7x/y// EB x//y/). We
introduce thébalancerelation

(x/,m//)v(y/7y1/) :,C/ @ y// — :L./l @ y/ .

We haveZ = N?/V, but for an idempotent semiring, the procedure stops, since
V is not transitive (e.g(1,0)V(1,1)V(0,1), but (1,0) X(0,1)). If we renounce
to quotientS?, we may still manipulate couples, with the operationo(z/, 2”) =
(z”,x"). Indeed, since> satisfies the signrules Sz =z, 5(z d y) = (Sx) & (Oy),
S(zy) = (a)y = 2(Sy), and sincerVy <= z5yV0 (wesetroy &z a (ay)),

it is not difficult to see thaall the familiar identities valid in rings admit analogues in
82, replacing equalities by balanceBor instance, ifS is commutative, we have for all
matrices (of compatible size) with entriesS8 (determinants are defined as usual, with
© instead of-):

det(AB) V det A det B, (30)
P4s(A)V O whereP4(A) = det(A © Ald) (Cayley Hamilton).  (31)

Eqgn 30 can be written directly i%, introducing the positive and negative determi-
nants detA = @cr even®1§i§n Aia(i): detA = @cr 0dd®1§i§n Aia(i) (the sums
are taken over even and odd permutationdof... , n}, respectively). The balance
(30) is equivalent to the ordinary equality ddtB ¢ dettA det B ¢ det"A det'B =
det"AB @ det"A det™B ¢ det"A det B, but (30) is certainly more adapted to com-
putations. Such identities can be proved combinatorially (showing a bijection between
terms on both sides), or derived automatically from their ring analogues using a simple
argument due to Reutenauer and Straubing [36, Proof of Lemma 2] (see aismtier
principlein [18, Ch. I]).

But in theR ., case, one can do much better. Consider the following application of
the Cayley-Hamilton theorem:

A= Bﬂ A2 otr(A)A@ det AVO, ie  A’@2d=1407d .

Obviously, we may eliminate th2ld term which will never saturate the identity (since
2 < 7), and obtainA? = 14 @ 7Id. Thus, to some exterit © 2 = 7. This can be
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formalized by introducing the congruence of semiring:
(@ 2") R (y,y") & (@' # 2",y #y" anda’ & y" = 2" &) or (2/,2") = (v, y").

The operationsp, ©,® and the relationV are defined canonically on the quotient
Semirng,Smax = R2,,. /=, which is called thesymmetrized semiringf R,,.. This
symmetrization was invented independently by G. Hegd@6] and M. Plus [34].

In Shax, there are three kinds of equivalence classes; classes with an element of the
form (a, 0), identified toa € R,ax, and calledositive classes with an element of the
form (0, a) denoted=a, callednegative classes with a single elemefat, o), denoted
a*® and calledbalanced sincea®* VO (for « = 0, the three above classes coincide, we
will consider0 as both a positive, negative, and balanced element).

We have the decomposition &, in sets of positive, negative, and balanced
elements, respectively

Smax = S&, USS.. USS.x -
This should be compared with= Z* UZ~U{0}. Forinstance3©2 = 3,263 = 63,
but3 © 3 = 3°. We say that an elementsgynedif it is positive or negative.

Obviously, if a systemdz = b has a solution, the balancérVb has a solution.
Conversely ifAzVb has a positive solutiom, and if A, b are positive, it is not difficult
to see thatdx = b. It remains to solve systems of linear balances. The main difficulty
is that the balance relation is not transitive. As a restNtg andczVb do not imply
caVh. However, when: is signed, the implication is true. This allows us to solve linear
systems of balances by elimination, when the unknowns are signed.

Theorem 18 (Cramer Formulee).Let A € (Syax)™ ™, andb € (Spax)™. Every signed
solution of Az Vb satisfies the Cramer conditiabx; V.D;, whereD is the determinant
of A and D; is thei-th Cramer determinafit Conversely, ifD; is signed for alli, and
if D is signed and nonzero, then= (D~ D;)1<,< is the unique signed solution.

The proof can be found in [34,2]. For the homogeneous systemliokear equations
with n unknowns,AxVO0 has a signed non zero solution idtt AVO0 (see [34,18]),
which extends a result of Gondran and Minoux (see [22]).

Example 19.Let us solve the taxicab eigenprobleta: = 5z by elimination inS,,.«
(A is the matrix shown in Fig 1). We have

5°c1 @4z, @ Tz V O (32a)

421 © 519 D613 D324 VO (32b)
A2y © 525 V 0 (32¢)

652, VO . (32d)

The only signed solution of (32d)is, = 0. By homogeneity, let us look for the solutions
such thatc; = 0. Then, using (32c), we gdtzs V5x3 = 5. Since we search a positive

5 Obtained by replacing thieth column ofA by b.
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x2, the balance can be replaced by an equality. Thus= 1. It remains to rewrite
(32a),(32b)5°x1V © 5, 4x,V6°, which is true forz, positive iff 0 < z; < 2. The

two extremal values give (up to a proportionality factor) the basis eigenvectors already
computed in Ex. 19.

Determinants are not so easy to comput&,in.. Butkovi¢ [8] showed that the com-
putation of the determinant of a matrix with positive entries is polynomially equivalent
(we have to solve an assignment problem) to the research of an even cycle in a (directed)
graph, a problem which is not known to be polynomial. We do not know a non naive
algorithm to compute the minor rank (=size of a maximal submatrix with unbalanced
determinant) of a matrix ifR,,.x)™"*?. The situation is extremely strange: we have
excellent polynomial iterative algorithms [34,18] to find a signed solution of the square
systemAxVb whendet A # 0, but we do not have polynomial algorithms to decide
whetherAzV0 has a signed non zero solution (such algorithms would allow us to com-
putedet A in polynomial time). Moreover, the theory partly collapses if one considers
rectangular systems instead of square ones. The conditions of compatibitity\od
whenA is rectangular cannot be expressed in terms of determinants [18, Chap. IlI, 4.2.6].

Historical and Bibliographical Notes

The (max, +) algebra is not classical yet, but many researchers have worked on it (we
counted at least 80), and it is difficult to make a short history without forgetting important
references. We will just mention here main sources of inspiration. The first use of the
(max, +) semiring can be traced back at least to the late fifties, and the theory grew in the
sixties, with works of Cuninghame-Green, Vorobyev, Romanayakil more generally

of the Operations Research community (on path algebra). The first enterprise of system-
atic study of this algebra seems to be the seminal “Minimax algebra” of Cuninghame-
Green [15]. A chapter on dioids can be found in Gondran et Minoux [21]. The theory of
linear independence using bideterminants, which is the ancester of symmetrization, was
initiated by Gondran and Minoux (following Kuntzmann). See [22]. The last chapter of
“Operatorial Methods” of Maslov [32] inaugurated theax, +) operator and measure
theory (motivated by semiclassical asymptotics). There is an “extremal algebra” tradi-
tion, mostly in East Europe, oriented towards algorithms and computational complexity.
Results in this spirit can be found in the book of U. Zimmermann [44]. This tradition has
been pursued, e.g. by Butkevi7]. Theincline algebrasintroduced by Cao, Kim and
Roush [10] are idempotent semirings in whickb ab = a. The tropical semiring was
invented by Simon [39]. A number of language and semigroup oriented contributions
are due to the tropical school (Simon, Hashiguchi, Mascle, Leung, Pin, Krob, Weber,
... ). See the survey of Pin in [24], [40,25,29,28], and the references therein. Since the
beginning of the eighties, Discrete Event Systems, which were previously considered
by distinct communities (queuing networks, scheduling,), have been gathered into

a common algebraic frame. “Synchronization and Linearity” by Baccelli, Cohen, Ols-
der, Quadrat [2] gives a comprehensive account of deterministic and stochastic (max,+)
linear discrete event systems, together with recent algebraic results (such as symmetriza-
tion). Another recent text is the collection of articles edited by Maslov and Samborski”
[31] which is only the most visible part of the (considerable) work of the Idempotent
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Analysis school. A theory of probabilities imax, +) algebra motivated by dynamic
programming and large deviations, has been developed by Akian, Quadrat and Viot;
and by Del Moral and Salut (see [24]). Recently, theax, +) semiring has attracted
attention from the linear algebra community (Bapat, Stanford, van den Driessche [3]).
A survey with a very complete bibliography is the article of Maslov and Litvinov in
[24]. Let us also mention the forthcoming book of Kolokoltsov and Maslov (an earlier
version is in Russian [30]). The collection of articles edited by Gunawardena [24] will
probably give the first fairly global overview of the different traditions on the subject.
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