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Summary. In maxplus algebra, linear projectors on an image of a morphism B
parallel to the kernel of another morphism C can be built under transversality
conditions of the two morphisms. The existence of a transverse to an image or a
kernel of a morphism is obtained under some regularity conditions. We show that
those regularity and transversality conditions can be expressed linearly as soon as
the space to which im(B) and ker(C) belong is free and its order dual is free.
The algebraic structure Rn

max has these two properties. Projectors are constructed
following a previous work. Application to aggregation of linear dynamical systems
is discussed.

1 Introduction

The work of Peter Kokotovic [9] with François Delebecque and the third au-
thor, about aggregation of Markov chains, that we have tried to extend to the
maxplus algebra context, has motivated our research on the construction of
maxplus linear projectors [5, 6]. This construction presents some difficulties
in this new algebraic context. In this paper, we survey some facts given in
these previous papers and clarify some links with module theory.

The practical motivation to study projectors in the context of maxplus
algebra is the curse of dimensionality in dynamic programming which is the
main restriction to the application of this technique. Indeed, the dynamic
programming equation can be written linearly in maxplus algebra. Therefore
it is tempting to try to adapt the standard linear techniques (for example [9])
of linear system aggregation. This is possible and has been done in [15]. But
some difficulties appear during this adaptation.

The maxplus analogs of linear space are an idempotent semimodule. As
for modules, not all idempotent semimodules have a basis, possibly there does
not exist a set of generators such that any vector of the semimodule has a
unique set of coordinates. When this is the case, we say that the semimodule
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is free. Moreover, like in module theory, any surjective linear operator does
not admit a linear inverse, when this is the case, the range space is called
projective; dually when any injective linear application admits a linear inverse,
we say that the domain is injective. To be able to build the analog of a linear
projector on an image parallel to a kernel, we need a transversality condition
that is the existence and uniqueness of the intersection of the kernel and the
image (more precisely, the kernel introduced in the following defines a fibration
and transversality means that each kernel fiber always intersects the image
in a unique point). The transversality condition can be checked by means
of linear algebra as soon as the ambient semimodule has some properties of
projectiveness and injectiveness.

In a previous work [6], we have obtained necessary and sufficient conditions
for the existence of a linear projector but the links with module theory were
not given. In the present paper, we extend this result using assumptions of
freeness on the ambient space and its order dual. This dual space is no longer
defined as the set of continuous linear forms but it is rather derived from the
definition of a scalar product using residuation. So doing, the bidual space is
equal to the initial space. Apart from this improvement of the assumptions,
the construction of the linear projector is the same and is recalled here.

There exist few works on these questions. We can find some results on
semimodules in [10, 16]. The application of linear projection to aggregation
and coherency has been studied in [15]. We recall here some of these results,
in particular, the notion of lumpability of dynamic programming equations.

2 Ordered Algebraic Structures

2.1 Structure Definitions

A semiring is a set D equipped with two operations ⊕ and ⊗ such that: (D,⊕)
is a commutative monoid whose zero is denoted by ε, (D,⊗) is a monoid whose
unit is denoted by e, ⊗ is distributive with respect to ⊕, the zero is absorbing,
that is ε ⊗ a = a ⊗ ε = ε. A dioid is an idempotent semiring: a ⊕ a = a. A
semifield is a semiring in which nonzero elements have an inverse.

Example 1. The maxplus semifield Rmax is the set R ∪ {−∞} equipped with
⊕ = max and ⊗ = +. It is an idempotent semifield. .

A semimodule is the analogue of a module but defined on a semiring
instead of a ring.

Example 2. Rn
max is an idempotent semimodule.

Example 3. The set of n × n matrices with entries in Rmax is a dioid for the
operations:

(A⊗B)ik = max
j
{Aij + Bjk}, (A⊕B)ij = max{Aij , Bij} .
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In a dioid, the operation ⊕ induces an order relation: a ≥ b ⇐⇒ a =
a⊕ b, ∀a, b ∈ D. Then a∨ b = a⊕ b. We say that a dioid D is complete if any
arbitrary subset B ⊂ D has a supremum and if the product distributes with
respect to suprema. When the supremum of a set B belongs to B we denote
it by >B.

Example 4. Rmax is not complete but Rmax = Rmax ∪ {+∞} is complete.

A complete dioid is a complete lattice. Indeed we can define the infimum
of a set A ⊂ D by >{d ∈ D | d ≤ a, ∀a ∈ A}. When the infimum of A belongs
to A, we denote it by ⊥A.

2.2 Residuated Mappings

If D and C are complete lattices, we say that a map f : D → C is isotone if
a > b implies f (a) > f (b). We say that f is lower semicontinuous (lsc) if f
commutes with arbitrary suprema. We say that f is residuated if the maximal
element f ](y),>{x ∈ D : f (x) 6 y} exists for all y ∈ C. The function f ] is
called the residual of f . We say that a map g : C 7→ D is dually residuated if
g[(x),⊥{y ∈ C : g (y) > x} exists for all x ∈ C.

It is shown in [1] that f is residuated iff f is lsc with f(ε) = ε. Moreover,
f is residuated iff f is isotone and there exists an isotone map g : C → D such
that: f ◦ g 6 IC and g ◦ f > ID.

The residual has the following properties: f ◦ f ] ◦ f = f ; f ] ◦ f ◦ f ] = f ];
f is injective iff f ] ◦ f = ID iff f ] is surjective; f is surjective iff f ◦ f ] = IC
iff f ] is injective; (h ◦ f)] = f ] ◦ h]; f 6 g iff g] 6 f ]; (f ⊕ g)] = f ] ∧ g];(
f ] ∧ g]

)[ = f ⊕ g.

Example 5. The function f : x ∈ R2

max 7→ x1 ∧ x2 ∈ Rmax is isotone but not
residuated. The function f : x ∈ R2

max 7→ x2
1 ⊕ x2

2 , max (2x1, 2x2) ∈ Rmax is
isotone, additive but nonlinear and residuated.

x x

x x

y
y/2

y/2

2 2

11

y

Fig. 1. x1 ∧ x2 ≤ y and x2
1 ⊕ x2

2 ≤ y.
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Example 6. If A is a m × n matrix with entries in Rmax, the morphism x ∈
Rm

max 7→ Ax ∈ Rn

max is residuated: the maximal element of the set {x ∈ Rn

max |
Ax 6 b} exists, it is denoted A\b with (A\b)j =

∧
i

Aij\bi. Indeed:

Ax 6 b ⇔
⊕

j

Aijxj 6 bi, ∀j ⇔ Aijxj 6 bi, ∀i, j

⇔ xj 6 Aij\bi, ∀i, j ⇔ xj 6
∧
i

Aij\bi, ∀j .

Thus A\b = (−At) � b where � denotes the minplus matrix product. In the
same way, we can compute A\B, B/A, C\A/B for matrices with compatible
dimensions.

For example A\B is the largest matrix such that AX ≤ B and, if there
exists X such that AX = B, we have A(A\B) = B. Moreover B 7→ A\B is
an ∧ morphism.

3 Idempotent Semimodules

In this section we extend the notion of projective module and injective module
to projective and injective idempotent semimodule.

3.1 Projective Idempotent Semimodules

Definition 1. A complete idempotent semimodule P is projective if for all
complete idempotent semimodules U and X and for all morphisms A : P → X
and B : U → X such that im(A) ⊂ im(B) there exists a morphism R : P → U
such that A = BR.

This is of course the analog of the classical notion in module theory. The
following proposition shows that free complete idempotent semimodules are
projective and the factor R can be computed by residuation.

Proposition 1. Given the free idempotent complete semimodule P, the two
idempotent complete semimodules U , X , the morphism B : U → X and the
morphism A : P → X such that im(A) ⊂ im(B), we have:

A = B(B\A) . (1)

The existence of a morphism R such that A = BR follows from the classical
argument [1, Th. 8.6] The maximal R is equal to (B\A). In the case of matrices
(B\A) has been computed as in Example 6.

Example 7. X = im(B) subsemimodule of R2

max with B =
[
1 e
e 1

]
is not free.
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The vector
[
1
e

]
can also be written

[
1
e

]
⊕ (−1)

[
e
1

]
and therefore has not

a unique set of coordinates on the generating family
{[

1
e

]
,

[
e
1

]}
. However,

im(B) is projective because B has a generalized inverse Bg, meaning that

BBgB = B. We can take: Bg =
[
−1 −2
−2 −1

]
.

3.2 Injective Idempotent Semimodules

To discuss injective idempotent semimodules, it is necessary to extend the
notion of morphism kernel. Indeed, since in a semiring the general linear equa-
tion Ax = A′x cannot be reduced to A′′x = ε, the standard kernel definition
is not very useful. Instead, we introduce the fibration of the domain by the
injectivity classes of a morphism.

Definition 2. Given two semimodules X and Y and a morphism C : X → Y,
we define the equivalence relation ker(C) on X by x ∼ x′ modulo ker(C) if
Cx = Cx′.

We say that ker(C) ⊂ ker(A) when the fibration induced by ker(C) is a
subfibration of that of ker(A), that is, when Cx = Cx′ implies Ax = Ax′.
With this kernel definition, we can extend the notion of injective modules to
injective semimodules.

Definition 3. A complete idempotent semimodule I is injective if for all com-
plete idempotent semimodules Y and X and for all morphisms A : X → I and
C : X → Y satisfying ker(C) ⊂ ker(A) there exists a morphism L : Y → I
such that A = LC.

To understand the duality between projective and injective idempotent
semimodules, it is useful to introduce a duality on idempotent semimodules
based on residuation.

If X is a complete idempotent semimodule on the idempotent semiring D,
we call (order) dual of X , the semimodule on the semiring D, denoted X ],
with underlying set X , addition (x ∈ X , x′ ∈ X ) 7→ (x ∧ x′) ∈ X (where ∧ is
relative to the natural order on X induced by ⊕) and action (λ ∈ D, x ∈ X ) 7→
x/λ ∈ X . The semimodule property of X ] comes easily from the residuation
properties.

Proposition 2 ([7] Prop. 4). For all complete idempotent semimodules X ,
(X ])] = X .

Associated with a semimodule morphism C : X → Y, the residuation
operation defines the semimodule morphism C] : Y] → X ] with which we can
characterize the kernel inclusions.



6 G. Cohen, S. Gaubert, and J.-P. Quadrat

Proposition 3. Given two idempotent complete semimodules X , Y, two mor-
phisms A and C from X to Y, we have:

ker(C) ⊂ ker(A) ⇔ im(A]) ⊂ im(C]) .

Proof. If im(A]) ⊂ im(C]), any point in im(A]) does not move when projected
on im(C]), which translates into the equality C]CA] = A]. By pre- and post-
composition with A of both sides of this equality, one gets that

AC]CA]A = AA]A = A .

We have AC]CA]A ≥ AC]C ≥ A because both A]A and C]C are greater
than the identity. Finally, equality holds throughout and we have proved that
A = AC]C, from which it is clear that ker(C) ⊂ ker(A).

Conversely, it is easily checked that C]Cx is equivalent to x modulo ker(C).
Moving in the same class modulo ker(C) implies moving in the same class
modulo ker(A) from the assumption. Therefore A = AC]C. Then, pre and
post-composition with A] shows that

A]AC]CA] = A]AA] = A]

and A]AC]CA] ≥ C]CA] ≥ A] which shows that equality holds throughout.
Therefore A] = C]CA] which shows that im(A]) ⊂ im(C]).

Theorem 1. An idempotent complete semimodule is injective if and only if
its (order) dual is projective.

Proof. If I] is projective and the morphisms A : X → I and C : X → Y
satisfy ker(C) ⊂ ker(A) then im(A]) ⊂ im(C]) and because I] is projective
there exists a morphism L] : I] → X ] such that A] = C]L] which implies
A = LC thanks to the residuation properties.

Conversely, if I is injective, consider the morphisms A] : I] → X ] and
C] : X ] → Y] such that im(A]) ⊂ im(C]) which implies ker(C) ⊂ ker(A)
which implies A = LC since I is injective and therefore A] = C]L] which
shows that I] is projective.

Proposition 4. Given a complete idempotent semimodule I with a free dual,
two complete idempotent semimodules Y, X and two morphisms A : X → I,
C : X → Y with ker(C) ⊂ ker(A) we have:

A = (A/C)C . (2)

It is useful to remark that the dual of a free semimodule is not always free.

Example 8. Rn

max is free and its dual Rn

min is free and therefore these two
semimodules are projective and injective.

Example 9. R+

max = (R+∪{−∞,+∞},max,+) is a complete idempotent semi-
module on R+

max which is free, its basis is {0}, but its dual is not free.
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4 Projectors

In the following, the sets U , X and Y will be complete idempotent semimod-
ules. Moreover, we will suppose that X and its dual are free so that we can
test the image or kernel inclusions by (1) or (2). Based on those assumptions,
following [6], we build linear projectors on subsemimodules of X that can be
described as images of regular morphisms.

We say that B is regular if there exists a generalized inverse Bg satisfying:
B = BBgB. Then there exists a largest generalized inverse equal to B\B/B.
Therefore we have:

B = B(B\B/B)B (3)

if and only if B is regular. Indeed, the existence of Bg implies the existence
of X such that B = BXB and therefore the largest X such that B ≥ BXB
(which is equal to B\B/B) satisfies the equality.

Moreover, with every generalized inverse, we can associate a generalized
reflexive inverse. Indeed, Br,BBgB is an inverse that satisfies

B = BBrB, Br = BrBBr,

which are the relations which define the reflexive inverses.

4.1 Projector on Im(B)

Proposition 5. There exists a linear projector Q on im(B) iff B is regular.

By linear projector we mean a projector that is a morphism of complete
idempotent semimodules.

Proof. If Q is a linear projector on im(B), we have QB = B. Since B and
Q have the same image, by (1) we have Q = B(B\Q), which implies B =
B(B\Q)B. Therefore we can take Bg = B\Q as generalized inverse. Thus B
is regular.

Conversely if Bg is a generalized inverse of B then Q = BBg is a linear
projector on im(B).

In order to prepare the transition with the next section, it is useful to give
other forms to the projector Q

Proposition 6. If B is regular and Br is a generalized reflexive inverse of B,
we have

Q = BBr = (B/(BrB))Br = B((BrB)\Br) .

Proof. From B = BBrB, we deduce from the residuation properties that
B = (B/(BrB))BrB. Similarly from Br = BrBBr, we deduce Br =
BrB((BrB)\Br). Let P defined by P , (B/(BrB))Br we have P =
(B/(BrB))BrB((BrB)\Br) = B((BrB)\Br).
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Moreover PB = B, BrP = Br and P 2 = (B/(BrB))BrB((BrB)\Br) =
(B/(BrB))Br = P , therefore P is a projector on im(B) and since BrP = Br

the projection is parallel to ker(Br).
Finally: Q = BBr = (B/(BrB))BrBBrB((BrB)\Br) = (B/(BrB))Br =

P.

4.2 Projector on Im(B) parallel to Ker(C)

To define a projector on im(B) parallel to ker(C), we need a transversality
condition, that is, each equivalent class of ker(C) intersects im(B) in exactly
one point (for all x there exists a unique x′ such that Cx = Cx′ with x′ : x′ =
Bu). The following theorem gives a test for transversality.

Theorem 2 ([6] Th.8 and 9). The three following assertions are equivalent:

1. ker(CB) = ker(B) and im(CB) = im(C), that is:

B = (B/(CB))CB, C = CB((CB)\C) .

2. There exists a linear projector P on im(B) parallel to ker(C):

PB = B, CP = C, P 2 = P = (B/(CB))C = B((CB)\C) .

3. im(B) is transverse to ker(C).

Let us only show that the first proposition implies the third one.
The existence of the intersection follows from C = CB((CB)\C), indeed

Cx = CB((CB)\C)x therefore y = B((CB)\C)x belongs to im(B) and is in
the same ker(C)-class as x.

The uniqueness of the intersection follows from B = (B/(CB))CB, indeed:
CBu = CBu′ implies (B/(CB))CBu = (B/(CB))CBu′ = Bu = Bu′ .

Example 10. With U = X = Y = R2
max and

B = C =
[

e −1
−1 e

]
,

we have B = B/B and it follows that P = B. More generally, for any E, as
soon as B = E/E we have: B = B/B = B2 = B\B = B\B/B = Br = P .

Example 11. For X = R2
max, U = Y = Rmax and B and C given by:

B =
[
e
e

]
, C =

[
e −1

]
.

the projector is given in Figure 3.
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1

1

Im B

x

Px

       Example 1

Fig. 2. Projection on im(B) parallel to ker(B).

Im Bx

x
Px

Ker C

Fig. 3. Projection on im(B) parallel to ker(C).

Example 12. For the following B

B =

a e e
e a e
e e a

 .

We have B\B

B\B =

 e −|a| −|a|
−|a| e −|a|
−|a| −|a| e

 .

With some calculation one can show that:

B]B

x
y
z

 = (B\B)

x
y
z

⊕ χ

y ∧ z
x ∧ z
x ∧ y

 ,

where χ = e if a < e and χ = ε otherwise.
Then we see that B]B = (B\B) when a ≥ e. We can verify that the case

a ≥ e is precisely the case where the matrices B are regular.

Example 13. The projector shown in Figure 4 is defined with the following B
and C:
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Fig. 4. Projection on im(B) parallel to ker(C) in dimension 3.

B =

 0 1
0.5 0
2 1

 , C =
[
0 0 0
2 1 0

]
.

We see on this example that the fiber shapes can be different. In this example,
we have five kinds of fiber having three different shapes.

5 Aggregation and Coherency

Thanks to the projectors defined in the previous section, the results about
aggregation and coherency given in [9] can be extended to the case of maxplus
algebra. This means that the aggregation tools used in the theory of linear
systems can be applied to aggregation of dynamic programming problems or
Hamilton-Jacobi equations. In this section, we recall some results given in [15].

Given X , a complete free idempotent semimodule with free dual, we con-
sider the endomorphism A : X → X and the dynamic system Xn+1 = AXn.
We say that A is aggregable by C : X → Y (regular morphism on the idempo-
tent complete semimodule Y) if there exists AC such that CA = ACC. Then,
Yn , CXn satisfies the aggregate dynamics Yn+1 = ACYn.

Proposition 7. If C is regular, A is aggregable by C iff there exists B such
that the projector on im(B) parallel to ker(C) satisfies PA = PAP.

Proof. Since C is regular, there exists B and P with P = B ((CB)\C) =
(B/(CB))C.
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• Sufficiency (PA = PAP ⇒ CA = ACC):

CA = CPA = CPAP = CAP = CA (B/ ((CB)))C = [CA (B/ (CB))]C ,

and we have AC = CA(B/(CB)).
• Necessity (PA = PAP ⇐ CA = ACC):

PA = (B/ (CB))CA = (B/ (CB))ACC = (B/ (CB))ACCP

= (B/ (CB))CAP = PAP .

In a similar way, we say that B, assumed regular, is coherent with A if
there exists AB such that: AB = BAB . In this case, if X0 = BU0, then
Xn = BUn is defined by the aggregate dynamics Un+1 = ABUn.

Proposition 8. If B is regular, B is coherent with A iff there exists C such
that the P projector on im(B) parallel to ker(C) satisfies: AP = PAP.

To show an analogy with the lumpability of Markov chains [12], we can
specialize the previous results to the case when C is defined as the character-
istic function of a partition.

Let us suppose that X = Rn

min. Consider a partition U = {J1, . . . , Jp} of
F = {1, · · · , n} and its characteristic matrix:

UiJ =

{
e if i ∈ J,

ε si i /∈ J,
∀i ∈ F, ∀J ∈ U .

If w ∈ Rn

min is a cost (which is analogous to a probability, that is if w satisfies
gw = e with g a row vector with all entries equal to e) the conditional cost
with respect to U is defined by:(

wU)
iJ

=
wj⊕

j∈J wj
, ∀j, J.

Clearly we have:

wU = WUS−1 , with S , U tWU, W = diag(w) .

If A is the transition cost of a Bellman chain (that is gA = g), we say that
A is U-lumpable if A is aggregable with C = U t.

If A admits a unique invariant cost Aw = w, and if A is U-lumpable, we
can take P = BC with B = wU for projection on im(B) parallel to ker(C)
since CB = U tWUS−1 = SS−1 = I (the identity matrix I is the matrix with
a diagonal of e and ε elsewhere).

In this case, looking at the meaning of CA = ACC, we have:

Proposition 9 ([15] Th.20). A is lumpable iff:⊕
k∈K

akj = aKJ , ∀j ∈ J, ∀J,K ∈ U .
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