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Abstract— The purpose of this paper is to present a sim-
plified model of the current and temperature dynamics of
tokamak plasma. It is focused on the diffusion behaviors
and relates the profiles of physical variables to engineering
control inputs. The Scilab/Scicos environment is used for the
numerical implementation of this model. This work is a first
step towards the control of the current profile.

I. INTRODUCTION

A tokamak is a physical device in which a plasma
is confined using magnetic coils set in the poloidal and
toroidal planes (see Figure 1). The plasma behaves as a
conductor that is heated by the current induced by the
variation of the magnetic flux in the ohmic coils. The
tokamak can then be considered, in a first approximation, as
a large transformer where the current of the secondary coils
is used to heat the primary coil. As the plasma resistivity
is decreasing with temperature, it is also necessary to add
other heating sources that enhance the plasma confinment
(confinment of the energy at the center of the plasma) and
increase the overall temperature. This is done thanks to
radio-frequency antennas (such as the lower hybrid one
considered in this work) that allow to reach a very high
central temperature, which is necessary to obtain fusion
reactions.
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Fig. 1. Tokamak.
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The control of tokamak plasma has a long history (see
[3]-[4]). In particular, four classes of control problems have
been investigated:

• vertical stabilization of the plasma center,
• control of the magnetic surfaces shape,
• control of mangnetohydrodynamic (MHD) instabili-

ties,
• control of the current, temperature and density profiles.

We are concerned with the last problem, which has been
studied more recently in [6], [5], [7]. The goal is to provide
for the operating conditions (in terms of profiles shapes)
that are necessary to achieve advanced confinment schemes
and increase the fusion power production efficiency. For
example, the so called H-mode is characterized by a trans-
port barrier located at the plasma edge, which improves the
confinment, and will be the operating mode of the future
ITER tokamak.
The previous profile control approaches cited above are
mainly based on black box linear models and plasma
physics are only used to select the set of relevant variables
and the way they are coupled. These approaches imply
the identification of a MIMO system approximating a
distributed system and are highly dependant on the op-
erating conditions, which makes them costly in terms of
experimentations. The aim of this paper is then to provide
for a control-oriented model established with a nonlinear
system of PDE based on:

• the evolution of the resistive equation averaged on the
magnetic surface as explained in [1],

• the experimental identification of some diffusion coef-
ficients.

The control problem is formulated and the model giving
the current density is numerically solved in the Scilab-
Scicos environment. Based on some experimental data, the
simulation results provided by the proposed model are in
good agreement with those obtained by the Cronos software.
Cronos is one of the references to study the transport equa-
tions in tokamak plasmas and includes complex physical
knowledge, but it can not be used in real-time or for control
purposes.

In the second section, we recall some useful plasma
physics principles and the averaging method used to obtain
the resistive equation. The resistive model is completed
in the third section by specifying the resistivity and the
non-inductive current sources, as given in [9]. Then the
complete model is solved in Scilab and compared with
Cronos corresponding results. In the last section, the current
profile control problem is set and briefly discussed.



II. TOKAMAK PLASMA PHYSICS

We recall here some basic physics notions used to model
the plasma in modern Tokamaks.

A. Plasma magnetohydrodynamics

The dynamics of a plasma is governed by (see [1], [8])
the MHD equations:

∇× E = −∂tB, Faraday’s law,

E + ζjn + u×B = ζj, Ohm’s law,

∇.B = 0, conservation of B,

∇×B = µ0j, Ampère’s law,

∂tn +∇.(nu) = ns, particles conservation,

mn u̇ +∇p = j ×B, momentum conservation,
3
2 ṗ + 5

2p∇.u +∇.Q = ps, energy conservation,

p = knT, perfect gases law,

where v̇ , ∂tv + v.∇v, E is the electric field,B is the
magnetic field,u is the mean particles velocity,j is the
current density,jn is the non inductive current density,n
is the particles density,p is the plasma pressure,T is the
temperature,Q is the heat flux due to particle collisions,
m is the particle mass,µ is the magnetic permeability,ζ is
the resistivity tensor,k is the Boltzmann constant,ns is the
particle source andps is the energy source.

B. Time Constants

In order to model the plasma behavior, it is important to
understand the different time constants associated with the
physical phenomena. We can discern four time constants:

• The Alfvén timeτA = a(µ0mn)1/2/B0, wherea is the
minor radius of the tore and the subscript 0 denotes the
physical value at the plasma center, is of the order of
10−6s for ions and10−9s for electrons;

• The density diffusion timeτn = a2/D, whereD is the
particle diffusion coefficient, is of the order of10−3s;

• The heat diffusion timeτ = na2/K, whereK is the
thermal conductivity of particles, is of the order of
10−3s;

• The resistive time constantτr = µ0a
2/ζ is of the order

of 1s.

The Alfvén time scale is used to describe the MHD in-
stabilities phenomena, which are not considered here. Our
model is focused on the dynamics of the resistive behavior
of the plasma. Due to the differences in the time scales,
only the global, steady-state time variations of temperature
and density are then included in the model.

C. Magnetic Surfaces

In this paper we are interested in the dynamics of the
current density profile, i.e., phenomenas having a time
constant of 1s. At this time scale, we can consider that
the the momentum equation is at the equilibrium i.e. :

∇p = j ×B .
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Fig. 2. Magnetic Surface.

This equation yieldsB.∇p = 0 andj.∇p = 0, and therefore
the magnetic field lines and the current lines lie in the
so calledmagnetic surfacewhich are surfaces of constant
pressure. The magnetic surfaces form a set of nested toroids
indexed byx, presented in Figure 2.

D. Poloidal Magnetic Flux and Current Flux

From the conservation of B, it follows that there exists
A such thatB = ∇×A with A = (Ar, Aϕ, Az). From the
tore symmetry,A is independent of the toroidal angleϕ.
ThereforeBr = −(1/r)∂z(rAϕ) andBz = (1/r)∂r(rAϕ).
In the following rAϕ will be denotedΨ.

The tore symmetry implies that∂ϕp = 0. The magnetic
field B being orthogonal to∇p we have−∂rp∂zΨ +
∂zp∂rΨ = 0 which means that∇p is proportional to∇Ψ,
thusΨ is constant on a magnetic surface.

Denoting byD(r, z) the horizontal disk centered on the
z-axis with its boundary passing trough the pointM (with
coordinates(r, z)), the Stoke’s formula applied toD and
the fieldB :

2πΨ = 2πrAϕ =
∫

∂D
A =

∫
D

∂A =
∫
D

B ,

gives the interpretation ofΨ as the poloidal magnetic flux.
Similarly, applying Stoke’s toD and the fieldj, using
Ampère’s law and denotingrBϕ by f we have:

2πf = 2πrBϕ =
∫

∂D
B =

∫
D

∂B = µ0

∫
D

j .

We can show using the orthogonality ofj with ∇p that f
is constant on the magnetic surfaces, as it has been done
for Ψ.

From Amp̀ere’s law and the definition ofΨ we have:

jϕ =
∂zBr − ∂rBz

µ0
= LΨ , − 1

µ0

(
∂z

(∂zΨ
r

)
+∂r

(∂rΨ
r

))
.

To summarize,

B = (−∂zΨ
r

,
f

r
,
∂rΨ
r

) , (1)

j = (−∂zf

µ0r
, LΨ,

∂rf

µ0r
) . (2)



E. Grad-Shafranov Equation

Using (1),(2) and the colinearity of∇Ψ and∇f ,

∇p = j ×B =
LΨ
r
∇Ψ− f

µ0r2
∇f,

which gives the Grad-Shafranov equation :

LΨ = r∂Ψp +
1

2µ0r
∂Ψ(f2) .

F. Mean magnetic radius

We define the mean geometric radius of magnetic surface,
denoted byρ, as

ρ ,

√
Φ

πB0
, (3)

whereB0 is the magnetic field at the center (which is purely
toroidal and assumed to be constant) and

Φ ,
∫
S

BdS =
1
2π

∫
V

Bϕ

r
dV =

1
2π

∫
V

f

r2
dV , (4)

whereS denotes a poloidal section of a magnetic surface
andV the volume enclosed by this magnetic surface. In the
sequel, we will assume that the magnetic surfaces are time
constant, thatS is a disk, and thatε , ρ/R (whereR is
the major radius) is small.

G. Security Factor

The security factoris defined by

q , − 1
2π

∂Φ
∂Ψ

.

It is is equal toBϕ/Bθ whereBθ is the poloidal magnetic
field and Bθ =

√
B2

r + B2
z . Higher values ofq lead

to greater plasma stability, thus it is an important output
plasma variable.

H. Resistive Diffusion Equation

Applying the Stoke’s formula to the Faraday’s equation
gives :

2πrEϕ =
∫

∂D
E =

∫
D

∂E = −
∫
D

∂tB

= −∂t

∫
D

B = −2π∂tΨ .

Using Bϕ = f/r, we have∂tΨ = −r2EϕBϕ/f .
Note that sinceΨ and f are constant on each magnetic

surface there exists̄Ψ andf̄ such thatΨ(r, z) = Ψ̄(ρ(r, z))
andf(r, z) = f̄(ρ(r, z)).

Assuming that∂tρ = 0 it can be shown after some
calculation (see [1], [2]) that

∂tΨ̄ = − 〈E.B〉
f 〈1/r2〉

Now, using the Ohm’s law we have〈E.B〉 = η〈(j−jn).B〉
and therefore

∂tΨ̄ = −η〈(j − jn).B〉
f 〈1/r2〉

,

where : –〈A〉 , ∂V
∫
V AdV with V the volume inside the

magnetic surface, –η denotes the component ofζ parallel
to the magnetic surface.

Denotingv′ = ∂ρV, since

〈∇.A〉 = ∂V〈A.∇V〉 =
1
v′

∂ρ(v′〈A.∇ρ〉) ,

we have :

〈(j − jn).B〉 = 〈 1
µ0r2

(∂rΨ∂rf + ∂zΨ∂zf) +
f

r
LΨ〉

=
〈|∇ρ|2/r2〉

µ0
∂ρΨ̄∂ρf̄ −

f̄

µ0v′
∂ρ

(
v′〈|∇ρ|2/r2〉∂ρΨ̄

)
,

= − f̄2

µ0v′
∂ρ

(
v′〈|∇ρ|2/(f̄ r2)〉∂ρΨ̄

)
.

Therefore we obtain :

∂tΨ̄ =
ηf̄

µ0c3
∂ρ

(c2

f̄
∂ρΨ̄

)
+

η〈jn.B〉
f̄〈1/r2〉

, (5)

with

c2(ρ) = v′〈|∇ρ|2/r2〉, c3(ρ) = v′〈1/r2〉 .

Using (4) and (3) we have :

∂ρΦ =
f̄v′

2π
〈1/r2〉 = 2πρB0 ,

and therefore

f̄ =
4π2ρB0

c3
.

Substitutingf by its value in (5) we obtain theresistive
equation:

∂tΨ̄ =
ηf̄

µ0c2
3

∂ρ

(c2c3

ρ
∂ρΨ̄

)
+

ηv′〈jn.B〉
4π2ρB0

. (6)

By symmetry, the boundary condition atρ = 0 is

∂ρΨ̄(0) = 0 . (7)

The boundary condition atρ = ρmax is obtained by
computingI, the total toroidal plasma current :

I =
∫
S

jϕdS =
1
2π

∫
V
〈jϕ/r〉dV =

1
2πµ0

∫
V
〈LΨ/r〉dV

= − 1
2πµ0

∫
ρ

∂ρ

(
v′〈|∇ρ|2/r2〉∂ρΨ̄

)
dρ = −c2∂ρΨ̄(ρmax)

2πµ0
.

Therefore :
∂ρΨ̄(ρmax) =

−2πµ0I

c2
. (8)

III. RESOLUTION OF DIFFUSION RESISTIVE
MODEL

Here we specify the resistive model (6), that is :

• We give empirical formula for the resistivityη, boot-
strap current and hybrid antenna current deposit (which
are the only two sources of non inductive current
considered),

• We assume thatε is small (cylindrical assumption) and
that the mean small radius is time constantρ = ax.



We solve the corresponding resistive equation using the
ODE solver of Scilab-Scicos and compare the results ob-
tained with those computed by Cronos. This model has been
introduced and discussed in more detailed in [9].

The empirical scale laws given here are based on the Tore
Supra experiments and have not been validated on other
tokamaks.

Primitive Constants
R major radius of the plasma (m)
a minor radius of the plasma
e electric electron charge
Z effective ion electron charge ratio
me electron mass
mi average ion mass (kg)
µ0 permeability of free space (H/m)
ε0 permittivity of free space (F/m)

Derived Constants
ε a/R inverse aspect ratio
v 2π2a2R tore volume
cj 2π2/µ0v
cI Rµ0/2π
cq a2B0

cv π106/v
cν R

√
me/ε1.5

cT 6
√

2π3/2ε2
0/(e4√me)

cD 3me/(miτe)
State Related Variables

Te electron temperature profile(J)
Ti ion temperature profile(J)
α (1− Ti/Te) ion electron temperature ratio profile
ne electron density profile
ni ion density profile
n̄ space average of electron density
τe electron collision time
τt thermal energy confinement time
νe electron collisionality parameter
η plasma resistivity profile

Bϕ toroidal magnetic field profile
Ψ̄ magnetic flux profile of the poloidal field
jb bootstrap current density profile
jh hybrid current density profile
jϕ toroidal current density profile
χe electronic temperature diffusion
p total power
pΩ ohmic power

Input Related Variables
I total plasma current (A)
jh hybrid current profile
θh maximal hybrid current deposit
ph hybrid antenna power
nh parallel refraction index
mh maximum hybrid deposit location
vh variance of hybrid deposit location
ρh heat/power proportion of hybrid antenna deposit

Output Related Variables
q safety factor profile

Composition Variables
cL 3.3735 10−33Z(0.73 + 0.27Z)/(0.53 + 0.47Z)
cr 0.56(3− Z)/(Z(3 + Z))
cξ 0.58 + 0.2Z
ch 1.18Z−0.24

d0 1.414Z + Z2

d1 0.754 + 2.657Z + 2Z2

d2 0.348 + 1.243Z + Z2

a10 0.754 + 2.21Z + Z2

a11 d2

a20 0.884 + 2.074Z
Shape Variables

ζ εx

f 1− (1− ζ)2/
(
1 + 1.46

√
ζ)

√
(1− ζ2)

)
r f/(1− f) ratio of trapped to circulating particles
d d0 + d1r + d2r

2

a1 r(a10 + ra11)/d
a2 a20r/d

When only hybrid effect antennas are used, the dynamic
equation of the magnetic flux is :{

∂tΨ̄ = Rη(∂xΨ̄, t)
(
jb(∂xΨ̄, t) + jh(t) + cj

1
x∂x(x∂xΨ̄)

)
,

∂xΨ̄(t, 0) = 0, ∂xΨ̄(t, 1) = cII(t),
(9)

where :
• −cj

1
x∂x(x∂xΨ̄), denotedjϕ(Ψ̄, t), is the toroidal cur-

rent plasma profile,
• jh is the current deposit coming from the lower hybrid

effect antenna given below,
• jb is the bootstrap current described later,
• cj is a constant,
• I is a total plasma current.
The security factor can be rewritten as :

q(t, x) =
−cqx

∂xΨ̄(t, x)
. (10)

Typically, we control the density profile using the hybrid
current depositjh(ph, nh) (through the control variablesph

andnh) and the total currentI. We would like obtain and
stabilize a specified security factor profileq at appropriate
fusion conditions.

A. Resistivity

The resistivityη is a function of : –q (which depends
of ∂xΨ), – ne, ni, Te andTi which are considered here as
given time functions (in fact given by the Cronos software) :

Λ = 31.3181 + log
(
Te/(e

√
ne)

)
, (11)

τe = cT T 3/2
e /(Λne), (12)

ν = cνx3/2q/(τe

√
Te), (13)

w = f/(1 + cξν), (14)

η = cLΛ/
(
T 3/2

e (1− w)(1− crw)
)
. (15)



B. Bootstrap Current

The bootstrap current comes from a complex mechanism
where some particles do not follow the magnetic field but
are trapped in a plasma zone. The contribution of the
electron (only considered here) to the induce current is given
by :

jb = R
(a1 − a2)ne∂xTe + a1Te∂xne

∂xΨ
.

C. Lower Hybrid Current Deposit

The hybrid antenna current deposit has a shape which can
be approximated by a truncated (on positive real numbers)
gaussian density with meanmh and variancevh defined
by :

Mh = 0.5354−0.2446I0.5723n̄−0.0789p0.1337
h n0.3879

h ,

mh = 0.1985B−0.3905I0.7061n̄−0.0178p0.126
h n1.1974

h ,

vh = (mh −Mh)2/(2 log(2)) .

The total current depositIh is given by :

ηh = ch(2.03− 0.63nh)0.55I0.43 ,

Ih = ηhph/n̄ ,

and other empirical formulas are also available.
Normalizing the shape deposit by its averagecg we obtain

the hybrid depositjh :

cg = mh

√
vhπ

2

{
erf

(1−mh√
2vh

)
− erf

(−mh√
2vh

)}
+ vh

{
exp

(−m2
h

2vh

)
− exp

(−(1−mh)2

2vh

)}
,

jh = Ih
cv

cg
exp

(−(x−mh)2

2vh

)
.

Fig. 3. Current density.

D. Scilab/Scicos Implementation

This resistive model has been solved numerically using
the scientific free software Scilab. The equation is solved us-
ing the default ode solver of Scilab. The state derivatives are
approximated by appropriate differentiation matices. The
simulation can be done by a script function or implemented
using the Scicos block-diagram editor (see Figure4). The
ode solver uses multistep BDF formulas and the numerical
results are obtained within a few seconds.
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Fig. 4. Scicos Diagram for Magnetic Flux Integration.

The numerical results obtained are compared to those
obtained using Cronos which is a set of Matlab programs
dedicated to the simulation of the plasma transport equation
and the description of the actuator interaction with the
plasma. The results given here are obtained using the data
of Cronos for states which are still not modeled in this
simplified model, in particular the evolution of plasma
temperature and electron density. There is an important drift
between theΨ̄ obtained the one of Cronos, but this not
affect the quality of the current variable (as it can be seen
in Figure 5) and the security factor one (Figure 6). The
results are not so good for the bootstrap current (Figure 5).

IV. PRELIMINARY REMARKS ON PROFILE
CONTROL AND IDENTIFICATION

A. Identification

Some functions in the previous model are of multivariable
monomial type with unknown exponents estimated offline.
We can try to estimate on line some of these important
exponents. Typically we have to estimateα in a diffusion
equation such as :

∂tT = ∂x(Tα∂xT ) + u,

∂xT (t, 0) = 0,

T (t, 1) = T1.

For this simplified model, it is easy to build a convergent
observer : indeed integrating from0 to x the equation we
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obtain :

∂t

∫ x

0

T = (Tα∂xT )(x) +
∫ x

0

u

and this leads to the estimate :

α̇ = k log T
(

log
∂t

∫ x

0
(T − u)

∂xT (x)
− α log T

)
.

B. Formulation of the current profile control problem

In the problem considered here, the control variables are
I, ph and nh. We will consider in the following that, by
adding additional antennas, an arbitrary depositjh can be
realized. The variablesB0 andne(t, x) are supposed to be
given (in factne satisfies a transport equation which has a
diffusion coefficient which is difficult to model).

The controlsI and jh have an influence on the temper-
ature which can be considered as an external input. The

0 3 6 9 12 15 18 21 24
−1

0

1

2

3

+

Fig. 7. Estimator Convergence (α = 2, uniform noise belonging to
[−0.4, 0.4] on the derivative).

dynamic of the electronic temperatureTe(t, x) being much
faster than the magnetic flux dynamics, we can assume that
the temperature is at its equilibrium. At each time, it satisfies
the following static diffusion equation (which can be derived
as it has be done for the equation ofΨ̄ see [1]) :

0 =
1

a2x
∂x(xneχe∂xTe) + ηjϕ(jϕ − jh − jb)

−cDneTeα + ρhjh ,

∂xTe(t, 0) = 0 ,

Te(t, 1) = θ given ,

(16)

with :

χe = 4.68
aq2

B0

|∇(neTe)|
ne

,

ρhjh the hybrid heat deposit proportional tojh andTi the
ion temperature given by the empirical formula (see [10]) :

α = 0.31
(

I

B0

)−0.38

n̄−0.90

(
1 +

ph

p

)1.36

wherep , pΩ + ph is the total power that is the sum of
the ohmic powerpΩ =

∫ 1

0
ηj2

ϕdx and the hybrid antenna
powerph.

We can takēΨ as the state of the system. Indeed, givenΨ̄
and the controls, we can computejϕ from (9), q from (10)
and then computeTe by solving the static equation (16).
ThereforeTe is a function of Ψ̄ and the controls. Then
substituting it inη (15), we obtain, in principle, explicit
dynamics forΨ̄.

The purpose of the control is to obtain a given profile for
the security factorq and maintain it during a given period of
time. Clearly, there exists a family of̄Ψ giving a specificq
profile. Denoting byΨ̄q such a flux profile and using (9) at
the equilibrium∂tΨ̄ = 0, we see that to obtain the desired
flux profile we have to solve a set of equations with the
following structure :

F (Ψ̄q, Te, I) = jh ,

G(Ψ̄q, Te, I) = jh .

Here F is derived from (9) andG from (16). Therefore,
if there existsT q

e satisfyingF (Ψ̄q, T
q
e ) = G(Ψ̄q, T

q
e ) the



above compatibility conditions are satisfied and the corre-
sponding controljh gives the desired equilibrium around
which the system should be stabilized.

The variableΨ̄ is not observed but we are able to observe
Te. From Te and the control, using (16) (where we seeΨ̄
as unknown) and the boundary conditions of (9), we can
computeΨ̄.

Summarizing, supposing that we have enough antenna
to be able to approximate any deposit profile, we have to
control a nonlinear system where we can consider that : –
we observe the state, – the system is controllable

V. CONCLUSION

The nonlinear model given here aims at providing reliable
simulation results. As such it can be used to validate control
laws. Based on the profile obtained it seems that we can
obtain simpler nonlinear model to design the control law.
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