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Abstract—The purpose of this paper is to present a sim- The control of tokamak plasma has a long history (see
plified model of the current and temperature dynamics of [3]-[4]). In particular, four classes of control problems have
tokamak plasma. It is focused on the diffusion behaviors been investigated:
and relates the profiles of physical variables to engineering
control inputs. The Scilab/Scicos environment is used for the « Vvertical stabilization of the plasma center,

numerical implementation of this model. This work is a first « control of the magnetic surfaces shape
step towards the control of the current profile. « control of mangnetohydrodynamic (MHD) instabili-
ties,

l. INTRODUCTION « control of the current, temperature and density profiles.

A tokamak is a physical device in which a plasmaye are concerned with the last problem, which has been
is cpnfmed using mag_netlc coils set in the poloidal andy,died more recently in [6], [5], [7]. The goal is to provide
toroidal planes (see Figure 1). The plasma behaves a§ the operating conditions (in terms of profiles shapes)
conductor that is heated by the current induced by th@at are necessary to achieve advanced confinment schemes
variation of the magnetic flux in the ohmic coils. Theang jncrease the fusion power production efficiency. For
tokamak can then be considered, in a first approximation, 8%ample, the so called H-mode is characterized by a trans-
a large transformer where the current of the secondary copﬁ,rt barrier located at the plasma edge, which improves the
is used to heat the primary coil. As the plasma resistivitgonﬁnmem' and will be the operating mode of the future
is decreasing with temperature, it is also necessary t0 a@fiER tokamak.

other heating sources that enhance the plasma confinmeiple previous profile control approaches cited above are
(confinment of the energy at the center of the plasma) andainly based on black box linear models and plasma
increase the overall temperature. This is done thanks fysics are only used to select the set of relevant variables
radio-frequency antennas (such as the lower hybrid ong,q the way they are coupled. These approaches imply
considered in this work) that allow to reach a very highne identification of a MIMO system approximating a
central temperature, which is necessary to obtain fusigfstriputed system and are highly dependant on the op-

reactions. erating conditions, which makes them costly in terms of
experimentations. The aim of this paper is then to provide
for a control-oriented model established with a nonlinear

Poloidal field coil ~ Toroidal system of PDE based on:
: 4 field coil

« the evolution of the resistive equation averaged on the
magnetic surface as explained in [1],

« the experimental identification of some diffusion coef-
ficients.

The control problem is formulated and the model giving
the current density is numerically solved in the Scilab-
Scicos environment. Based on some experimental data, the
simulation results provided by the proposed model are in
good agreement with those obtained by the Cronos software.
Cronos is one of the references to study the transport equa-
tions in tokamak plasmas and includes complex physical

Ohmic field coil . . .
knowledge, but it can not be used in real-time or for control
purposes.
Fig. 1. Tokamak. In the second section, we recall some useful plasma
physics principles and the averaging method used to obtain
) o ) the resistive equation. The resistive model is completed
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Il. TOKAMAK PLASMA PHYSICS

We recall here some basic physics notions used to model
the plasma in modern Tokamaks.

A. Plasma magnetohydrodynamics \@ electron >\

The dynamics of a plasma is governed by (see [1], [8])
the MHD equations:

V x E =-0,B, Faraday’s law
E+{j,+uxB=_j, Ohm's law

V.B =0, conservation of B

V x B = uoj, Ampere’s law

On + V.(nu) = ng, particles conservation
mnu+ Vp=jx B, momentum conservation,

Sp+ 3pVau+V.Q =p,, energy conservation This equation yield$3.Vp = 0 and;.Vp = 0, and therefore
p=knT, perfect gases law the magnetic field lines and the current lines lie in the
so calledmagnetic surfacevhich are surfaces of constant

where v £ d,v + v.Vo, E is the electric field,B is the pressure. The magnetic surfaces form a set of nested toroids
magnetic field,u is the mean particles velocity, is the indexed byz, presented in Figure 2.

current densityyj,, is the non inductive current density,
is the particles density is the plasma pressur@, is the D- Poloidal Magnetic Flux and Current Flux
temperature( is the heat flux due to particle collisions, From the conservation of B, it follows that there exists
m is the particle masg; is the magnetic permeability,is A such thatB = V x A with A = (A,, A,, A.). From the
the resistivity tensork is the Boltzmann constant,s is the tore symmetry,A is independent of the toroidal angle
particle source ang, is the energy source. ThereforeB, = —(1/r)0.(rA,) andB, = (1/r)0,(rA,).
In the following rA,, will be denoted¥.
The tore symmetry implies thal,p = 0. The magnetic
In order to model the plasma behavior, it is important tdield B being orthogonal toVp we have —0,p0,¥ +
understand the different time constants associated with tiepd, & = 0 which means tha¥p is proportional tovV ¥,
physical phenomena. We can discern four time constantghus ¥ is constant on a magnetic surface.
« The Alfvén timer, = a(uomn)1/2/30, whereq is the Denoting byD(r, z) the horizontal disk centered on the
minor radius of the tore and the subscript 0 denotes theaxis with its boundary passing trough the poidt (with
physical value at the plasma center, is of the order gfoordinates(r, z)), the Stoke’s formula applied t® and

¢ toroidal angle

Torus center

Fig. 2. Magnetic Surface.

B. Time Constants

1095 for ions and10~?s for electrons; the field B :
« The density diffusion time,, = a?/D, whereD is the
particle diffusion coefficient, is of the order af)~3s; 2V = 27rA, = /873 A= /D 0A = /D B,

« The heat diffusion timer = na?/K, where K is the
thermal conductivity of particles, is of the order o
10~ 3s;

« The resistive time constamt = poa?/( is of the order

fgives the interpretation o¥ as the poloidal magnetic flux.
Similarly, applying Stoke’s toD and the fieldj, using
Ampere’s law and denotingB,, by f we have:

of ls. , _ , 2ﬂf:2ﬂrB¢:/ B:/aB:uo/j.
The Alfvén time scale is used to describe the MHD in- oD D D

stabilities phenomena, which are not considered here. Oyfe can show using the orthogonality pfwith Vp that f

of the plasma. Due to the differences in the time scalegy, .

only the global, steady-state time variations of temperature prom Ampere’s law and the definition of we have:

and density are then included in the model. | 9.B, — 0,B. o 0.0 0,0
o= O 0,0 (1)

C. Magnetic Surfaces 140 1o
In this paper we are interested in the dynamics of the To summarize,
current density profile, i.e., phenomenas having a time 8.9 f 8,
constant of 1s. At this time scale, we can consider that B=(——"—,%,—), (1)
the the momentum equation is at the equilibrium i.e. : arf " 5 f
j:(_ - , LY, - ) (2)

Vp=jxB. HoT HoT



E. Grad-Shafranov Equation where : —(A) £ 0y J,, Ady with V the volume inside the

Using (1),(2) and the colinearity o7& and V #, magnetic surface, # denotes the component gfparallel
to the magnetic surface.
Vp=jxB= Bv\y _ ] SV, Denotingv’ = d,V, since
r Ko™
1
which gives the Grad-Shafranov equation : (V.A) = 0v(AVV) = U%(U’(x‘l-vp)) ,
L\If:rc‘)\pp+2u%8q,(f2). we have :

0 . 1 f

F. Mean magnetic radius (G = n)-B) = <M07“2 (0- 00, f +0:0: f) + ;L\m

We define the mean geometric radius of magnetic surface, _ (Vpl*/7*) , = + [ / 2,29
denoted byp, as T YO, f e 9 (U (IVpl*/r >8P\I/) ;
, [ @ 2 o
= T 3 = —— / 2 2
o= \om ® O (VTR ()0, )

whereBy is the magnetic field at the center (which is purelyTherefore we obtain :
toroidal and assumed to be constant) and B 7

nf C2 5 = n{jn-B)
0T = dp| =0,¥) + — ; ®)
ve (s L [P L[ Lo e (7% 7
S 2T vy T 2T v 7'2 W|th
where S denotes a poloidal section of a magnetic surface
i i ea(p) = 0 (|[Vp*/r?),  cs(p) =o' (1/r?).
andV the volume enclosed by this magnetic surface. In the 2P ;
sequel, we will assume that the magA;netic surfaces are tirﬁ%ing (4) and (3) we have :
constant, thatS is a disk, and that = p/R (whereR is o
: o v
the major radiug is small. 9, = 7<1/r2> — 97pBy ,
G. Security Factor and therefore ,
The security factoris defined by = 4m PBO.
A 1 0% €3
T T ov Substituting f by its value in (5) we obtain theesistive
It is is equal toB,, /By where By is the poloidal magnetic equation: -
i = 2 2 i _ ’ _ 1
field and By = /B? + B2. H|g_he_r valu_es ofq lead 8,0 — nf2 8,)(%@\1/) L (éyn.B) . ©)
to greater plasma stability, thus it is an important output HoCh 472 pBy
plasma variable. By symmetry, the boundary condition at= 0 is
H. Resistive Diffusion Equation 8,3(0) = 0. @
Applying the Stoke’s formula to the Faraday’s equation . i _
gives : The boundary condition ap = pn.x iS Obtained by
i computingl, the total toroidal plasma current :
27rrE¢z/ E:/(?E:—/ﬁtB 1 1
I= ] = — ] = — Lv
oo o > Jdeas =5 [ Gomav = o [ @wjmay
:—8/32—277'8\:[/. 1 _ vV,
o t == /ap (v IV I /120, ) dp = _623927(%”) .
s iy
Using B, = f/r, we haved,¥ = —2E,B,/f. Ho e Ho
Note that sincel and f are constant on each magnetic T herefore : B —ompol
surface there existy and f such thatl(r, z) = U(p(r, z)) 0p¥(pmax) = — (8)
and f(r, z) = f(p(r, 2)). ;
Assuming thatd;p = 0 it can be shown after some 1. RESOLUTION OF DIFFUSION RESISTIVE
calculation (see [1], [2]) that MODEL
- (E.B) Here we specify the resistive model (6), that is :
0¥ = *W « We give empirical formula for the resistivity, boot-
) , o strap current and hybrid antenna current deposit (which
Now, using the Ohm’s law we havés. B) = n((j —jn).B) are the only two sources of non inductive current
and therefore considered),
0,0 — _n<(j — jn).B) o We assume thatis small (cylindrical assumption) and

Fa/rey that the mean small radius is time constant ax.



We solve the corresponding resistive equation using the

ODE solver of Scilab-Scicos and compare the results ob-
tained with those computed by Cronos. This model has be

introduced and discussed in more detailed in [9].

The empirical scale laws given here are based on the Torec;,
Supra experiments and have not been validated on otherc,

le

tokamaks.
Primitive Constants

R major radius of the plasma (m)
a minor radius of the plasma

e electric electron charge

Z effective ion electron charge ratio
Me electron mass

m; average ion mass (kg)

140 permeability of free space (H/m)
€0 permittivity of free space (F/m)

Derived Constants

€ a/R inverse aspect ratio

v 27242 R tore volume

¢; 272 [ v

cr Ry /2w

Cq a®By

Co 7105 /v

cy Ry/m. /e

or 6v2r8/263 /(e /e

cp 3me/(m;Te)

State Related Variables

T. electron temperature profilé)

T; ion temperature profile/)

a | (1 —-1T;/T.) ion electron temperature ratio profi
Ne electron density profile

n; ion density profile

n space average of electron density
Te electron collision time

Tt thermal energy confinement time
Ve electron collisionality parameter
n plasma resistivity profile

B, toroidal magnetic field profile

v magnetic flux profile of the poloidal field
Jb bootstrap current density profile
Jn hybrid current density profile

Jo toroidal current density profile
Xe electronic temperature diffusion
P total power

j29) ohmic power

Input Related Variables

I total plasma current (A)

Jn hybrid current profile

o maximal hybrid current deposit
Dh hybrid antenna power

ny parallel refraction index
mp, maximum hybrid deposit location
vp variance of hybrid deposit location
pr | heat/power proportion of hybrid antenna depo

Output Related Variables
PNg safety factor profile
Composition Variables
3.373510733Z(0.73 + 0.272)/(0.53 + 0.472)
0.56(3—2)/(Z(3+ Z))

ce 0.58 +0.27

ch 1.18270:24

do 1.4147Z + 72

dy 0.754 4 2.657Z + 222

ds 0.348 + 1.2437 + 7?2

aio 0754 + 221Z + Z2

a11 do

a0 0.884 + 2.0747
Shape Variables

¢ ex
f 1= (1= 0)?/(1+1.46\0)\/(1 - (?))
r | f/(1— f) ratio of trapped to circulating particlg
d do -+ dl’f‘ + d2T2

r(aw —+ rau)/d

ago’l’/d

When only hybrid effect antennas are used, the dynamic
equation of the magnetic flux is :

{at\i/ = Rn(9,9,) (jo (30, ) + ju(t) + ¢; 18, (20, V),

2}

0, U(t,0) =0, 0,Y(t,1)=crI(t),
)
where :
o —¢;j10,(20,7), denoted;,(V,t), is the toroidal cur-
rent plasma profile,
« jp is the current deposit coming from the lower hybrid
effect antenna given below,
o 7j, is the bootstrap current described later,
« ¢; is a constant,
« | is a total plasma current.
The security factor can be rewritten as :
*qu
12 = 55
Typically, we control the density profile using the hybrid
current deposiji, (pr, nr) (through the control variables,
andn;) and the total currenf. We would like obtain and
stabilize a specified security factor profijeat appropriate
fusion conditions.

(10)

A. Resistivity

The resistivityn is a function of : —¢ (which depends
of 0, V), —n., n;, T, andT; which are considered here as
given time functions (in fact given by the Cronos software) :

A =31.3181 + log (T./(ev/nc)), (11)
e = crT2?/(Ane), (12)
v=ca®q/(rV/T), (13)
w=f/(1+cev), (14)
n:cLA/(T3/2(1—w)(l—crw)). (15)



B. Bootstrap Current D. Scilab/Scicos Implementation

The bootstrap current comes from a complex mechanism This resistive model has been solved numerically using
where some particles do not follow the magnetic field buthe scientific free software Scilab. The equation is solved us-
are trapped in a plasma zone. The contribution of thing the default ode solver of Scilab. The state derivatives are
electron (only considered here) to the induce current is giveapproximated by appropriate differentiation matices. The

by : simulation can be done by a script function or implemented
) (a1 — a2)ne0, T + a1T.0xme using the Scicos block-diagram editor (see Figure4). The
=R 0,0 : ode solver uses multistep BDF formulas and the numerical

_ _ results are obtained within a few seconds.
C. Lower Hybrid Current Deposit

The hybrid antenna current deposit has a shape which can .”VF
be approximated by a truncated (on positive real numbers) .L @
q

gaussian density with meam; and variancev; defined
by : ; 3 %
h — >
Mh — 0.5354_0'244610'5723ﬁ_0'0789p2'13377’12'3879 , [. .

mp = 0.19853—0.390510.7061,ﬁ—040178p2.126n}l.1974

on = (ma — Mp)?/(2log(2)) . T &l p |

The total current deposit, is given by : | IS, (R R P

nn = cp(2.03 — 0.63n,,)0-5° 1043 |

B Fig. 4. Scicos Diagram for Magnetic Flux Integration.
I = nnpn/n

and other' gmplrlcal formulas are also available. ] The numerical results obtained are compared to those
Normalizing thg.sh.ape deposit by its averageve obtain - gpained using Cronos which is a set of Matlab programs
the hybrid deposigy, dedicated to the simulation of the plasma transport equation

o 1—my —mp and the description of the actuator interaction with the
Cg = Mpy /T{erf( \/TL) — erf(\/27>} plasma. The results given here are obtained using the data
) Uh U; of Cronos for states which are still not modeled in this
+Uh{exp (_mh) _exp (M)} 7 simplified model, in particular the evolution of plasma
2up 2vup temperature and electron density. There is an important drift

between thel obtained the one of Cronos, but this not

affect the quality of the current variable (as it can be seen
in Figure 5) and the security factor one (Figure 6). The
results are not so good for the bootstrap current (Figure 5).

IV. PRELIMINARY REMARKS ON PROFILE
CONTROL AND IDENTIFICATION

A. ldentification

Some functions in the previous model are of multivariable
monomial type with unknown exponents estimated offline.
We can try to estimate on line some of these important
exponents. Typically we have to estimatein a diffusion
equation such as :

8T = 0,(T*9,T) +u,
8,T(,0) =0,
T(t,1)=T).

10 08 06 04 02 00 -02

Fig. 3. Current density. . . . L .
For this simplified model, it is easy to build a convergent

observer : indeed integrating fromto x the equation we
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7 _ Simulation ]
J 0
1.5 DN ]
i \Jo .
J in o 3 6 9 12 15 18 21 2%
1.0 Fig. 7. Estimator Convergencex(= 2, uniform noise belonging to
1 [—0.4,0.4] on the derivative).
0.5
i i, NG dynamic of the electronic temperatufe(t, z) being much
1 e N TN faster than the magnetic flux dynamics, we can assume that
0.0 5 ——t— T — T T I I ilibri i i isfi
5 A o o AU the temperature is at its equilibrium. At each time, it satisfies

the following static diffusion equation (which can be derived
as it has be done for the equationbfsee [1]) :

0= %aw(xnexgamrfe) +nje(Jo — Jn — Jb)

—cpnelece+ pujn (16)
9:Te(t,0) =0,
T.(t,1) = 0 given,

with : 2 |9 |
aq” |V(nT,
=4.68———+
Xe 63 By . ;
prjn the hybrid heat deposit proportional jg andT; the
ion temperature given by the empirical formula (see [10]) :

I —0.38 1.36
o =0.31 (> 73-0-90 (1 + ph)
By p

00 01 02 03 04 05 06 07 08 09 10 wherep £ pg + py, is the total power that is the sum of
. . _ o the ohmic powemq = fol njf,da: and the hybrid antenna
Fig. 6. Security factor profileq) : — simplified model (dash), — Cronos power py,.
(solid). We can takel as the state of the system. Indeed, giden
and the controls, we can computg from (9), ¢ from (10)
and then computd?, by solving the static equation (16).
z T ThereforeT, is a function of ¥ and the controls. Then
@/ T= (TaamT)($)+/ u substituting it inn (15), we obtain, in principle, explicit
0 0 dynamics ford.

The purpose of the control is to obtain a given profile for
the security factog and maintain it during a given period of
time. Clearly, there exists a family af giving a specificg
profile. Denoting by, such a flux profile and using (9) at
the equilibriumd, ¥ = 0, we see that to obtain the desired

B. Formulation of the _current profile control problt_em flux profile we have to solve a set of equations with the
In the problem considered here, the control variables afg|lowing structure :

I, p, andny,. We will consider in the following that, by B
adding additional antennas, an arbitrary depgsitan be F(Wy, T, I) = jn,
realized. The variable®, andn.(¢,z) are supposed to be G(Wy,Te, 1) = jp -
given (in factn. satisfies a transport equation which has a
diffusion coefficient which is difficult to model).
The controlsI and j;, have an influence on the temper-Here F' is derived from (9) and= from (16). Therefore,
ature which can be considered as an external input. Tlifethere exists7¢ satisfying F(¥,,T9) = G(V¥,,T9) the

obtain :

and this leads to the estimate :

O [y (T —u)

a:klogT(log 0.1 (@)

—alogT).



above compatibility conditions are satisfied and the corre-
sponding controlj, gives the desired equilibrium around
which the system should be stabilized.

The variablel is not observed but we are able to observe
T.. From T, and the control, using (16) (where we sée
as unknown) and the boundary conditions of (9), we can
computeV.

Summarizing, supposing that we have enough antenna
to be able to approximate any deposit profile, we have to
control a nonlinear system where we can consider that : —
we observe the state, — the system is controllable

V. CONCLUSION

The nonlinear model given here aims at providing reliable
simulation results. As such it can be used to validate control
laws. Based on the profile obtained it seems that we can
obtain simpler nonlinear model to design the control law.
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