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Introduction

The purpose of this paper is to study Markov chains with strong and

weak transition probabilities called interactions. If we study such Mar-

kov chains on a small period of time the weak interactions can be negleg-
ted in first approximation but if we study this process on a time large

enough we cannot do this approximation. If we call O < € << 1 the order

of the weak interactions, we look at the Markov chain on &a period of order~%

and give for this problem the complete expansion of the expected value of

a cost associated to a trajectory. We give also the complete expansion of

the optimal cost for the controlled problem. In both  cases, we have

also the stochastic interpretation of all the term of the expansion. The

problem is solved without other hypotheses that : - finite number of sta-

tes and of values of the control.

We define a fast Markov chain neglegting the transition probabili-
ties of order € . The introduction of an aggregated Markov chain is neces-
sary to define the expansion. This aggregated Markov chain has for states
the final classes of the fast chain and for cost an average cost. This
average cost is constant on the final classes of the fast chain its value
is the average (relative to the invariant measure of the fast chain) of the

initial cost. Its transition probabilities are : for X # X'

Z P;( (x) [Z_ ' N Z_%qu)—(, (y)] where a5 (y) is the probability
XeX X' eX yey

to end in the final class x starting from the transient state y,aXX' are the



weak interactions . (x, X') are final classes, y the set of transient
states , of the fast chain, Ppg . the invariant measure of the fast
chain of support X. So the definition of this aggregated chain needs
only the solving of linear systems, the sizes of which are the numbers
of states in the final classes, then the solving of an aggregated pro--
blem : computation of the expected value of the aggregated cost on an
aggregated trajectory for the aggregated chain gives the first term of
the expansion. The other terms of the expansion can be computed by the
same decentralized-aggregated way.

This kind of aggregated chains appears in the litterature in Cour-
tois [5] ,Pcérvorzvanskii-Smirnov [16], Gaistgori-Pervorzvanskiil9], on
hypotheses excluding general fast transient chains. These authors study
the invariant measure of Markov chains with weak and strong interactions.
Here we don't make any hypothesis of this kind and we give the complete

expansion, for a e-discounted cost.

The resolution of the controlled problem needs the introduction of
a vector Hamilton-Jacobi-Bellman equation like has dene . Viinott [18] in
the case of control of Markov chains with small discount rate. This vector
H.J.B. equation. determinesuniquely all the terms of the expansion in the
general situation (for the case of a finite number of values for the con-
trol). A policy iteration algorithm (Howard's algorithm) gives a way to com-
pute the n-first terms of the expansion.This algorithm needs the solving of
linear systems. This can be done by the decentralized aggregated way des-
cribed above . In the general situation a stochastic interpretation
of all the termsof the expansion is given in term of the fast and aggre-
gated chains. In particular the first term of the expansion, in the case
where the control does not change the final classes of the fast chain, can
be interpreted as the optimal cost of the aggregated chain defined be-
fore. In this latter case, the optimization is done simultaneously in the
aggregation (definition of the aggregated chain and cost) and in  the con-

trol of the aggregated chain =~



The first part gives analytical results and stochastic interpre-
tation for the uncontrolled case, the second one do the same thing
for the controlled one.

This work is related to two kinds of litterature :the litterature
on the control of finite states. Markov chain (for example Bellman [2] ,
Howard [10] , Derman [8], Lanery [13] , Veinott[18] , Chitashvilli [3],
Rothblum [17]), and the litterature on perturbation of operator or of
Markov chains Kato [11}- Courtois [5 ], Pervorzvanskii-Smirnov [163,
GaitsgorirPervorzvanskﬁ{9] . The results obtained are similar to the ones
obtained in Chow-Kokotovic [47], for the control of deterministic systems.
Applications to management of hydropower systems and a result for con-
trolled  diffusion processes are given in Delebecque-Quadrat [6]. The ge-
neralized averaging of Bensoussan-Lions-Papanicolaou [11, gives more dif-
ficult results for uncontrolled diffusion processes. Scbweitzer?Federgruen
[19]1 study a two level-Bellman equation which is similar to the one ob-
tained here with other motivations.



IT. MARKOV CHAIN WITH STRONG AND WEAK INTERACTIONS

We study in this part a Markov chain with finite states x ¢ E, we
suppose that the number of states card (E) = n, its transition matrix
is called M, and its generator M-I is supposed to be equal to B+eA
where B and A are generators of Markov chains and € a real number small
relatively to 1,0 < e << 1. This Markov chains is denoted by Xt where
t is the time belonging to IN.

Given the function

f:IxE~R with sup fi(x) < Cf, where Cf e R

. _ XeE
i x fi (x) ieN
we define :
-+
f :E-R,
> o
x= Z e’ £
i=0

>0~ given, we are interested. by the expansion in € of the mapping :

(1.1 V. :E~-R, Foo

€
x » Vo, =" —& ___ f oX
(x) — (1+ue)t+1 £ t

But if we denote by v a random variable which takes its values
in N, which is independent of Xe> and with law defined by

P(v=t) = . then :
(1+ue) &'
1
(1.2) Ve=q Ef o X

But E(v) = %E and V€ thanks to (1.2) can be seen as the cost of the



Markov chain on a time scale of order % ;and is the solution of Xolmogorov

equation :
1 -
(1.3) -uV€+E BV€+AV€+ fg—o

So the asymptotic study of V€ defined by (1.1) or (1.2) is also equi-
valent to the study of the solution of (1.3). In this paragraph we are in-
terested,in the first part in the expansion of Ve solution of (1.3), that
is the analytical study, and in the second part, in the stochastic interpreta-
tion of the terms of this expansion(denoted by V: WNxE-~>R with

+oo i x Vi (x)

V() = Z eV, ().
120

The Markov chain defined on E, of transition matrix B + I which is a

stochastic matrix, is called the fast chain. and denoted (Zt) .
We use the mnotations :

7 (B) is thekernel of the operator B which is # {0} because B is a gene-
rator B1 = 0 ;

@ (B) is the range of the operator B ;

P is the spectral projector of B on its eigen space associated to the ei-
gen value 0, which is % (B) because B is a generator of a Markov chain. (see

prop. 5 ch. 6 Pallu de la Barridrel15]);

Ru(A) the resolvent of the operator A is by definition (A-u)_1 where
b €€ ;An =A-ul ; C=Ru (A)B.

Theorem 1
+00
Ve solution of (1.1) admits the expansionz el Vi(x) with
i=0




V.=V V; where V. € g (B) ggg‘vz e (B).

The sequence (Vi, V"i) is uniquely determined by :

~ ~

(1.4) BV, + AV, (+ £ ;=0,V;eq®),1=1,2, ..., V5" 0
(1.5) PAUV, + PAuVi +PL =0,V g%(B), 1=0,1, .0,

Before proving this theorem let us give a
lemma 1

The operator Ru(A)B has the eigen value 0 and the nilpotent operator

associated is zero

Proof of the lemma. B being a generator  Ru(A)B1 =0 and 0 is eigen va-
lue of Ru(A)B. Given g :IE ~R , let us consider

"EZ g o X¢

1+ue)

W_ is bounded by o Sup |g(x)| . This bound is independent of e . But W_
is solution of the Kolmogorov equation :

A+ LB+ g =0
and

W, =- SR._,Q(C) Riu(A)g by definition of the resolvent of an operator.
By Kato [11] ch. I.5.3. we obtain that W_ 1is bounded if and only if the
nilpotent associated to the eigen value 0 of the operator C is zero, and

the result is proved.

Proof of the Theorem. The solution of (1.3) can be written

V. = - eR_(C) RuE,

Using Kato [11] chap. I .5.3. we know that seRe(C) is analytic and its
convergence radius r is the smallest modulus of the non zero eigen-valueof C,

and the convergence radius of V. is r, because sup f. (X) Ce-
xeE,1



Let us prove now that (V., Vi) solution of (1.4), (1.5), is uniquely
determined.

Let us prove this recursively for that let us first verify that

(1.6) PAuPCRu(A) =P

where Pc denoted the spectral projector on the 0-eigen-space of C. But by

lemma 1 we have % (c) n &(c) = 0 which implies that Aun (B) n® (B) =0
because Ay is regular.

Now let us take f @ (B) then it exists g such that Bg = f and we have
(1.7) AUPCRU(A):E = AuPCRu(A)Bg = Awp Cg =0

If we take £ ¢ AunN(B), 3g M. B) : £ =Ayg and
(1.8) AuPCRp(A)f = AuP_RpApg = AyP.g = Apg = f

(1.7), (1.8) imply

that AP Ru(A) is the projection on Au% (B) along
£,(B) which implies (1.6).

(1.6) shows that PAy is invertible in # (B) and its inverse is PCRu(A)
soV, = - Pc(vi + Ru(A) fi) = - PCRu(A) (ApVi + fi) is solution of (1.5).

(1.5) can be written by definition of V. = \71 *Von P(AUVi+fi)=O,
this relation implies that AUVi‘*fi ¢ @& (B) which proves that there exists a

solution to (1'4)i+1 .

So the sequence { Vi} is well defined by induction.
+ oo
Now the convergence radius of the series E elvi where v, is defined
i=0

by (1 .4)1, (1.5)i,is r defined at the begining of the proof. This can be
proved recursively writting (1.4) i



RU(A)B V. + V,_{ + R (F; 4 =0

and because sup f.(x) < C
- i f
i,XeE
400
i
Now V€ = L € '\/i where Vi are defined by (1 .4)i (1 .S)i satisfies
i=0

1
€

+ fi—1 =0 and BVO

]

B Ve + AUV + fe 0 because (1.4)i and (1.5)i implies that BVi + AuVi_1 +

0, then the proof is achieved.

]

I1.2.Probabilistic_interpretation of the_terms of the expansion of V.

For that let us define an aggregated markov chain denoted by Yt. Its

states are the final classes of the fast chain denoted by 3’(7, ?2, cees X
and we call E the set of the final classes of the fast chain B= {?1, vees X T

Its generator is defined by A with

(1.8) B = Z px) {Z azcy + Z Az (v) axy}
yey

XeX x'ex!

where : Pg X > R" is the invariant measure of the fast chain of support X,
y is the set of transient states of the fast chain,

Az y) « R" is the probability to end in the final class X’ star-
ting from the transient state y for the fast chain.

We define an aggregated cost :

(1.9) g :E-R

Then we have the :



Theorem 2

Vi and Vi defined by (1.4)i and (1.5)i have the following probabilistic

interpretations
L +oo
i e = 1 o - - - = .
(1.1 V. () =V;(®) -‘E’;g e 8; o X VX e X, VReB, Vil
=0 ("W

1

(A1) V) = D a0V, @) = Bl VE), vy ey, vieN;
X

= _ .1
(1.12) Vi(z) _[Efast lim T

Toeo

(T -1t) hi o Z VYiel, 2, ...

T
t
t=0

with T = inf {t 2 0 L e E} , where ag means 'for the aggregated chain’,

fast "for the fast chain" and Zt is the fast chain and :

(1.13) g, =AW, + £ 3

——

aam

(1.14)  hy =AW, , + £ ..

Proof :

Using the definition (1.14) of hi (1.4)i can be written.BVi + hi =0,
B being the generator of the fast chain the theorem 5.14 of Kemeny Snell [12]
extended to the general situation th.4 ch.6 Pallu de la Barriere [15] gives

the interpretation (1.12).

Interpretation of V}.

B can be written using the partition of E = 1Y jizu ceo U ;élu ;

bl
Do
TN — el NI i
o
[AS]

B = IS WS
Xm ]%n
Y T } k) ; o 1T
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P is given fig. 3 p. 46 Lanery [13] or Kemeny Snell [12]

P
o) @)
P)
N\
\\
P = .
o A Y
P
m
1 -1 O
T0 T1Pl TO Tum
With P, = 13 & Py
1 1

The interpretation of T61 T, 1;-(y) is the probability‘qf(y) to end in
the final class x , starting from thé transient state y e y for the fast

chain. It follows that

-1 _
To TP = % ® P

1

Now Pﬁz = V; because'Vi belongs to 7(B) so
PAuP\?"i = PAuVi, but PAUP = PAP - yP = A - upP
with A the following generator.

A)'b"(v = 115‘(‘ @p)“('t (p{(" (A;&"t]‘;(r + A;(‘}",qf:)): Tlf@ pfi':bt' where é’ﬁl is
defined by (1.8) using the notation
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- A- - - -
1 5 %,y
P
A=
- - - - -
Y YeXy A5
A— = 0 so the solution of (1 .6)i needs only the knowledge of the restric-

tion of A to E, indeed because

X
KYK' = E q’i'(Y) 556(.,, y € )'f" we see that the rows of A for y e y are linear

combinations of the other ones.

A restricted to E denoted by 'AE is the generator of a Markov chain which

can be lumped using th, 6.3.2. of Kemeny Snell [127 . This lumped chain ad-
mits m states (5(1, 3(2, cens im) and its transition probabilities are given
by (1.8). We still denote by A the generator of the lumped chain.

We can check that é‘(ﬁ defined by (1.9) is equal to Pg(x) )Vx e X, VX ¢ E

We can verify using the relation-ship Pg(y) =Zq§<(y)§()€), Yyey,
the compatibility of the system (1 .S)i. X

The condition P:\;i = \71 determines the values of i;i (y)/Vy €y -

V() = > 4 ) V; 9.

XeE
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The interpretation (1.11) follows from the relation :

hod

‘E}J‘;ast Vi (Z\)) - v Vi 6() ‘Pfast (z\)6 ;() - z \71(;() qi-(}')
x X

Remark 1 (1.5); can be written
(1.15) A + AW+ £, P) =0V D en (B, Ty e n ).

Taking the extremal invariant probabilities of the fast chain as a
basis of 7 (B*), and (qi, X ¢ E) the probabilities to end in the final
class for the fast chain as a basis of 9 (B) we obtain the interpretation
of 6;( th 2 Delebecque-Quadrat [7]1 ) as the solution of a Kolmogorov

equation for the aggregated chain.

Remark 2 The classical small discount problem :

V (x) =B — 5 £(X.)
€ ;U*@t” t

where Xt is a markov chain without weak and strong interactions can be seen

like a particular case A = 0 indeed V€ in this case is solution of :
B =
(-1+ E') Vé +£=0
where B is the generator of the Markov chain Xt.
I1.3 Computational aspects

Using the equation (1.4).l and (1.5)i the sequence Vi can be computed
by a two level algorithm :

level 1 (fast)

- Solve m decoupled systems of N= linear equations, niris the number of

states in X.
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Each system is define

- -
~

~ - ‘\4~ X N . N
- = - = - | R .
B~ V? + h. =0, Ps V? 0, where BX [resp V?, hlj is the restriction

[aliel |

of B [resp V., hi] to the final class X.

- Solve the following system of equations on the transient classes of

the fast chain :

-

B)7Vi+hi=0’ Vyey *
Vi(X) =V)i( (X),VXE;(, V;(eﬁ.

The solution gives the values of Vi on the transient states the com-
putational cost being the solving of a set of n- linear equations, where n:

is the number of transient states of the fast chain.

- Compute the invariant prob. measures of support the final classes, that

is solve pgB. = 0 fpg, 1) =1 VXe E.

- Compute the probability to end in a final class starting from a

transient states that is solve :

Bf a7 = Oonyey )
, VX e E.

qi' = 152 OHE
Level 2
- Define the aggregated chain of generator given by the formula (1.8).

- Solve ELV& + éi = 0 which is a system of mequations.

- Define ﬁi on the transient states by the forﬁmla.ﬂz(y) = E qi(y)ﬁg(i)
X

x» B- 1is the rectangular matrix obtained by taking the lines of B, the in-

dex of which to y.
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Remark 4

The size of the largest linear system that we have to solve is

sup (sup ns, N> m)

k4
XeE Y
If the inversion is done by a Gauss method and ny *no=m = n

then the cost is of order k Ty (\g’l)s ~ kn®. So we save much computation
time by this method for a large scale system.
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III. OPTIMAL CONTROL OF MARKOV CHAIN WITH STRONG AN WEAK INTERACTIONS

Given :
- t ¢ N the time ;

- U a finite number set called the set of controls, S : E »~ U is called
a strategy ; and g = {S : E~ U} is the set of strategies ;

- Xt a controlled markov chain, that is its transition matrix is a func-

tion of u ¢ U, M(u) ;

We denote by MS the matrix MS (S (x)) , we denote by X the mar-
kov chain of transition matrix MS we suppose that the markov chaln has
weak and strong interactions(that is : there exists € > 0 such that
M) - I = B(u) + €A(u), with B(u) and A(u) being generators of markov
chains B(u) + I and A(u) + I are transition matrices), we use also the
notation AS [resp BS] for the matrix A)SOC, = Axx' (S(x)) [Lresp B}SO(, =

= Byt (SG0)T 5

- f:INXxExU-R withsup £(i, x, u) <
i X u i,x,u

+ - Q ) o
For the strategy S, € ¢ R , let us denote 70}{531;31”3‘;‘?;}16 function :

fi (1E —>[R+ oo which is called the cost function,
X > fi(x) = Zelfi(s, S(x))
i=0
and fs the function f t:NXE R

i X f. (x S(x))

We study the stochastic control problem for u e R , >0 :

400
vin B ), —Sgr foo X}
Se g =0 (1+€U)



VS denotes the function :

+-c0

and V_ = Min Vg) (Componentwise) .
Se g

The purpose of this chapter is to give the expansion in e of

+co
_ E : i
V€ € Vi'
i=0
400
We know by chapter 1 that Vg has the expansion,vi = €1V§.
i=0

VS’2 [resp VE’Q , resp V£ , resp Vﬁ] denotes the sequence (VS,V?,--

2 2
[resp E elvi, Tresp (VC’ V1, ces V@), Tesp :z:: €1Vi] .
1=0 i=0

PS is the spectral projector on the 0-eigen space of BS.

Let us note by é-the lexicographic order defined on a finite

-16-

or in-

finite sequence of mumbers, the minimum for this order relation will be

denoted by Min.

For two given strategies S, S', let us define the functions :

Hg . REXN . E

S S
y = Ogs Yq» --- 7By = Hyy)

b

S B g

) S S ) o
y = Ogs Yy» - PR3+ By + £ =iy, ieN- 0}
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1
H$S :{REXN —*["RE

i
S 1
Y HG - o)
We shall use also the following notations :

S S SS! SS!

H = ], 1el) ;B = @, il ;
S, % . SS', R SSt.
H?" = (H?, i=0, ...,%) ; fii o= HT ,1i=0, ...,2) ;
+00 +00
. , .
H = E S . S E pSS' ,
€ i € i
i=0 i=0
2 2
. . . ot
HS,SL - § :ele : HSS L Z€1H$S
€ i € i
i=0 i=0
We have the :
Lemma 2

¥x e B, Vo) 50 fresp vt 501238 Ve <8, €20, 10@) >0 VX

[resp Vi’z (x) =07 .

Proof

The necessity being trivial let us prove the sufficiency of the con-

dition.
It is sufficient to prove that :

kel V¥ =0 D W, = 0.

v

k ,k . 1
But VO Kix) =0 vi x) =0 ii‘{; R W) = V,,x) and
§ze>0
because € > 0 and Vi(x) > 0 we have Vi+1(x) > 0.

The following result is a generalized Howard [10], Miller-Veinott [14]

algorithm for the situation where we have strong and weak interactions.
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Theorem 3 38 Ve <6, € > 0 we have :

N 189300 50 Yxe B D300 5V 00 vx e BEDV00 2 VD O vx ¢ B

2y 221, 15N Py o vxer VT vV vxeE &)

VE’Q-WX) z Vi"ﬁq(x) Vx e E.

400
. . i .
3) V8 admits an expansion z € Vi’ V = (VO, Vi, cens Vh, ...) satis-
i=0
fies the vector  Hamilton Jacobi equation : Min HS o V(x) = 0, VYx € E.
Se.&
Vg_1 _ . . .

4) The vector = (Vb, Vd, cees VQ_1) is uniquely determined by the

equation Min HS’QO V(x) = 0.

Seg
Proof
It is a straightforward adaptation of the techniques used by Miller-
Veinott [14].

Vi satisfies the Kolmogorov equation :
@) 0=+ eV r et .
We have also

2.2 0=8" V" + eV v ef)

1
using the expansion of Vi and Vi which exist we have

+00
3 S S' 1
0= dafed -1 0% D
i=0
to
2.3 0= Zel [H?(VS) - H?(VS) + H?'(vs) - H?(Vs')]
i=0

and denoting by
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+00
Wis' =Z el(\/? - Vi)' and WSS' = ('Wﬁs', W?S', cees Wis', ees)

i=0
1 1 1
(2.3) can be written 0 = HES (VS) + BS WSS + sAu wﬁs'

So we have the stochastic interpretation

400

t 1 1]

(2.4) Wis =EE Hgsc,VSoXS
n=0

t

Now let us prove the result 1)

HSSO' Q,S(x) go‘v’x € E:>36 Ve <8, €20 H‘z’s'o VS(x) >0 VxeEby
1
lemma 2 :> WES (x) = 0, ¥x € E,¥e < §, by the maximum principle or the
1
interpretation 2.4 '.:} WSS (x) ??O Vx ¢ E by the lemma 2 so the 1) is

proved.
Let us prove the part 2)

1
vt B VP L0 VX eE D Fsyk:Ve < 6,82 0 HSS'O Vx) +
+ kegﬂz 0 Vx ¢ E by lemma 2 :> by interpretation (2.4) and majoration
1 - ' Q- :
Wﬁs x) + ngz 0 VxekE @VS’Q 1(X)‘zg \/S L 1(x)’ VXx ¢ E by lemma 2 <:>
- 'og-
VSS’Q 1(X) zvf » 1(X), VX ¢ E/ Ve e S,

For the part 3),

first let us prove the existence of a solution of MTI:} HS o V(x) = 0.
Se
For that we use the strategy iteration algorithm :
. S!
solve HSOVS - 0 solve I\S/‘I}n H” o v
S : > v - pS'

S
by this way we obtain a sequence of strategies Sn and a sequence of V n
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By the first part we have

S S .S S
Vx e E Vsn(x) Jv™ 1(x) because H ™! n y o1 {o.

S S
So after a finite mumber of iterations V ™ =V n-1 because the number

of strategies is finite. We denote s* = s" then

* *
(2.5) HeV°(x) =0 VxeE
and \

* *
2.6) H® oV ) %0 VxeE,VSecs

and (2.5), (2.6) 4:{)

*
Mn Ho Vo (x)=0VxeE,
Se /
Now because of (2.6) and part 1) we have VS x) § VS(X) Vx e E VS €g
andlema1:>§l§ VS x) < VS(X)VXEE Ve<s, ¢€>0. SoV§=V€.

The solution V of Min HS o V is unique because by part 1 if there
SE S
are two solutionsV' and V2 we would have V' 7V’ and v ¥ v v =

by antisymmetry of the order relation

2

Let us prove now the part 4)

We prove first the existence and uhiqueneSs of

M-l?l’l HS’ .

Seg

Vix) =0 VxeE

by the same technique using this time part 2.

S
By part 2 this solution V T satisfies
S _, -1
v x).:{;ngux) VxeE, VSeg
S -1
So V

(X)< VS’Q'—1(X), Vx e E VS ¢8&, and this implies that
€ { ¢ )
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2-1
S_,2-1 - )
V€n x) = E el Vi(x)where V; are the terms of the expansion of
i=0
)
€

If V is the expansion of V8 , we denote by Rfi =;Argm§n HE OV;SAO =8.

For each strategy we introduce the fast chain Zi of generator BS
and the aggretated chainffz of generator PS AS PS, we denote by"?c'S the
corresponding aggregated state, and.qfs the probability to finish in RS
starting from the fast-transient stafé;y. ?S is the set of fast-transient

states.
We have the :
Theorem 4

I1f we denote by

]

@ =Sy, + £, L i=N-0} , hg=0;

i U 0
(2.8) '§§=PSA§ Vi+PSf§, ielN ;

We have for i ¢ N

-S ot T
= _ o8 =S, _ S ] ~S =5 =S .
(2.9) V?Cx) = V?(X ) =P Vi(x) < Eié 'EFQI;E:T ioXt, YV Se§yq VXX
t=0 .

S = D o B v oy S
) T & »qy_cs V‘z (X )_, V yey

-1

P S

~g - . £ .S
(2.10) V3=V, - <@g, Lim > ahnfoz, vses,.
=0
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Corollary

In the particular case where 77(BS) is independent of the strategy

Vg = V. is independent of S and (2.9) becomes :

0
400
(2.11) V(X)=-\7(>‘c-)=Min E Z-———L—-———?So_)(s VXeX‘
* 0 0 Se Ag (1+u)t+1 o t? ’
o) =0

Vo()’) = Z C@%Vi(i)-

X

Remark : (2.11) can be cut in a long run control problem an a short run

one(%ee‘Delebecque—Quadrat [ 773, using a decomposition by the quantities.

Proof

Let us take S 8. ., , S' ¢ &, , V the expansion of V_. By theorem 3

we have :
_ xS S S S! S! S!

(2.13) 0 = Au v, o+ BV, 4t fi < Au Vi + BT Vit fi

g s St .
multipliying (2.13) by P~ we obtain :

S Sl S'

(2.14) 0 < AU V. o+ P

with P V

H<m

VE' = Vi'- ﬁf' (2.14) can be written
0<p° Au' pS' VS 4 P ff' + PS'AE"\'/'S'.

1 1 ]
Using theorem 2 PS AS PS can be interpreted as the generator

of an lumpable chain. We have :

400
_S' ‘] -S‘ §S'
VS (x™ ) =< E —_— g 0 X_
Ag — (1+u)t+1 i t

Vo) - qu. &, Yy ey

=S
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Now we have for S e $;

75 T-1
S S, _ 0 S
(2.15) By, (V,0Zo - V.0 Zg) = Egr o Z Bv.o 23 =

t=0

T-1
S S S
fast A V 0 Zt + fi—1 o Zt because (2.13)i_1

t=0

Summing (2.15) for T = 1, ..., N we obtain

N ZS N-1
1 S S 0 Z t, .S S
Erast N Z (Vi 0Zy-V;0 Zpi> - Bgpoy (- hj o2
t=1 £=0
N
But 11_m 1 Z V. 0 z - pSv.
N 1
t=1
this implies that :
7S T-1
_ 0 S
V?—vi-Psvisﬂzfast 1im (1———)h‘ 0z
e 20

Proof of the corollary

Suppose now that % (B ) is 1ndependen1' of the strategy S it follows
that X <> is independant of S, but Vg 0 which implies that VS VO and
the result follows. using the fact that on E SO 51.

Remark

The result of Veinott [ 181 is the particular case A = 0. The case of
U infinite set could be handled by techniques used in CHITASHVILLI [31 but
by this way we shall not have the complete expansion of Vg. (and some proofs
are not completely clear). Another particular case with U infinite set can
be found in DELEBECQUE-QUADRAT [71].
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Computational aspects

The theorem 3 can be used to obtain an algorithm giving the first

2 terms of the expansion of Vg, by solving :

1) given a strategy S compute VS, this step can be done by coordination-
decomposition algorithm described in IS) after determining the final

class of BS.

1]
2) Min HS ﬁ (VS), this is a local minimisation.
Seg

3) go to 1) until convergence occurs.

The largest computation that we have to do is the computation of the
invariant measure of the largest final class of the fast chain, or the
computation of the aggregated cost VS, but we never have to solve a pro-
blem of the size of the initial problem (if there are several final classes
of the fast chain). In the classical problem A = 0 we don't save computa-
tion time but we solve a difficult problem. In the, case considered here we

can hope to save computation time which was in fact the purpose of this

study.
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