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1. Introduction

The aim of this paper is to illustrate the use of stochastic control methods
with a concrete and simple example taken from the management of the
electricity production system of New Caledonia. The system consists of
eight power plants and a dam. For this system we address the problem of
minimizing the cost of meeting a given electricity demand. The variables to
be optimized are the starting time of power plants and the quantities of
turbined water. The system is complicated by many stochastic phenomena,
including uncertainty in electricity consumption and input of water to the
dam, and breakdown of power plants. We model these stochastic phenom-
ena and solve the resulting optimization problem by the dynamic program-
ming method.

From a practical point of view all the above phenomena are not equally
important which leads us to decompose the problem into two parts:

(1) a long-run problem giving the management policy for the dam, the
purpose of which being to give a final target cost for a short-run problem;
and

(2) a short-run problem which models all the phenomena just described.
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Thus, the complete solution of the problem is decoupled into four parts:

(1) identification of the stochastic processes which appear in the long-
run model;

(2) optimization of the long-run model;

(3) identification of the stochastic processes which appear in the short-
run model; and

(4) optimization of the short-run model.

Indeed, the probabilistic characteristics of a stochastic process can
change according to the time-scale taken, and this leads us to model the
same stochastic processes in a different manner in the next two sections
which present the long- and short-run models of interest.

2. Long-run model (horizon one year)

We now describe the long-run problem; its purpose is to give the long-run
management of the dam. We use the following notation (dimensions in
parenthesis):

¢ =time (7T')
T =economic horizon (7)
X, =real cumulated water supply up to time ¢ (L3
A, =transformed cumulated water supply up to time ¢ (L3
B, =flow of average supply, storms excluded (L*/T)
v(t, du) X dr =probability of a storm of intensity between « and u +
du, between the instants ¢ and ¢ + d¢
S, =stock of water in the dam at time ¢ (L3
S,, =maximal storage capacity of the dam (L%
S =minimal water storage required for the dam (L%
u, =flow of water turbined at time ¢ (L*/T)
u,, =maximal flow turbined (L*/T)
u,, =minimal flow turbined (L*/T)
E(S, u) =hydroelectric power produced when the stock is S and
the flow turbined is u (ML*T ~3)
D, =hydroelectric demand at time ¢ (ML*T ~°)
B(D) =mean variation of the demand per unit of time, for a
given demand D (ML’T ~*%)
o%(D) =variance of the demand per unit of time, for a given
demand D (M2L*T ™)
W, = Brownian motion perturbing the demand (T"'/?)
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P, =thermal power demanded at time ¢ (ML*T ™)

P min =0

P,y =maximal power of thermal power plants of type 1
(ML*T ~%)

P_ .. =maximal power of all the thermal power plants, the gaz

turbine excluded (ML*T ~?%)
C(P) =cost of production of the thermal power P per unit of

time ($/7)

p, =marginal cost of production of thermal power plants of
type 1 (3M ~'L72T?)

p, =marginal cost of production of thermal power plants of
type 2 ($M ~'L7T?)

p; =marginal cost of production of the gaz turbine

($ M~ 1 7, —2T2)
V(t, S, D) =Belman optimal return function for the long run prob-
lem.

The long-run model consists in the management of the following means
of production (in such a way to meet the demand D, for all ¢, with the
minimum possible cost): four thermal power plants of type 1 (36 MW);
four thermal power plants of type 2 (16 MW); one gas turbine (19 MW);
and one dam equipped with four turbines of 16 MW.

The data are the statistics on: (a) the demand for electricity, and (b) the
flow of water input to the dam: figs. 7.5-7.6

The outputs of the long-run model are:

(1) the flow of water turbined expressed in feedback form as a function
of the stock of water in the dam and the demand for electricity;

(2) the power produced by both types of thermal power plants as a
feedback function of the stock of water and the demand for electricity;
and

(3) the optimal cost as a function of the stock of water and the demand
for electricity.

Using the preceding notation we can write the state equations of the
system. The demand for electricity is given by the stochastic differential
equation

dD, = b(D,) dt + o(D,) dw, (1)

The two functions b and o? give the probability law of D.
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The stock of water evolves according to:

— (dA4, — u, di)~, S, = Su
ds, = {d4, — u, dz, S, <8, <8, 2
(d4, — u, d)*, S, =S,
U, < U < Uy, 3
4= ["Bs)ds + S 4, — 4,_. @
0 s<t

A, — A,_ represents a jump in the flow caused by a storm.
A, is constructed from the real cumulated water supply X, in the
following manner:

tdX N
A’ =f (———-—-/\ uM) ds + 2 (XT;! - XT’: - uM(Tn - an)), (5‘
o\ dt T,<t

where x A y = min(x, y) and the sequence of stopping times 7,, and 7, ar¢
defined by

. . dX, .
Tn=1nf{t;t>Tn; ?<UM}, (6
o dx, \
Tn=1nf{t;t>Tn; Ft—>uM} (7

(see fig. 7.1).

The probability law of 4, will be characterized by: (a) the function B(#):
mean water supply (storms excluded), and (b) the probability law of the
storms: »(z, du) d¢ giving the probability of a storm of intensity betweer
(u, u + du), during the interval (z, ¢ + di).

The cost function is the mathematical expectation of the cost of meeting
the demand:

minE [ C(D, - E(S, u)) dt, @&
U 0

where C is a piecewise-linear function, increasing, convex. Its derivative it
given by fig. 7.1, where the following points should be noted.

(1) The interval [P,;,, Pp,,] corresponds to the case where the therma
power is supplied by the thermal power plants of type 1.
(2) The interval [P, Py,,]| corresponds to the case where therma
power is supplied by the thermal power plants of type 1 working at thei
maximum power and the remaining part being supplied by the therma

power plants of type 2.
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(3) The interval [P,,,,, o] corresponds to the case where all the thermal
power plants work at their maximum level, the remaining part being
supplied by the gas turbine if possible otherwise the price of failing is
supposed to be the price of production by the gas turbine.

3. Short-run model

We now describe a more detailed model of the system used to determine
the starting time of the power plant knowing the long-run management of
the dam. Let us first agree on the additional following notations:

M, =number of thermal power plants of type 1 in activity at
time ¢
A~ dt =probability of a breakdown between ¢ and ¢ + dt for a
thermal power plant of type 1
At dr =probability that a thermal power plant of type 1 can be
repaired between ¢ and ¢ + dr
N, =number of thermal power plants of type 2 in operation
at time ¢
N, =number of thermal power plants of type 2 wanted
(power plant asked if no breakdown appears at this
time) to be in operation at time ¢
N2 =total number of breakdowns of thermal power plants of
type 2 before the time ¢
p d¢ =probability of a breakdown of a thermal power plant of
type 2 between ¢ and ¢ + dt
P! (resp. P?)=power supplied by the thermal power plants of type 1
(resp. of type 2) at time ¢ (ML*T ~3)

P} (resp. P2)=minimal power of a working thermal power plant of

type 1 (resp. of type 2) (ML*T )

Py (tesp. PZ)=maximal power of a working thermal power plant of

type 1 (resp. of type 2) (ML*T ~3)
P_..(M, N) =minimal thermal power supplied by M thermal power
plants of type 1 and N thermal power plants of type 2
(ML*T 3)

(M, N) =thermal power supplied by M thermal power plants of
type 1 working at their maximal level and N of type 2
working at their minimal level (MLT ~3)

P,..(M, N) =maximal power supplied by M thermal power plants of

type 1 and N of type 2 (ML*T ~3)

P moy
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k =cost of starting up a thermal power plant of type 2 ($)
B(1) =mean flow of “short-run” water supply (LT 1)
6%(¢) =variance of the “short-run” water supply per limit of
time (LST~Y).

The short-run model consists in managing the means of production
described above, taking into account the starting decisions for the availa-
ble thermal power plants. This problem is also studied in Leguay (1975).

The states of the system are: the stock of water in the dam S; the
demand for electricity D,; the number of thermal power plants of type 1 in
operation M,; and the number of thermal plants of type 2 in operation N,.

The control variables are: the flow of water turbined; the thermal power
produced by the thermal power plants of type 1 and 2; and the decisions to
start and stop the thermal power plants of type 2.

Remark 7.1. For the thermal power plants of type 1, the following policy
is used: every thermal power plant of type 1 available is immediately
started. All the controls will be optimized in feedback form on the four
state variables. The state equations are:

dd4, = B(t) dt + &(¢) dw, 9)
—(d4, — u, d5)”, S, = Sw

ds, = dd4, — u, dt, Sy < S, < Sy (10)
(dd4, — u, do)*, S, = S

Uy < U < Uy, (11)

dD, = b(D,) dt + o(D,) dw,. (12)

M, is a point process with values in the set {3, 4}. If we denote by A; jde
the probability that M, goes from i to j between ¢ and ¢ + d¢, we have

Ayg = AT,
Ay =A7, : (13)
Ay=0 () #(G,4),(43),
AN, = —AN? between the “starting” decisions,
N, = N)(N,- —AN}) at the instant of decision. (14)

N,! represents the state desired at time ¢, knowing that it was in state N,- at
“time /> and knowing AN?. AN? is 1 if there is a breakdown at time ¢, 0
otherwise; the probability of a breakdown being N,-p dz.
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Remark 7.2. The modelling of water supply has been changed: one
supposes here that it is a diffusion process. Indeed, the storms create
sudden increases of the flow, these increases can be modelled by discon-
tinuities in the long-run (time step of one week), but in the short run (time
step of a few hours) a continuous model seems better. One supposes that
the coefficients £ and & are given each week by the local weather forecast.

Moreover, one has the following constraints on the working of thermal
power plants:

MP) < P! < MP), (15)
NP2 < P? < NP (16)

The problem consists in minimizing the cost function over a period of one
week:

min EJ;T{pIPtl + p2Pt2 + P3(Dt - Ptl - Ptz - E(St: ut))+} dz

+k 3 (N! = N +ANY)" + V(T, Dy, Sp). (17)

1<T
The control variables are P!, P2, 4, and N!. The term
kS (N'— N- +ANH"
(<T

represents the cost of starting up the thermal power plants. V(T, D, Sy) is
.the terminal cost, which is the result of the long-run optimization problem.

4. Identification of the stochastic processes arising in both models

In this section we use the results of F. Delebecque and J. P. Quadrat
(1978a)

4.1. Identification of the demand for electricity in the short-run model

We have available the value taken by this process each hour during one
year (see fig. 7.1). The process is assumed to be homogeneous and in the
class of stochastic diffusion processes:

dD, = b(D,) dt + o dw,. (18)

The problem is to identify the function b(-) and the number o. We
consider the empirical frequencies as a function of D, noting f.(D), where r
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is the size of the same (24 X 365). We then obtain fig. 7.3, where we make
a partition of the domain into three areas {4,, 4,, 45}.
We look for 5(D) as the function:

b(D) = i °1,(D), (19)
i=1

where 1,(x) =1ifx € 4 and 0if x & 4,and §°,i = 1, 2, 3, and o are the
parameters to identify. The maximum likelihood estimator of 4, is given by

t
() dp,

= (20)
fo 1,(D,) dr

5(D) = S 671,(D). @)

i=1
The estimator of o2 is then given by

~ 2
T [D,Hl - Dt,. - bT(Dt,.)(ti+1 - ti)]
T

Remark 7.3. The choice of the partition {A4,} comes from the following
remark:

f(D),_c — p(D) solution of
0 ¢ 02
~ap 6P+ 5 5P =0, 22)

fp(p)ds =1



The solution of (22) is

p(D) = C, exp(— V(D)) (23)
with
V(D)= [ P b(? ) ap, (24)
0 4

and therefore p(D) reaches its maximum at a value D* where
b(D) & , if D
b(D)>0, ifD

The shape of the partition has been chosen in such a way that the
discontinuities on b are the values where b changes its sign.

b(D*) =0, with [ i

4.2, Identification of the long-run demand

The data given are the means over one week of the demand. It can be seen
that the observations remain around the annual mean. We have modelled
the long-run demand by a linear diffusion process:

D, = (a,D, + ay) dt + o dw,. (25)

The maximum likelihood estimators are given by

L TfOTD, b, — (jOTdD,)(fOTD, dt) 2

TfTDZdt - (fTD, dt)2
(o)) ([

(27
(f Ddt) ——Tf D2 ds
Then, with the notation
l;z(D) =a,D + &,
. J ~
6 = ? 2 (DI,-+1 - Dt,- - bT(Dt,»)(tHl - ti)z)' (28)

Remark 74. A good approximation for a discretized problem would be to
consider the random variables D, as independent with the stationary



probability law
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fpdD=1.

4.3. Identification of the short-run water supplies

We assume that supplies can be modelled by a diffusion process with
independent increments

A, = pt + 6w, (29)

where £ and 6 are assumed to be given by the local meteorological office.

4.4. Identification of the long-run water supplies.

Supplies are modelled by

4= [TB(s)ds + 3 (4, ~ 4,). (30)

s<t
We have to estimate the function B(s) and the probability law of the jumps
v(t, du) dz. We assume that s — B(s) and s — v(s, du) are one year peri-
odic functions (7T = one year).
The estimator of 8 is given by
1 n—1

Ay = 2( SX(1 +1T) A\ Uy) (31)

where n is the number of years observed.
We construct a partition {B;} of the set [0, T] X {R* — {0}}, and the
probability law »(¢, du) d¢ is approximated by

v(t, du) dt = >, 6:15(du, dr)

and then the estimator of 4, is

j = card{(¢, u)lu = A4, — A,-, (1, u) € B;} . 32)

f du dt
B

i




4.5. Estimation of the rate of breakdowns

A~ = n/7, where n = number of breakdowns when the four

thermal power plants of type 1 are working together, and (33)
7 =length of working time of the four thermal power plants

of type 1 together.

At =nw /7', where n’ = total number of repairs when three
thermal power plants of type 1 where working simulta- (34)
neously, and 7" = time of working of three thermal power
plants of type 1 when the fourth was not in working order.

g =n"/7", where n” = total number of breakdowns of

T
thermal power plants of type 2, and 7" = f ON,_ d¢ = total (35)

operating time of thermal power plants of type 2.

5. Optimization of the management of the system of production

We will use discretization techniques to solve the problem; to this end we
need to introduce the following notation:

h; = discretization step length for time
h,, = discretization step length for demand
hg = discretization step length for stock
iy =point of discretization of time
ip, = point of discretization of demand
ig =point of discretization of stock
iy € {3, 4) =possible values of M
iy € {0, 1, 2, 3, 4} =possible values of ¥
Pif: ;,, = transition probability from the point i, to the
point iy,
P,.f” &, = transition probability from the point ig to ig.
PM, =transition probability of the number of thermal
power plants of type 1 in activity
P> =transition probability of the number of thermal
power plants of type 2 from iy to iy, knowing
that N, are wanted in activity
Vi, ip, is)
or (V(¢, D, §)=dynamic programming optimal return function
for the long-run problem



V(t, D, S, M, N)
or 17(1’,, ip, ig, iy, [y)=dynamic programming optimal return function
for the short-run problem
ny =number of discretization points in time
ny, =number of discretization points in D
ng =number of discretization points in §
q =number of elements of the partition {B,} (see
subsection 4.4).

5.1. Long-run optimization of the management of means of production

We use the dynamic programming method, although the methods devel-
oped in Breton-Falgarone (1973) and Falgarone—Lederer (1978) also give
good results.

We note
V(t, D, §) = min B+ >S Tcp) dy, (36)
u, I
where
Pt = Dt - E(S,, ut)' (37)

V satisfies the following dynamic programming equation:

vV ., L, C14 Sw—
ar 2% 50 apfo

TS + ) = V()]w(t, dy)
+ (V(Sp) — V(S)v(t, [Sy — S, +0])
+ muin{(,B - u)%—g + C(D - E(S, u))} =0
¥(T, S, D) = 0. (38)
Numerical solution

We use the probabilistic methods of discretization developed in Kushner

(1977). The problem (38) is approached by the following Markov chain
control problem.



Let PP be the tridiagonal transition matrix (np X np):

(1 _ b(;-hl _1 2&_ b(;—ht 1 2&1_ 0
by 2T RE PR
PD — bi_ht +102£ 1 — Ibihtl 2 ht bi+ht +l 2&
hp 2R hy h hp PR
0 b,,_i ;02£ 1— b,,_i %ozi
© hp n2 ® hp h ]
(39)
PS* = pS* 4 PS5, (40)
with
- v . -
-3 O:hhs  6,hhg > G;hhs
i=1 Jj=ng
Fs | I R
0 1 - 2 O.hhs 0,4 kb 2 @h:hs
i= Jj=ng—i+1
-.0 ......... o o |

where ng is the number of points of discretization of S and g the number
of elements of the partition of { B;} (defined in subsection 4.4).
P5* is the tridiagonal matrix

[ + 4 + ]
—(B-wi g (B-wigs 0
I AR PO A
Pousl(B-wis  —lB-ulgt (B-wiyt | @)
S S S
t ......... -ht
0 (B - u)"sh - (ﬂ - u)nsz_




For the control problem of the Markov chain with states i, ig, the
dynamic programming equation is

Vi, ip, is) = min G is(u)ht}

U, SuU<upy D>
X+ X PPLPSEV(, + 1, ip, ifs)}, (43)
i i
with .
Cois = C(iphp — Elishg, u)). (44)

5.2. Short-run optimization of the management of means of production

We denote
V(1, D, S, M, N) = min E>2- S M N
T
Xf {p1P1+P2P2+p3(D'—P1—P2_E(S,u))+} dt
4

+ X Kk(N,— N +AN?)" + W(T, Dy, Sp).

t<s<T
(45)
The control variables are u, P,, P,, and N'..
V is the solution of the following dynamic programming equation, also

called QVI (quasivariational inequalities), due to Bensoussan—Lions (1978)
and Robin (1977):

.{817 v, oW
min

had 7 41 1-27 7 Y . 7
5 +baD+2° aD2+20 257 +AT(V(M + 1) — V(M))

+AT(V(M = 1) — (M) + Np(P(N — 1) — V(N))

+ mlinz[plPl + 0P, + py(D — Py — P, — E(S, u)"
u, P, P

v, 5
+%(ﬁ—u)];

n}bin[ V(N,) + k(N, — N)* — V(N)]} =0.

(46)



Numerical solution

We define the following transition matrix:

[ + 1= hy (ﬁ_“)+hl 1~ ™ ]
1-(B—u) 5 *i*’zh—g e T 2;; 0

P RRRAT R AR REREE SRR L LR P

pHU = Wﬂ‘"):;;*’i”zh—g 1—(:3—“).-,1—S“72hig (B"").-,Ts+i”2h—§ 0

Oﬂuvﬁﬂzﬁl_ﬂu#’lzﬁ

(B —tnsye +35755 R
(47)

3 4
PM=13 [1-A*R,  A'h ], (48)
4 Ah, 1 —\"h,
N, -1 N,
P¥Ni=[0.. . Ngh 1—Nph...0], (49)
O0...Nuh, 1— Nph, ...0

Py, is as in (39), but with the short-run coefficients b and o. (50)

The problem of controlling the Markov chain with states iy, ig, iy, iy
and the preceding transition probability matrix leads to solve the following
dynamic programming equation:

V(it’ iD’ iS’ iM’ ZN)

. . +
= min p1Py + pyPy + p3[ D — Py — P, — E(ighg, w)]™ A,
O0<N; <4
Uy, SUSUpy
iy P <Py <ipgPly
ivP2<P,<iyP¥
. N+ D S,u pM N, N
+k(N1—lN) +2P1 1DPxS ISPIM PIN lNl
l
is
ihy

iy

X Vi, + 1, ipy, i, iy i) b (51)



5.3. Study of the particular case E(S, u) = (1 — e P*)f(s)

In this particular case we can calculate the value of the minimum appear-
ing in (51). We denote

&(S, u) = min 1Py + pyPy + p5(D — P, — P, — E(S, u))7,
MPL <P, <MP)
NP2Z<P,<NP}
(52)
pIMPL + Np,P2, if d — E(S, #) < P,
S (p2 — PNP2 + p\(d ~ E(S, u)), if Pryn < d ~ E(S, 4) < Py,
> U) =
HE 2N (o1 = o) MPY + pa(d — B(S, ), if Proy < d = E(S, 4) < P,
d — E(S, u) ~ (1 — p))MPYy — (1 — p2) NP, if Ppyy < d — E(S, u).
(53)
The unit price has been fixed at p; = 1.
We recall the notations
P..= MP. + NP;, (54)
Py = MPy + NP2, (55)
P,..= MPL + NP}, (56)
The solution of the equation
d—E(S,u)=p (57
with
E(S, u) = f(s)(1 — e™”), (58)
can be written
1 d—p
u =-~—log(1 - ), (59)
B f(s)
and so with the notations
1 d— P_,
up = ——log(l - ——m"—‘), (60)
Pruin B f(S)
1 d-— Pmoy )
Up = — —log(l — , (61)
Py B f(S)
1 d— P
up = — —log(l - ————ﬂ), (62)
P B f(S)



eq. (53) becomes

PIMPg, + paNPZ, UM P U P Up
— 0 )NPZ + p(d — E(S, u)), Up B uU>up
o(S, u) = (P2 — P1) rr; pi( (S, u)) Prnin Prnoy (63)
(P1 — P2)MPy + py(d — E), Uppey 2 % 2 Up 0
(d— E) — (1 — p)MP}y — (1 — py) NP, up > U > up,
eq. (51) can be written
Tyl e . . . . _ . S,
V(iy, ip, ig, ipy, iy) = min <1>(S u) + 2 PS2o(il) (64)
Up SuU KUy 5 '8
0<N,; <4

With the notation

o(ig) = 2 V(’ + 1, ip, ig, iy i) PP ins ip xszP: 1,1:/’7 (65)
i
i
iy
eq. (57) 1s rewritten

s . o h . o h
V(1 ip, ig, iyg iy) = oémzv,r}m {(1 - azh—é)v(zs) +%ozh—év(ls +1)

h,
+16 ;—v(zs— 1) + A, min

UnSUuU
s M

+ o(is + 1) — v(i)

(B_) hg

( )— (i) ;;(is — 1) + (i, u)J}

(66)
Then we have to calculate
. 5 + olig+ 1) —o(i
umiri“éuM {(B —u) v(ig h)s v(iy)
- M D) @)
s

To solve (60), it is sufficient to solve the equation

g—i(s, #) = a, with unknown u, S fixed. (68)



By using (63) the solution of (68), illustrated in fig. 7.4, is given by

u(a) =

Uy e /\ Mmae

if a > —p; f(S)exp(—Bu, ),

—p, f(S)exp(— Bu,

— llog ix 5
B Plf(s)
it —p, fexp(— Bu, ) >a>
Pmoy’
if —plfexp(— Bupmoy) >a >
— —log ix ,
B sz(S)
it —p,fexp(— ,Bupmoy) >a>
u,
it —p, fexp(— Bu ) za>
- llog =/ 0,
BURs)
if —f exp(—pBu BEXS
with f(s) = Bf(s) and x \/ y = max(x, »).
[l
M s Uy U
U oy YPmin M

m —
. yd
/

Figure 7.4

)s
moy:

- p2f(S)exp( - :Bup )9

1moy:

— 0, f(S)exp(— Bu,_),

—f(S)exp(— Bu,_ ).

(69)



We compute then

u1=u(
u2=u(

o(is + 1) — o(is)

h

$

v(isg) — o(ig — 1)

h

5

u* optimal is given by

with

arg min g(u),

Uy, Uy

)
)

u1</§,

< B, Uy < B,
> ,3: Uy < ,é,
> :é, u, > ,é,
> B,

(70)

(71)

(72)

g(u) = (B' —u)+ v(is + 1}3 — v(is) _ (lé —u)” o(is) _;l)(is —1)

+ (S, u).

5

It only remains to provide an algorithm to determine N'. We use
complete enumeration here since N, € {0, 1, ..., 4} once the following
monotonicity properties have been noted:

N, increases when i, increases;
N, increases when i decreases;
N, increases when i,, decreases; and
N, increases when i), decreases.

6. Numerical results

We now give realistic data for the situation in New Caledonia before 1977.

For these data we give the numerical results that we have obtained.

6.1. Long-run problem

T = 1 (year)
Su=1
S,=0



Energy production in New Caledonia 223

Uy = 68 X 365 X 24/(1.2 X 10°)

uy, =0

D, = demand MW)/Q

Q = 4 X (16 + 37.75) + 68 + 21 = 305
Pm.in =0
Pyo, = 0.9 X 4 X 16/305

o
|

= 0.9 X 4(16 + 37.75)/305.

The mean availability is 0.9.

p, = 2.18/3.475
p, = 2.60/3.475
py=1
) 4 Xu
E(S, v) = 17(14/16 + log 31.5 §)/16 X log 5.6)exp(1 - m)

A realization of the demand is given by fig. 7.5, and a realization of the
water supply is given by fig. 7.6.
The following discretization parameters were used:

h, = 0.1,

with points of discretization of the demand as follows:
(120, 140, . . ., 250) /305.

The demand parameters were estimated to be
b(D) = —420 X (D — 293/420),

6% = 0.015.
with estimates of water supply parameters given in figs. 7.7 and 7.8.
The optimal strategy is illustrated in figs. 7.9 and 7.10.

6.2. Numerical results for the short-run problem

T=1
Sy =1
S,=0
Un = 68 X 365 X 24/(1.2 X 10°)
U,=0
D(r) = demand (MW)

Q
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0 = 305 MW
Pn=18/0Q
Pl = 3775/0
PL=16/0Q
Py =16/0Q

p, = 2.18/3.475
p, = 2.60/3.475
p3 =1

= 2 X 16 X p,/(Q X 365 X 24)

E(S, u) = 17 X (14/16 + 1og(31.55)|16 X log 5.6)exp(1 Ax U )

305 X Uy
h, = 2/(24 X 365)
h, = 0.1.
Points of discretization of the demand:

(120, 140, 160, 180, 195, 205, 215, 225, 235, 250) /305.

Probability law of the demand
b(D)forD €[D,, D, ,,]
(17,17, 17, 17, 17, 17, — 10, —25, —25)
oX(D) = (3.6, 3.6, 3.6, 3.6, 3.6, 3.6, 1.3, 2.4, 2.4).

We have supposed o piecewise constant instead of constant as indicated
above.

Probability law of breakdowns

AT =365
AT =28
p=29.

Probability law of water supply

B=2
(5)* = 0.2 X 2/ (365 X 24).
Optimal feedbacks strategies are given in figs. 7.11 and 7.12.
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Figure 7.12. Quantity of water turbined as a function of the stock (S, the demand D, and the
number of power plants in action. The stock is expressed as a percentage of the maximal
storage capacity. The quantity turbined is expressed as a percentage of the maximal equipped

power.
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