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Abstract

We study here the duality appearing between probability calculus and op-
timization by substituting the semifield(R∪{+∞}, min, +) for the standard
semiring(R+, +, ×).

1 Introduction

This lecture aid is not original, it is, mainly, a compilation and reorganization of
some sections of the three papers [5, 48, 20] in which all the members of the Max-
plus working group and in particular M. Viot and M. Akian have played a key
role.

The min-plus probability calculus, called decision calculus, is obtained
from the probability calculus by substituting the idempotent semifield(R ∪
{+∞}, min, +) for the standard semiring(R+, +, ×).

To the probability of an event corresponds the cost of a set of decisions. To
random variables correspond decision variables. Almost all concepts and tools of
probabilities have an analogue. First, we give the counterparts of characteristic
functions, weak convergence, tightness and limit theorems.

The analogue of Markov chains are the so-called Bellman Chains. The asymp-
totic theorems for the Bellman chains are the general min-plus linear system ones.
They can be seen in [10, 22, 23, 48] and will not discussed here. The min-plus
product forms exist and correspond to computing geodesics on aZ-module. In
some cases, explicit formulae dual of the standard product forms give explicitly
the minimal distance between two states. The general problem can be reduced to a
standard flow problem.

∗J.P. Quadrat : INRIA Domaine de Voluceau Rocquencourt, BP 105, 78153, Le Chesnay
(France). Email : Jean-Pierre.Quadrat@inria.fr.
†This work has been partly supported by the ALAPEDES project of the European TMR pro-

gramme.
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The Cramer transform used in the large deviation literature is defined as the
composition of the Laplace transform by the logarithm by the Fenchel transform. It
transforms convolution into inf-convolution. Probabilistic results about processes
with independent increments are then transformed into similar results on dynamic
programming equations for systems with instantaneous costs which do not depend
of the states. By this way we obtain explicit solutions of some Hamilton Jacobi
Bellman equations (HJB) called Hopf formulae. This Cramer transform is well
known in statistical mechanics. We illustrate, on a simple example, called min-plus
perfect gaz, how the Cramer transform appears in the computing of the correpond-
ing Gibbs distribution.

Bibliographic notes are given at the end of the paper.

2 Cost Measures and Decision Variables

2.1 Cost measures

Le us denoteRmin the idempotent semifield(R ∪ {+∞}, min, +) and by extension
the metric spaceR ∪ {+∞} endowed with the exponential distanced(x, y) =
| exp(−x) − exp(−y)|. We start by defining cost measures which can be seen as
normalized idempotent measures of Maslov inRmin [41] .

We call adecision spacethe triplet(U,U , K) whereU is a topological space,
U the set of open sets ofU andK a mapping fromU to Rmin such that

1. K(U ) = 0,

2. K(∅) = +∞,

3. K
(⋃

n An
) = infn K(An) for any An ∈ U .

The mappingK is called acost measure. A set of cost measuresK is saidtight if

sup
Ccompact⊂U

inf
K∈K

K(Cc) = +∞ .

A mappingc : U → Rmin such thatK(A) = infu∈A c(u) ∀A ⊂ U is called a
cost densityof the cost measureK.

The setDc
def= {u ∈ U | c(u) 6= +∞} is called thedomainof c.

Theorem 1. Given a l.s.c. c with values inRmin such thatinfu c(u) = 0, the map-
ping A∈ U 7→ K(A) = infu∈A c(u) defines a cost measure on(U,U). Conversely
any cost measure defined on open sets of a second countable topological space1

1 i.e. a topological space with a countable basis of open sets.
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admits a unique minimal extensionK∗ to P(U ) (the set of subsets of U) having a
density c which is a l.s.c. function on U satisfyinginfu c(u) = 0.

Proof. This precise result is proved in Akian [1]. See also Maslov [41] and Del
Moral [31] for the first part and Maslov and Kolokoltsov [39] for the second part.

This theorem shows that on second countable spaces there is a bijection between
l.s.c. functions and cost measures. In this paper, we will consider cost measures on
Rn, RN, separable Banach spaces and reflexive Banach separable spaces with the
weak topology which are all second countable topological spaces.

We will use very often the two following cost densities defined onRn with ‖.‖
the euclidian norm.

1. χm(x)
def=

{ +∞ for x 6= m.

0 for x = m,

2. Mp
m,σ (x)

def= 1
p‖σ−1(x − m)‖p for p ≥ 1 withMp

m,0
def= χm .

By analogy with the conditional probability we defineconditional cost excess
to take the best decision inA knowing that it must be taken inB by

K(A|B)
def= K(A ∩ B) − K(B) .

2.2 Decision Variables

By analogy with random variables we define decision variables and related notions.

1. A decision variable Xon (U,U , K) is a mapping fromU to E (a second
countable topological space). It induces a cost measureKX on (E,B) (B
denotes the set of open sets ofE) defined byKX(A) = K∗(X−1(A)) for all
A ∈ B. The cost measureKX has a l.s.c. density denotedcX . WhenE = R,
we callX a real decision variable; whenE = Rmin, we call it acost variable.

2. Two decision variablesX andY are saidindependentwhen:

cX,Y(x, y) = cX(x) + cY(y).

3. Theconditional cost excessof X knowingY is defined by:

cX|Y(x, y)
def= K∗(X = x | Y = y) = cX,Y(x, y) − cY(y).
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4. Theoptimumof a decision variable is defined by

O(X)
def= arg min

x∈E
conv(cX)(x)

when the minimum exists, where conv denotes the l.s.c. convex hull and
arg min the point where the minimum is reached. When a decision variable
X with values in a linear space satisfiesO(X) = 0 we say that it iscentered.

5. When the optimum of a decision variableX with values inRn is unique and
when near the optimum, we have

conv(cX)(x) = 1

p
‖σ−1(x − O(X))‖p + o(‖x − O(X)‖p) ,

we say thatX is of order pand we define itssensitivity of order pby

Sp(X)
def= σ . WhenSp(X) = I (the identity matrix) we say thatX is of

order p and normalized.

6. Thevalueof a cost variableX is V(X)
def= infx(x + cX(x)), the conditional

valueis V(X | Y = y)
def= infx(x + cX|Y(x, y)).

7. The density cost of the sumZ of two independent variablesX andY is the
inf-convolution of their cost densities cX and cY , denotedcX ? cY defined by

cZ(z) = inf
x,y

[cX(x) + cY(y) | x + y = z] .

For a real decision variableX of costMp
m,σ , p > 1, we have

O(X) = m, Sp(X) = σ, V(X) = m − 1

p′ σ
p′

.

2.3 Vector Spaces of Decision Variables

We can introduce vector spaces of decision variables which are the analogue of the
standardL p(�) spaces.

Theorem 2. For p > 0, the numbers

|X|p
def= inf

{
σ | cX(x) ≥ 1

p
|(x − O(X))/σ |p

}
and‖X‖p

def= |X|p + |O(X)|

define respectively a seminorm and a norm on the vector spaceLp of real decision
variables having a unique optimum and such that‖X‖p is finite.
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Proof. Let us denoteX′ = X − O(X) andY′ = Y − O(Y). We first remark that
σ > |X|p implies

cX(x) ≥ 1

p
(|x − O(X)|/σ)p ∀x ⇔ V(− 1

p
|X′/σ |p) ≥ 0 . (1)

If there existsσ > 0 andO(X) such that (1) holds, thencX(x) > 0 for any
x 6= O(X) andcX(x) tends to 0 impliesx tends toO(X) thereforeO(X) is the
unique optimum ofX. Moreover|X|p is the smallestσ such that (1) holds.

If X ∈ Lp, λ ∈ R andσ > |X|p we have

V(− 1

p
|λX′/λσ |p) = V(− 1

p
|X′/σ |p) ≥ 0 ,

thenλX ∈ Lp, O(λX) = λO(X) and|λX|p = |λ||X|p.
If X andY ∈ Lp, σ > |X|p andσ ′ > |Y|p,

V(− 1

p
(max(|X′/σ |p, |Y′/σ ′|p)) = min(V(− 1

p
|X′/σ |p), V(− 1

p
|Y′/σ ′|p)) ≥ 0

and |X′ + Y′|
σ + σ ′ ≤ σ

σ + σ ′
|X′|
σ

+ σ ′

σ + σ ′
|Y′|
σ ′ ≤ max(

|X′|
σ

,
|Y′|
σ ′ ) ,

then

V(− 1

p
(|X′ + Y′|/(σ + σ ′))p) ≥ 0 .

Therefore we have proved thatX + Y ∈ Lp with O(X + Y) = O(X) + O(Y) and
|X + Y|p ≤ |X|p + |Y|p.

ThenLp is a vector space,|.|p and‖.‖p are seminorms andO is a linear con-
tinuous operator fromLp to R. Moreover,‖X‖p = 0 impliescX = χ thusX = 0
up to a set of infinite cost.

Theorem 3. For two independent real decision variables X and Y and k∈ R we
have (as soon as the right and left hand sides exist)

O(X + Y) = O(X) + O(Y), O(kX) = kO(X), Sp(kX) = |k|Sp(X) ,

[Sp(X + Y)] p′ = [Sp(X)] p′ + [Sp(Y)] p′
, (|X + Y|p)

p′ ≤ (|X|p)
p′ + (|Y|p)

p′
.
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Proof. Let us prove only the last inequality. ConsiderX andY in Lp andσ > |X|p

and σ ′ > |Y|p. Let us denoteσ ′′ = (σ p′ + σ ′ p′
)1/p′

, X′ = X − O(X) and
Y′ = Y − O(Y). The Hölder inequalityaα + bβ ≤ (ap + bp)1/p(α p′ + β p′

)1/p′

implies

(|X′ + Y′|/σ ′′)p ≤ |X′/σ |p + |Y′/σ ′|p ,

then by the independency ofX andY we get

V(− 1

p
(|X′ + Y′|/σ ′′)p) ≥ 0 ,

and the inequality is proved.

Theorem 4 (Chebyshev).For a decision variable belonging toLp we have

K(|X − O(X)| ≥ a) ≥ 1

p
(a/|X|p)

p ,

K(|X| ≥ a) ≥ 1

p
((a − ‖X‖p)

+/‖X‖p)
p .

Proof. The first part is a straightforward consequence of the inequalitycY(y) ≥
(|y|/|Y|p)

p/p applied to centered decision variableY.
The second part comes from the non increasing property of the functionx ∈

R+ 7→ (a − x)+/x.

2.4 Characteristic Functions and Fenchel Transform

The role of the Laplace or Fourier transforms in probability calculus is played by
the Fenchel transform in decision calculus.

Let c ∈ Cx, whereCx denotes the set of functions fromE (a reflexive Banach
space with dualE′) to Rmin convex, l.s.c. and proper2. Its Fenchel transformis the
function fromE′ to Rmin defined by

ĉ(θ)
def= [F (c)](θ)

def= sup
x

[〈θ, x〉 − c(x)] .

Then thecharacteristic functionof a decision variable is defined byF(X)
def=

F (cX).
Important properties of the Fenchel transform are : forf, g ∈ Cx

2not always equal to+∞
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1. F ( f ) ∈ Cx,

2. F is an involution that isF (F ( f )) = f ,

3. F ( f ? g) = F ( f ) + F (g),

4. F ( f + g) = F ( f ) ? F (g).

Therefore, for two independent decision variablesX andY andk ∈ R, we have

F(X + Y) = F(X) + F(Y), [F(kX)](θ) = [F(X)](kθ) .

Moreover, a decision variable with values inRn is of orderp if we have :

F(X)(θ) = 〈O(X), θ〉 + 1

p′ ‖Sp(X)θ‖p′ + o(‖θ‖p′
.

2.5 Convergences of Decision Variables

The analogue of the topologies used in probability can be introduced. The standard
limit theorems have a min-plus counterpart.

A sequence of independent and identically costed (i.i.c.) real decision vari-
ables of cost con (U,U , K) is an applicationX from U to RN which induces the
density cost

cX(x) =
∞∑

i=0

c(xi ), ∀x = (x0, x1, . . . ) ∈ RN .

The cost density is finite only on minimizing sequences ofc, elsewhere it is
equal to+∞.

We have defined a decision sequence by its density and not by its value on the
open sets ofRN because the density always exists and can be defined easily.

In order to state limit theorems, we define several type of convergence of se-
quences of decision variables.

Definition 5. For the sequence of real decision variables{Xn, n ∈ N}, cost mea-
suresKn andcn functions fromU (a first countable topological space3 to Rmin we
say that :

1. Xn ∈ Lp converges in p-normtowardsX ∈ Lp denotedXn
Lp

−→ X, if
limn ‖Xn − X‖p = 0 ;

3Each point admits a countable basis of neighbourhoods.
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2. Xn converges in costtowardsX, denotedXn
K−→ X, if for all ε > 0 we have

limn K{u | |Xn(u) − X(u)| ≥ ε} = +∞;

3. Xn converges almost surelytowardsX, denotedXn
a.s.−→ X, if we haveK{u |

limn Xn(u) 6= X(u)} = +∞ .

4. Knconverges weaklytowardsK, denotedKn
w→ K, if for all f in Cb(E) 4

we have limn Kn( f ) = K( f )5.

5. cn converges in the epigraph sense (epi-converges) towardsc, denotedcn
epi→

c if

∀u, ∀un → u, lim inf
n

cn(un) ≥ c(u) , (2)

∀u, ∃un → u : lim sup
n

cn(un) ≤ c(u) . (3)

A sequenceKn of cost measures is said asymptoticaly tight if

sup
Ccompact⊂U

lim inf
n

Kn(C
c) = +∞ .

The different “weak” convergences have strong relations given in the following
theorem.

Theorem 6. Let Kn, K be cost measures on a metric space U. Then the three
following conditions are equivalent

1. Kn
w→ K ;

2.

lim inf
n

Kn(F) ≥ K(F), ∀F closed, (4)

lim sup
n

Kn(G) ≤ K(G), ∀G open; (5)

3. limn Kn(A) = K(A) for any set A such thatK(
◦
A) = K(Ā).

4Cb(E) denotes the set of continuous and lower bounded functions fromE to Rmin.
5K( f )

def= infu( f (u) + c(u)) wherec is the density ofK.
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On asymptoticaly tight sequencesKn the weak convergence ofKn towardsK is
equivalent to (5) and

lim inf
n

Kn(C) ≥ K(C), ∀C compact. (6)

On a first countable topological space, the epi convergence of l.s.c. cost densities
is equivalent to (6) and (5).

Proof. See [5].

In a locally compact space conditions (6) (5) are equivalent to the condition
limn Kn( f ) = K( f ) for any continuous function with compact support. This is
the definition of weak convergence used by Maslov and Samborski in [43]. These
conditions are are also equivalent to the epigraph convergence of densities. This
type of convergence does not insure that a weak-limit of cost measures is a cost
measure (the infimum of the limit is not necessarily equal to zero).

Denoting byK(U ) the set of cost measures onU (a metric space) endowed
with the topology of the weak convergence, any tight setK of K(U ) is relatively
sequentially compact6 .

These different kinds of convergence are connected in a nonstandard way.

Theorem 7. We have the implications :

1. Convergence in p-norm implies convergence in cost but the converse is false.

2. Convergence in cost implies almost sure convergence and the converse is
false.

3. For tight sequences, the convergence in cost implies the weak convergence.

Proof. See Akian [2] for points 1 and 2 and 3 and Del Moral [31] for point 2.

We have the analogue of the law of large numbers.

Theorem 8. Given a sequence{Xn, n ∈ N} of i.i.c. decision variables belonging
to Lp, p ≥ 1, we have

YN
def= 1

N

N−1∑
n=0

Xn → O(X0) ,

where the limit can be taken in the sense of almost sure, cost and p-norm conver-
gence.

6that is any sequence ofK contains a weakly convergent subsequence
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Proof. We have only to estimate the convergence in p-norm. The result follows
from simple computation of the p-seminorm ofYN . Thanks to Theorem 3 we have
(|YN |p)

p′ ≤ N(|X0|p)
p′
/N p′

which tends to 0 as N tends to infinity.

We have the analogue of the central limit theorem.

Theorem 9. Given an i.i.c. sequence{Xn, n ∈ N} centered of order p with l.s.c.
convex cost, we have

ZN
def= 1

N1/p′

N−1∑
n=0

Xn
w→Mp

0,Sp(X0)
.

Proof. We have limN [F(ZN)](θ) = 1
p′ ‖Sp(X0)θ‖p′

, where the convergence can
be taken in the pointwise, uniform on any bounded set or epigraph sense. In order
to obtain the weak convergence we have to prove the tightness ofZN . But as the
convergence is uniform onB = {‖θ‖ ≤ 1} we have forN ≥ N0, F(ZN) ≤ C on
B whereC is a constant. ThereforecZN (x) ≥ ‖x‖ − C for N ≥ N0 and ZN is
asymptoticaly tight.

The central limit theorem may be generalized to the case of non convex cost den-
sities.

We have the analogue of the large deviation theorem.

Theorem 10. Given an i.i.c. sequence{Xn, n ∈ N} of tight cost density c, we
have :

1/nc(X1+···+Xn)/n
w→ ĉ ,

whereĉ denotes the convex hull of c.

Proof. Let us give only the ideas of the proof. The cost density ofX1 + · · · + Xn

is c?n. Therefore we want limn 1/nc?n(x/n). But the epigraph of the convolution
of two functions is equal to the sum of their epigraphs. Therefore the epigraph of
1/nc?n(x/n) is equal to the vectorial mean ofn identical convex sets which are
epigraphs ofc. The limit (in the epigraph sense), whenn goes to infinity, of the
vectorial mean converges towards the convex hull of the epigraph ofc [25]. See
also [3].

This last theorem is only a trivial case of law of large numbers for random sets
studied in [25, 26]. The interpretation of this result as a min-plus large deviation
theorem comes from by M. Akian.
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3 Bellman Chains

We denoteMp the dioid of(p, p)-matrices with entries in the semiringK. The
matrix product inMp is

[ AB] i j
def= [ A ⊗ B] i j

def= min
k

[ Aik + Bkj ] .

All the entries of the zero matrix ofMp are+∞. The diagonal entries of the
identity matrix ofMp are 0, the other entries being+∞.

With a matrixM inMn(K), we associate aprecedence graphG(M) = (N ,P)

with nodesN = {1, 2, · · · , n}, and arcsP = {xy | x, y ∈ N , Mxy 6= ε}. The
numberMxy, when it is nonzero, is called the weight of the arcxy.

A pathπ , of lengthl , with origin x and endy, is an ordered set of nodesπ =
π0π1 · · ·πl with π0 = x andπl = y, andπi πi+1 ∈ P for all i = 0, · · · , l − 1. The
coupleπi πi+1 are called the arcs ofπ and theπi its nodes. Thelengthof the pathπ
is denoted|π |. The couplexy of theendsof π is denoted〈π〉. When the two ends
of π are equal one says thatπ is a circuit. Theweightof π , denotedπ(M), is the
⊗-product of the weights of its arcs. For example we havexyz(M) = Mxy ⊗ Myz.

The set of all paths with endsxy and lengthl is denotedP l
xy. The paths of

length 0 are the nodesP0 = N . Then,P∗
xy is the set of all paths with endsxy and

P∗ the set of all paths. We have :

P∗ def=
∞⋃

l=0

P l .

Forρ ⊂ P , 〈ρ〉 is the set of the ends of the paths ofρ. Then denotingPN the
set of arcs of the graph associated to the matrixN we have the following trivial
accessibility results :

Proposition 11. For M ∈Mn we have :

PMk = 〈Pk〉, PM∗ = 〈P∗〉.
Forρ ⊂ P∗ one define :

ρ(M)
def=

⊕
π∈ρ

π(M) ,

which is the infimum of the weights of all the paths belonging toρ.
We denote

M∗ def=
∞⊕

i=0

Mi ,

which exists if we accept entries inRmin. Then, we have the following interpreta-
tion of the matrix product inMn.
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Proposition 12. For M ∈Mn we have

P l
xy(M) = (Ml )xy, P∗

xy(M) = (M∗)xy . (7)

The matrix M∗ has no entries equal to−∞ iff there is no circuits with negative
weight inP .

The min-plus Markov chain is called a Bellman chain, it is defined by a tran-
sition cost matrixM ∈ Mn satisfyingMe = e wheree denotes the column ofe
of sizen. Then, given an initial cost, which is a line vectorc0 satisfyingc0e = e,
we can define a costc, on the set of pathsP , by c(π) = c0

π0
π(M) for all π ∈ P l

andl ∈ N. Then, the analogue of the forward Kolmogorov equation is the forward
Bellman equationcn = cn−1 ⊗ M , c0 given. It gives the marginal cost, for the

Bellman chainXn(π)
def= πn, to be in state (node)x ∈ N at timen.

If a transition cost matrix satisfies

Mxy = Myx > 0, Mxx ≥ 0, ∀y 6= x ∈ N ,

then the matrixM∗
xy defines a metric. Indeed, we haveM∗

xx = 0 and M∗
xy ≤

M∗
xz + M∗

zy by definition of the matrix product and the fact thatM∗M∗ = M∗.
A path fromx to y in G(M) achieving the minimal cost among the paths of any
length is called ageodesicjoining x to y. We will still call a geodesic an optimal
path when the matrixM is nonsymmetric.

3.1 Min-plus closed Jackson service networks

A closed Jackson network of queues is a set ofn customers andm services. The
customers wait for services in queues attached to each service. The customers are
served in the order of arrival. The service is random and markovian. In discrete
time situation, a(m, m) transition probability matrixr is given. The entryri j is
the probability that a customer, served at queuei , goes to queuej , if the queuei is
not empty. If the queue is empty, this probability is 0. Such a system is a Markov
chain with state space :

Sm
n

def= {x ∈ Nm : 1.x = n} ,

where 1 denotes the vectors with all its entries equal to 1 with size adapted to the
context (herem). It is clear that, ifr is irreducible, the Markov chain describing the
system is irreducible. Therefore it has a unique invariant measurep. This measure
is explicitly computable :

px = kθ x1
1 · · ·θ xm

m ,
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with θ any solution ofθr = θ andk a normalizing constant such thatp1 = 1.
The best way to understand what is a min-plus closed Jackson service network

is to consider the following problem. We consider a company renting cars. It has
n cars andm parkings in which customers can rent cars. The customers can rent
a car in a parking and leave the rented car in another parking. After some time
the distribution of the cars in the parkings is not satisfactory and the company has
to transport the cars to achieve a better distribution. Givenr the (m, m) matrix
of transportation cost from a parking to another, the problem is to determine the
minimal cost of the transportation from a distributionx = (x1, · · · , xm) of the cars
in the parking to another oney = (y1, · · · , ym) and to compute the best plan of
transportation. Therefore the precise transportation problem is the following.

MIN-PLUS CLOSED JACKSON PROBLEM (TRANSPORTATION PROBLEM).
Given the(m, m) transition cost matrix r irreducible such that ri j > 0 if i 6=
j = 1, · · · , m and rii = 0 for all i = 1, · · · , m, compute M∗ for the the Bellman

chain on Smn of transition cost M defined by Mx,Ti j (x)
def= ri j and

Ti j (x1, · · · , xm)
def= (x1, · · · , xi − 1, · · · , xj + 1, · · · , xm) ,

for i, j = 1, · · · , m.
The operatorTi j corresponds to the transportation of a car from the parkingi

to the parkingj . We denoteT def= {Ti j , i, j = 1, · · · , m}.
If rii = e for all i = 1, · · · , m (the absence of transportation costs nothing)

the previous problem corresponds to the computation of the largest invariant costc
satisfyingc = cM, andcx = e. Indeed, in this case the left eigen semimodule has
as many independent generators as states7. Remarking that the diagonal entries of
M∗ aree, it is clearM∗

x.M = M∗
x.. Then, from the fact thatq = bM∗ is the largest

solution ofq = qM ⊕ b, we can prove that the searched extremal left eigenvector
is M∗

x..

3.2 Solution of them-parkings transportation problem

Let us consider them-parkings case. In this case a pathπ ∈ P is

xT1(x)T2 ◦ T1(x) · · · y = Tl ◦ Tl−1 ◦ · · · T1(x) ,

with Ti ∈ T . Since the arcsPr of r arexTi j (x) with x ∈ N andTi j ∈ T we can
code (') a pathπ ∈ P∗ in a simpler way by the coupleπ ' xµ with x ∈ N a

7Let us recall that in the min-plus context the irreducibility of the transition matrix assures the
uniqueness of the eigenvalue but not the uniqueness of the generators of the eigen semimodule see
[10] Section 3.7.
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node ofG(M) andµ ∈ P∗
r a path ofG(r ). Clearly we have :

π(M) = µ(r ), ∀π ' xµ ∈ P∗ .

Remarking that the vectorTi j (x) − x is independent ofx let us call itγi j and
denote0 = {γi j , i, j = 1, · · · , m}. These vectors are not mutually independent
indeed we have the relations :

γik = γi j + γ j k, ∀i, j , k = 1, · · · , m .

For a pathµ ∈ P∗
r , the evaluationµ(0) ∈ Zm is obtained by using the mor-

phism which to the concatenation associates the vectorial sum and to the letters
associate the corresponding vectors of0. For example for the pathi j kl ∈ P∗

r we
have :

i j kl (0) = γi j + γ j k + γkl .

Then, the constraint on the pathsπ : 〈π〉 = xy with x, y ∈ Zm is equivalent to the
constraintµ(0) = y − x for the pathπ ' xµ.

The cost of a pathµ(r ) depends only of the number of times each arc appears
in µ and not of the order of the arcs. Similarly the constraintµ(0) = y − x
does not depend of the order of the arcs in the pathµ, since the evaluationµ(0)

corresponds to additions of vectors, and addition of vector is commutative. To
take account of this symmetry of the problem we denotePc

r the set of equivalent
classes of paths (where two paths are equivalent if the arcs appear the same number
of times). Therefore, forµ ∈ Pc

r we can take the representativeµ = ∏
a∈Pr

ana .
For example the pathµ = i j i j k belongs to the class of(i j )2( j i )( j k).

It is clear thatµ(r ∗) ≤ µ(r ) becauseri j ≥ r ∗
i j . Moreover for eachµ it existsµ̃

such thatµ(r ∗) = µ̃(r ) andµ(0) = µ̃(0). The pathµ̃ is obtained by substituting
the arcsi j of µ by pathsµi j such thatµi j (ri j ) = r ∗

i j . InsideSm
n this substitution

is always possible. This is not always possible on the boundary ofSm
n because the

pathxµ may leaveSm
n . To avoid this difficulty we suppose that the costs on the

boundary arcs are notri j but r ∗
i j .

We can summarize the previous considerations in the following proposition.

Proposition 13. The optimal value of the transportation problem is :

M∗
xy = P∗

xy(M) = 8r ∗(y − x) ,

with
8r ∗(z)

def=
⊕

µ∈Pc
r∗

µ(0)=z

µ(r ∗) .
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The mathematical program8r ∗(z) is a flow problem.

Proposition 14. Denoting byJ the incidence matrix nodes-arcs of the complete
graph with m nodes we have :

8r ∗(z) = inf
φ≥0
J φ=z

φ.r ∗ ,

whereφ.r = ∑
i, j r i j φi j .

Corollary 15. We have for all y and x satisfying xj = 0 for j 6= i and xi = n

M∗
xy =

⊗
j , j 6=i

(r ∗
i j )

yj ,

and for all x and y satisfying yj = 0 for j 6= i and yi = n

M∗
xy =

⊗
j , j 6=i

(r ∗
j i )

xj .

Proof. In these two cases the flow problems are trivial. The nonnul components
are respectivelyφi j = yj andφ j i = xi , for j 6= i .

This corollary gives the searched min-plus product form.

3.3 example

Let us consider the transportation system with 3 parkings and 6 cars, and trans-
portation costs :

r =
 0 1 +∞

+∞ 0 1
1 +∞ 0

 =
e 1 ε

ε e 1
1 ε e

 .

We have :

r ∗ =
e 1 2

2 e 1
1 2 e

 .

Let us suppose thatx = (0, 0, 6) andy = (2, 3, 1), we can apply the corollary, we
have :

M∗
xy = (r ∗

31)
2(r ∗

32)
3 = 2 × 1 + 3 × 2 = 8 .

The Geodesic is given in Fig. 1.
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Figure 1: Transportation System (6 cars, 3 parkings)

4 Bellman Processes with independent Increments, Inf-
Convolution and Cramer Transform

4.1 Bellman Processes

We can easily define continuous time decision processes which correspond to de-
terministic controlled processes. We discuss here only decision processes with
continuous trajectories.

Definition 16. 1. A continuous time Bellman process Xt with continuous tra-
jectories is a decision variable with values inC(R+) 8 having the cost density

cX(x(·)) def= φ(x(0)) +
∫ ∞

0
c(t, x(t), x′(t))dt ,

with c(t, ·, ·) a family of transition costs (that is a functionc from R3 to Rmin

such that infy c(t, x, y) = 0, ∀t, x) andφ a cost density onR. When the
integral is not defined the cost is by definition equal to+∞.

8C(R+) denotes the set of continuous functions fromR+ to R.
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2. The Bellman process is saidhomogeneousif c does not depend on timet .

3. The Bellman process is saidwith independent incrementsif c does not de-
pend on statex. Moreover if this process is homogeneous,c is reduced to
the cost density of a decision variable.

4. Thep-Brownian decision process, denoted byBp
t , is the process with in-

dependent increments and transition cost densityc(t, x, y) = 1
p|y|p for all

x.

As in the discrete time case, the marginal cost to be in statex at timet can be
computed recursively using a forward Bellman equation.

Theorem 17. The marginal costv(t, x)
def= K(Xt = x) is given by the Bellman

equation:

∂tv + ĉ(∂xv) = 0, v(0, x) = φ(x) , (8)

whereĉ means here[ĉ(∂xv)](t, x)
def= supy[y∂xv(t, x) − c(t, x, y)] .

For the Brownian decision process Bp
t starting from0, the marginal cost to be

at time t in state x satisfies the Bellman equation

∂tv + (1/p′)|∂xv|p′ = 0, v(0, ·) = χ .

Its solution can be computed explicitly, it isv(t, x) = Mp

0,t1/p′ (x) therefore we
have

V[ f (Bp
t )] = inf

x

[
f (x) + x p

pt
p
p′

]
. (9)

4.2 Cramer Transform

Definition 18. The Cramer transformC is a function fromM, the set of positive

measures onE = Rn, to Cx defined byC def= F ◦ log◦L, whereL denotes the
Laplace transform9.

From the definition and the properties of the Laplace and Fenchel transforms
the following result is clear.

Theorem 19. For µ, ν ∈M we haveC(µ ∗ ν) = C(µ) ? C(ν).

9µ 7→ ∫
E e〈θ,x〉µ(dx).
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Table 1: Properties of the Cramer transform.

M log(L(M)) = F(C(M)) C(M)

µ ĉµ(θ) = log
∫

eθxdµ(x) cµ(x) = supθ (θx − ĉ(θ))

0 −∞ +∞
δa θa χa

λe−λx−H (x) H (λ − θ) + log(λ/(λ − θ)) H (x) + λx − 1 − log(λx)

pδ0 + (1 − p)δ1 log(p + (1 − p)eθ ) x log( x
1−p)

+(1 − x) log(1−x
p )

+H (x) + H (1 − x)

stable distrib. mθ + 1
p′ |σθ |p′ + H (θ) c(x) =Mp

m,σ , x ≥ m
1 < p′ < 2 c(x) = 0, x < m,

1/p + 1/p′ = 1
Gauss distrib. mθ + 1

2|σθ |2 M2
m,σ

µ ∗ ν ĉµ + ĉν cµ ? cν

kµ log(k) + ĉ c − log(k)
µ ≥ 0 ĉ convex l.s.c. c convex l.s.c.

m0
def= ∫

µ ĉ(0) = log(m0) infx c(x) = − log(m0)

m0 = 1 ĉ(0) = 0 infx c(x) = 0

Sµ
def= cvx(supp(µ)) ĉ strictly convex inDĉ

◦
Dc=

◦
Sµ

m0 = 1 ĉ is C∞ in
◦

Dĉ c is C1 in
◦

Dc

m0 = 1, m
def= ∫

xµ ĉ′(0) = m c(m) = 0

m0 = 1, m2
def= ∫

x2µ ĉ′′(0) = σ2 def= m2 − m2 c′′(m) = 1/σ2

m0 = 1, 1 < p′ < 2 ĉ(p′)(0+) = 0(p′)σ p′
c(p)(0+) = 0(p)/σ p

ĉ = |σθ |p′
/p′ + o(|θ |p′

)

+H (θ)

The Cramer transform changes the convolutions into inf-convolutions and con-
sequently independent random variables into independent decision variables. In
Table 1 we summarize the main properties and examples concerning the Cramer
transform whenE = R. The difficult results of this table can be found in Azencott
[8]. In this table we have denoted

H (x)
def=

{
0 for x ≥ 0,

+∞ elsewhere.

Let us give an example of utilizationof these results in the domain of partial dif-
ferential equations (PDE). Processes with independent increments are transformed
in decision processes with independent increments. This implies that a generator
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ĉ(−∂x) of a stochastic process is transformed in the generator of the corresponding
decision processv 7→ −ĉ(∂xv).

Theorem 20. The Cramer transformv of the solution r of the PDE on E= R

−∂t r + [ĉ(−∂x)](r ) = 0, r (0, .) = δ ,

(with ĉ ∈ Cx) satisfies the HJB equation

∂tv + ĉ(∂xv) = 0, v(0, .) = χ . (10)

This last equation is the forward HJB equation of the control problem of dynamic
x′ = u, instantaneous cost c(u) and initial costχ .

Remark 21. First let us remark that̂c is convex l.s.c.and not necessarily polyno-
mial which means that fractional derivatives may appear in the PDE .

Proof. The Laplace transform ofr denotedq satisfies:

−∂tq(t, θ) + ĉ(θ)q(t, θ) = 0, q(0, .) = 1 .

Thereforew = log(q) satisfies:

−∂tw(t, θ) + ĉ(θ) = 0, w(0, .) = 0 , (11)

which can be easily integrated. As soon asĉ is l.s.c and convexw is l.s.c and convex
and can be considered as the Fenchel transform of a functionv. The functionv

satisfies a PDE which can be easily computed. Indeed we have:

w(t, θ) = sup
x

(θx − v(t, x)) H⇒
{

θ = ∂xv ,

∂tw = −∂tv .

Thereforev satisfies equation (10). This equation is the forward HJB equation of
the control problem with dynamicx′ = u, instantaneous costc(u) and initial cost
χ becausêc is the Fenchel transform ofc and the HJB equation of this control
problem is

−∂tv + min
u

{−u∂xv + c(u)} = 0, v(0, .) = χ .

If ĉ is independent of time the optimal trajectories are straight lines andv(x) =
tc(x/t). This can be obtained by using (11).

Solution of linear PDE with constant coefficients can be computed explicitely
by Fourier transform. The previous theorem shows that that non linear convex first
order PDE with constant coefficients are isomorphic to linear PDE with constant
coefficients and therefore can be computed explicitely. Such explicit solutions of
HJB equation are known as Hopf formulas [16]. Let us develop the computations
on a non trivial example.
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Example 22. Let us consider the HJB equation

∂tv + 1

2
(∂xv)2 + 2

3
(|∂xv|) 3

2 = 0, v(0, .) = χ .

From (11) we deduce that :

w(t, θ) = t (
1

2
θ2 + 2

3
|θ | 3

2 ) ,

therefore using the fact that the Fenchel transform of a sum is an inf-convolution
we obtain:

v(t, x) = x2

2t
?

|x|3
3t2

.

We can verify on this explicit formula a continuous time version of the central limit
theorem. Using the scalingx = yt2/3, we have

lim
t→+∞ v(t, yt2/3) = y3/3 ,

since the shape around zero of the corresponding instantaneous costc(u) =
(u2/2) ? (|u|3/3) is |u|3/3. Indeed a simple computation shows thatc(u) is ob-
tained from {

c = 1/2y4 + 1/3|y|3 ,

u = |y|y + y ,

by elimination ofy. This system may be also considered as a parametrical defini-
tion of c(u).

4.3 Min-Plus Perfect Gas

Let us show how the Cramer transform appears in statistical mechanics. Here a
mechanical system means min-plus linear finite state system. More precisely, we
consider the analogue of a system of independent particles (perfect gas) by building
a large min-plus system composed of independent min-plus subsystems. Following
standard methods of statistical mechanics, we compute the Gibbs distributionof the
min-plus subsystems. In this computation appears naturally the Cramer transform.

The tensor product of two min-plus rectangular matricesA andB is the min-
plus tensor of order 4 denotedC = A � B with entriesCj j ′ ii ′ = Aji ⊗ Bj ′ i ′ =
Aji + Bj ′ i ′ . On the set of such tensors, we define the product [C ⊗ D] ii ′kk′ =⊕

j j ′ Cii ′ j j ′ ⊗ Dj j ′kk′ .
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Proposition 23. Given a set of m min-plus matrices Ai ∈Mni such thatG(Ai ) are
irreducible, denotingλi their eigenvalues and ei the identity matrix of dimension
ni , we have

(�i Ai )(�i Xi ) = (⊗i λi )(�i Xi ) , (12)⊕
i

[
(�i−1

k=1ek) � Ai � (�m
k=i+1ek)

]
(�i Xi ) = (⊕i λi )(�i Xi ) ,

for all eigenvectors(Xi )i=1,n of (Ai )i=1,n.

Let us consider a system composed ofN independent subsystems (particles)
of k different kinds defined by their min-plus matricesAi , i = 1, · · · , k, which are
supposed to be irreducible with eigenvaluesλi .

The repartition(Ni , i = 1, · · · , k) (with
∑

i Ni = N) of the N subsystems
among thek possibilities defines the probability

p = (pi
def= Ni /N, i = 1, · · · , k) .

The number of possible ways to achieve a given distributionp is

M
def= N!/(N1!N2! · · · Nk!) .

Using the Stirling formula, we have

S
def= (log M)/N ∼ −

k∑
i=1

pi log pi , whenN → +∞ .

This gives the asymptotics (with respect toN) of the probability to observe the
empirical distributionp in a sample, of sizeN, drawn with the uniform law on
(1, · · · , k).

Let us suppose that we observe the eigenvalueE of the complete system (the
total energy of the complete system in the mechanical analogy). Thanks to (12), it
is given by:

E =
k⊗

i=1

(λi )
Ni .

that is ∑
i

pi λi = U
def= E/N . (13)

Then, in a standard way, theGibbs distributionis defined as the one maximiz-
ing Samong all the distributions satisfying the constraint (13).
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Theorem 24. The Gibbs distribution is given by

pi (θ) = eθλi∑
j eθλ j

, (14)

whereθ achieves the optimum in

cµ(U ) = max
θ

[θU − logE(eθλ)] .

whereλ is a random variable with uniform law (µ) on {λi }.
Proof. The functionp 7→ −S(p) is convex. Therefore we have to minimize a
convex function subject to linear constraints. Let us introduce the Lagrangian

L(θ, µ, p) =
∑

i

(pi log pi ) + µ

(
1 −

∑
i

pi

)
+ θ

(
U −

∑
i

pi λi

)
.

The saddle point(θ, µ, p)∗ realizing maxθ maxµ minp L(θ, µ, p) gives the Gibbs
distribution. First solving maxµ minp L(θ, µ, p) we obtain (14).

To computeθ as a function ofU we have to maximize the Lagrangian with
respect toθ , that is

max
θ

[
θU − log

(∑
i

eθλi

)]
,

which can be written as maxθ [θU − logE(eθλ)] − logk , if λ is a random variable
with uniform law on(λi )i=1,··· ,k.

5 Notes and Comments.

Bellman [18] was aware of the interest of the Fenchel transform (which he calls
max transform) for the analytic study of the dynamic programming equations. The
bicontinuity of the Fenchel transform has been well studied in convex analysis
[38, 7, 6].

Maslov has started the study of idempotent integration in [41]. He has been
followed in particular by [39, 42, 32, 31, 4, 1, 2]. In [43] idempotent Sobolev
spaces have been introduced as a way to study HJB equation as a linear object. In
this paper the min-plus weak convergence has been also introduced but for compact
support test functions. This weak convergence is used in [33] for the approximation
of HJB equations. In [47] and [10] the law of large numbers and the central limit
theorem for decision variables has been given in the particular casep = 2. In
two independent works [32, 31] and [17] the study of decision variables has been
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started. The second work has been continued in [4]. A lot of results announced
in [4] are proved in [1] and [2]. Many of the missing proofs of results given here
can be found in [5]. The large deviation result is a known result in convex analysis
[25, 26] and the bibliography of these papers. The min-plus product form result
presented here comes from [20].

The Cramer transform is an important tool in large deviations literature [8, 37,
50, 34]. In [32, 10, 4] Cramer transform has been used in the min-plus context.
In [34] the connection between large deviations and statistical mechanics is done.
See also [48] for discussion of links existing between mechanics, thermodynamics
statistical mechanics. In this paper min-plus ergodic theorems are also presented.
Limit theorems of probabilities and decision theory can be put in a same framework
see [3].

Some aspects of [51, 11] are strongly related to the morphism between prob-
ability and decision calculus in particular the morphism between LQG and LEG
problems and the link withH∞ problem.
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Birkhaüser (1991). 5

[12] Bertsimas, D. and Tsitsiklis, J. N. : “Linear Optimization”, Athena Scientific, Bel-
mont Mass. (1997).

[13] Courtois, P. J. : Decomposability Queuing and Computer System Applications, Aca-
demic Press, New York (1977).

[14] Van Dijk, N. M. : Queuing networks and Product forms : a system approach, Wiley
(1993).

[15] Gondran, M. and Minoux, M. : Graphs and Algorithms, Wiley, (1984).

[16] Bardi, M., Evans, L.C. On Hopf’s formulas for solutions of Hamilton-Jacobi equa-
tions. Nonlinear Analysis, Theory, Methods & Applications, Vol.8., No. 11 (1984)
1373–1381. 4.2

[17] Bellalouna, F.: Un point de vue lin´eaire sur la programmation dynamique. D´etection
de ruptures dans le cadre des probl`emes de fiabilit´e. Thesis dissertation, University
of Paris-IX Dauphine (1992). 5

[18] Bellman, R., Karush, W.: Mathematical programming and the maximum transform.
SIAM Journal of Applied Mathematics10 (1962). 5

[19] Billingsley, P.: Convergence of probability measures. John Wiley & Sons, New York
(1968).

[20] Fall, O. and Quadrat, J.P. : About min-plus product forms submitted to CARI’98,
Dakar, Octobre 98. 1, 5

[21] Fayolle, G. and Lasgouttes, J.M. : ‘Asymptotics and scalings for Large Product-Form
Networks via the Central Limit Theorem, Markov Processes and Related Fields, V.2,
N.2, p.317–349 (1996).

[22] Gaubert, S. : Th´eorie des syst`emes linéaires dans les dioides, Thesis dissertation,
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