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Abstract
We study here the duality appearing between probability calculus and op-

timization by substituting the semifiel@® U {+-occ}, min, +) for the standard
semiring(R*, +, x).

1 Introduction

This lecture aid is not original, it is, mainly, a compilation and reorganization of
some sections of the three papers [5, 48, 20] in which all the members of the Max-
plus working group and in particular M. Viot and M. Akian have played a key
role.

The min-plus probability calculus, called decision calculus, is obtained
from the probability calculus by substituting the idempotent semifiggdU
{400}, min, +) for the standard semirindR ™, +, x).

To the probability of an event corresponds the cost of a set of decisions. To
random variables correspond decision variables. Almost all concepts and tools of
probabilities have an analogue. First, we give the counterparts of characteristic
functions, weak convergence, tightness and limit theorems.

The analogue of Markov chains are the so-called Bellman Chains. The asymp-
totic theorems for the Bellman chains are the general min-plus linear system ones.
They can be seen in [10, 22, 23, 48] and will not discussed here. The min-plus
product forms exist and correspond to computing geodesics madule. In
some cases, explicit formulae dual of the standard product forms give explicitly
the minimal distance between two states. The general problem can be reduced to a
standard flow problem.

*J.P. Quadrat : INRIA Domaine de Voluceau Rocquencourt, BP 105, 78153, Le Chesnay
(France). Email : Jean-Pierre.Quadrat@inria.fr.

tThis work has been partly supported by the ALAPEDES project of the European TMR pro-
gramme.



The Cramer transform used in the large deviation literature is defined as the
composition of the Laplace transform by the logarithm by the Fenchel transform. It
transforms convolution into inf-convolution. Probabilistic results about processes
with independent increments are then transformed into similar results on dynamic
programming equations for systems with instantaneous costs which do not depend
of the states. By this way we obtain explicit solutions of some Hamilton Jacobi
Bellman equations (HJB) called Hopf formulae. This Cramer transform is well
known in statistical mechanics. We illustrate, on a simple example, called min-plus
perfect gaz, how the Cramer transform appears in the computing of the correpond-
ing Gibbs distribution.

Bibliographic notes are given at the end of the paper.

2 Cost Measures and Decision Variables

2.1 Cost measures

Le us denot&®R i, the idempotent semifield® U {+o0}, min, 4+) and by extension
the metric spac® U {400} endowed with the exponential distandéx, y) =
| exp(—X) — exp(—y)|. We start by defining cost measures which can be seen as
normalized idempotent measures of MasloRimn, [41] .
We call adecision spacehe triplet(U, U, K) whereU is a topological space,
U the set of open sets &f andKK a mapping froni{ to Rmin such that

1. K(U) =0,
2. K(¥) = 400,
3. K(Un An) = infa K(Ay) forany A, € U.

The mappindK is called acost measureA set of cost measurds is saidtight if

sup inf K(C®% =+c0 .
CcompactU KeK

A mappingc : U — Rpin such thatk(A) = infyca c(u) VA C U is called a

cost densityf the cost measuri.
def

The setD; = {u € U | c(u) # +o0} is called thedomainof c.
Theorem 1. Given a l.s.c. ¢ with values Ry, such thainf, c(u) = 0, the map-
ping Ae U — K(A) = infyca c(u) defines a cost measure @d, U/). Conversely
any cost measure defined on open sets of a second countable topological space

1j.e. atopological space with a countable basis of open sets.



admits a unique minimal extensi@j. to P(U) (the set of subsets of U) having a
density ¢ which is a I.s.c. function on U satisfyinfy, c(u) = 0.

Proof. This precise result is proved in Akian [1]. See also Maslov [41] and Del
Moral [31] for the first part and Maslov and Kolokoltsov [39] for the second part.
]

This theorem shows that on second countable spaces there is a bijection between
I.s.c. functions and cost measures. In this paper, we will consider cost measures on
R", RN, separable Banach spaces and reflexive Banach separable spaces with the
weak topology which are all second countable topological spaces.

We will use very often the two following cost densities defined®nwith ||.||
the euclidian norm.

def | +00 forx # m.
L xmx) = { 0  forx i m

2. Mho 00 = Lo = my||P for p = 1 with Mo = s

By analogy with the conditional probability we deficenditional cost excess
to take the best decision it knowing that it must be taken iB by

K(AB) £'K(ANB) — K(B) .

2.2 Decision Variables
By analogy with random variables we define decision variables and related notions.

1. A decision variable Xon (U, i, K) is a mapping fronJ to E (a second
countable topological space). It induces a cost meaEw®n (E, B) (B
denotes the set of open setsEf defined byKx (A) = K, (X~1(A)) for all
A € B. The cost measullEx has al.s.c. density denoted . WhenE = R,
we call X a real decision variable; whdh = Rpin, we call it acost variable

2. Two decision variableX andY are saidndependenivhen:

Cx,y (X, Y) = Cx(X) + Cy (Y).

3. Theconditional cost excessf X knowingY is defined by:

cxjy (X, Y) d=efK*(X =X|Y=Yy)=cxy(X,y)—cy(y).



4. Theoptimumof a decision variable is defined by
O(X) def arg miEnconv(cx)(x)
Xe

when the minimum exists, where conv denotes the l.s.c. convex hull and
arg min the point where the minimum is reached. When a decision variable
X with values in a linear space satisfi@éX) = 0 we say that it i€entered

5. When the optimum of a decision varialewith values inR" is unique and
when near the optimum, we have

1
conv(cy) (X) = Bno—l(x —OXNIP +o(Ix — OX)|P),

we say thatX is of order pand we define itsensitivity of order pby

SP(X) e s WhenSP(X) = | (the identity matrix) we say thaX is of

order p and normalized

6. Thevalueof a cost variableX is V(X) def infy (X + cx (X)), the conditional
valueisV(X | Y =) OI=efim‘x(x + Cxiv (X, ¥)).

7. The density cost of the suih of two independent variables andY is the
inf-convolution of their cost densitieg @nd 6/, denotedtx » ¢y defined by

cz(2) = ixn; [ex(X) +ey(Y) [ x+y=17.

For a real decision variable€ of costMrﬁ’q,a, p > 1, we have

O(X) = m, SP(X) =, V(X) = m— éop’ .

2.3 Vector Spaces of Decision Variables

We can introduce vector spaces of decision variables which are the analogue of the
standard.P(Q2) spaces.

Theorem 2. For p > 0, the numbers

er. 1 e
|><|pd=fmf{o | cx(X) > 5|<x—@(X>>/o|p} and [ X[ £'1X], + 10(X)|

define respectively a seminorm and a norm on the vector spoéreal decision
variables having a unique optimum and such th#{| , is finite.
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Proof. Let us denoteX’ = X — O(X) andY’ =Y — O(Y). We first remark that
o > |X|pimplies

cx(X) > %OX—@(X)I/G)"VX@V(—%Ix//olfﬁ >0. 1)

If there existsc > 0 andO(X) such that (1) holds, theox(x) > 0 for any
X # O(X) andcx(x) tends to 0 impliex tends toOQ(X) thereforeO(X) is the
unique optimum oX. Moreover|X|, is the smallest such that (1) holds.

If X e LP, x e Rando > |X|, we have

V=S i |P) = V(=SIX /ol = 0,

theni X € LP, O X) = AO(X) and|AX]|p = |A[[X]p.
If X andY € LP, 0 > [X|pando’ > [Y]p,

1 _ 1 1
V(—E(max(|x//o|p, IY'/o'|P)) = mm(V(—E|X//o|p), V(—EIY//G/IF’)) >0

and
X"+ Y| o X o Y IX'| Y|
< — —— < max ,

o+o’ T o+o0 o o+o o o o’

)

then 1
V(—B(IX/ +Y'|/(c +0")P) > 0.

Therefore we have proved th&dt+ Y € LP with O(X + Y) = O(X) + O(Y) and
X+ Ylp < [XIp+[YIp.

ThenLP is a vector space,|, and||.| , are seminorms an@ is a linear con-
tinuous operator froni.P to R. Moreover,| X||, = 0 impliescx = x thusX =0
up to a set of infinite cost. O

Theorem 3. For two independent real decision variables X and Y anel R we
have (as soon as the right and left hand sides exist)

OX +Y) =0(X) + O(Y), OKX)=kO(X), SP(kX) = KISP(X),

[SPX +W)]P = [SPOOIP + [SPNTP, (X +YIpP < (IXIpP + (YIp)P .



Proof. Letus prove only the last inequality. ConsidéandY in LP ando > |X|,
ando’ > |Y|,. Let us denotes” = (oP +o’")/P, X' = X — O(X) and
Y’ =Y — O(Y). The Hlder inequalityae: + b8 < (@P + bP)Y/P(aP + gPHV/P
implies

(X" +Y/a")P < X [a|P+ Y /o' |P,
then by the independency &fandY we get
1 / / 1!
V(—B(IX +Y'|/a")P) >0,
and the inequality is proved. O

Theorem 4 (Chebyshev).For a decision variable belonging fbP we have

1
K(X —O0(X)| > a) > B(a/|x|p)p,

1
K(X| = a) = 5((a_ XU * /1 X1p)P

Proof. The first part is a straightforward consequence of the inequality) >
(lyl/1Y1p)P/p applied to centered decision variaMe

The second part comes from the non increasing property of the functen
R* > (a—x)T/x. d

2.4 Characteristic Functions and Fenchel Transform

The role of the Laplace or Fourier transforms in probability calculus is played by
the Fenchel transform in decision calculus.

Let c € Cx, whereCx denotes the set of functions frob (a reflexive Banach
space with duaE’) to Rmi, convex, |.s.c. and properlts Fenchel transfornis the
function fromE’ to Rpin defined by

¢ L' F o) L SUFL(9. X) — (0]

Then thecharacteristic functionof a decision variable is defined By(X) oo
F(Cx).
Important properties of the Fenchel transform are :fiay € Cx

2not always equal tg-co



1. F(f) e Cx,
2. FisaninvolutionthatisF(F(f)) = f,
3. F(fxg)=F(f)+ F(9),
4. F(f +9) =F(f)~F(9).
Therefore, for two independent decision variabfeandY andk € R, we have
F(X +Y) =F(X) +F(Y), [FkX)]©) = [F(X)]K0) .

Moreover, a decision variable with valuesif is of orderp if we have :

1 / /
F(X)(©) = (0O(X), 0) + HIISF’(X)QIIp +o(lol® .

2.5 Convergences of Decision Variables

The analogue of the topologies used in probability can be introduced. The standard
limit theorems have a min-plus counterpart.

A sequence of independent and identically costed (i.i.c.) real decision vari-
ables of cost on (U, U, K) is an applicationX from U to RY which induces the
density cost

o0

Cx(X) = Zc(xi), VX = (Xo, X1, ...) € RN
i=0

The cost density is finite only on minimizing sequenceg,oélsewhere it is
equal to+oo.

We have defined a decision sequence by its density and not by its value on the
open sets oRY because the density always exists and can be defined easily.

In order to state limit theorems, we define several type of convergence of se-
guences of decision variables.

Definition 5. For the sequence of real decision variadl¥g, n € N}, cost mea-
suresk,, andc, functions fromU (a first countable topological spad® Rmin we
say that :

1. X, € LP converges in p-nornmowardsX € LP denotedX, LN X, if
limp || Xn — X[lp=0;

3Each point admits a countable basis of neighbourhoods.



2. Xp converges in cogbwardsX, denotedX, N X, iffor all ¢ > 0 we have
limp K{u | [Xp(U) — X(W| > €} = +00;

3. Xp converges almost surelgwardsX, denotedX,, as X, ifwe haveK{u |

4. K,converges weakliowardsK, denotedk, B K, if for all finCy(E)*
we have lim K, (f) = K(f)>.

5. ¢, converges in the epigraph senspitconvergestowardsc, denoted:, ﬂ;i
cif

Yu, Vu,— U, Iimirr11f ch(up) > c(u) , 2)

Yu, 3dJu, — u:limsupcy(un) < cu) . 3)
n

A sequenceéX,, of cost measures is said asymptoticaly tight if

sup  liminf K,(C® = +oo .
CcompactU n

The different “weak” convergences have strong relations given in the following
theorem.

Theorem 6. Let K, K be cost measures on a metric space U. Then the three
following conditions are equivalent

1. K, > K;
2.

Iimirr11f Kn(F) > K(F), VF closed, 4)

limsupKn(G) < K(G), VG open; (5)
n

3. lim, Ky (A) = K(A) for any set A such that(A) = K(A).

4C,(E) denotes the set of continuous and lower bounded functions BEGOR .

SK(f) def inf,(f (u) 4+ c(u)) wherec is the density ofk.



On asymptoticaly tight sequencEs the weak convergence &, towardsK is
equivalent to (5) and

lim irr11f Kn(C) > K(C), VC compact (6)

On a first countable topological space, the epi convergence of |.s.c. cost densities
is equivalent to (6) and (5).

Proof. See [5]. O

In a locally compact space conditions (6) (5) are equivalent to the condition
lim, K,(f) = K(f) for any continuous function with compact support. This is
the definition of weak convergence used by Maslov and Samborski in [43]. These
conditions are are also equivalent to the epigraph convergence of densities. This
type of convergence does not insure that a weak-limit of cost measures is a cost
measure (the infimum of the limit is not necessarily equal to zero).

Denoting byX(U) the set of cost measures bh(a metric space) endowed
with the topology of the weak convergence, any tightlsetf K (U) is relatively
sequentially compagt

These different kinds of convergence are connected in a nonstandard way.

Theorem 7. We have the implications::

1. Convergence in p-norm implies convergence in cost but the converse is false.

2. Convergence in cost implies almost sure convergence and the converse is
false.

3. For tight sequences, the convergence in cost implies the weak convergence.
Proof. See Akian [2] for points 1 and 2 and 3 and Del Moral [31] for point Z1]
We have the analogue of the law of large numbers.

Theorem 8. Given a sequencgX,,, n € N} of i.i.c. decision variables belonging
tolLP, p > 1, we have

1R
N E Z Xn — O(Xo) ,

where the limit can be taken in the sense of almost sure, cost and p-norm conver-
gence.

Sthat is any sequence &f contains a weakly convergent subsequence



Proof. We have only to estimate the convergence in p-norm. The result follows
from simple computation of the p-seminormYy§. Thanks to Theorem 3 we have
(IYnIp)P < N(|Xolp)P' /NP which tends to 0 as N tends to infinity. 0

We have the analogue of the central limit theorem.

Theorem 9. Given an i.i.c. sequendeX,,, n € N} centered of order p with |.s.c.
convex cost, we have

N—-1

def 1 w o p

IN = NiTw X(:) Xn = Mosexg) -
n=

Proof. We have limy[F(Zn)](0) = %HSP(XO)OHP', where the convergence can

be taken in the pointwise, uniform on any bounded set or epigraph sense. In order
to obtain the weak convergence we have to prove the tightnedg.oBut as the
convergence is uniform oB = {||¢| < 1} we have forN > Np, F(Zn) < C on

B whereC is a constant. Thereforey, (x) > [|X|| — C for N > Np andZy is
asymptoticaly tight. O

The central limit theorem may be generalized to the case of non convex cost den-
sities.
We have the analogue of the large deviation theorem.

Theorem 10. Given an i.i.c. sequencEX,, n € N} of tight cost density c, we
have :

w A
1/NCxy 4+ X)/n = €,

where¢ denotes the convex hull of c.

Proof. Let us give only the ideas of the proof. The cost densitXoft - - - + X,

is c*". Therefore we want liml/nc(x/n). But the epigraph of the convolution

of two functions is equal to the sum of their epigraphs. Therefore the epigraph of
1/nc™(x/n) is equal to the vectorial mean ofidentical convex sets which are
epigraphs ot. The limit (in the epigraph sense), whargoes to infinity, of the
vectorial mean converges towards the convex hull of the epigrapt28]. See

also [3]. O

This last theorem is only a trivial case of law of large numbers for random sets
studied in [25, 26]. The interpretation of this result as a min-plus large deviation
theorem comes from by M. Akian.
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3 Bellman Chains

We denoteM j, the dioid of (p, p)-matrices with entries in the semiririg. The
matrix product inM is

def

[ABl; Z'[A® B]; < min[Aw + Bl

All the entries of the zero matrix oM, are +oo. The diagonal entries of the
identity matrix of M, are 0, the other entries beirg.

With a matrixM in M, (K), we associate precedence grap&(M) = (N, P)
with nodesV = {1,2,---,n},and arcsP = {xy | X,y € N, Myy # ¢}. The
numberMyy, when it is nonzero, is called the weight of the anc

A paths, of lengthl, with originx and endy, is an ordered set of nodes=
oy - - - With mg = X andm =y, andrjwj, € Pforalli =0,---,1 — 1. The
coupler; i1 are called the arcs af and ther; its nodes. Théengthof the pathr
is denotedrr|. The couplexy of theendsof r is denotedx ). When the two ends
of = are equal one says thatis a circuit. Theweightof =, denotedz (M), is the
®-product of the weights of its arcs. For example we hayg M) = Myy ® My..

The set of all paths with endsy and length is denotedPLy. The paths of
length O are the nodeB® = \. Then,P%, is the set of all paths with endsy and
P* the set of all paths. We have :

def ™
PP
I=0
Forp C P, {p) is the set of the ends of the paths@fThen denoting®y the

set of arcs of the graph associated to the mditiwe have the following trivial
accessibity results :

Proposition 11. For M € M, we have :
Pux = (PY), Pu- = (P).

Forp C P* one define :

p(M) E P (M),

TEp

which is the infimum of the weights of all the paths belongingto
We denote o
M EPM
i=0

which exists if we accept entries Rinin. Then, we have the following interpreta-
tion of the matrix product inM,.

11



Proposition 12. For M € M,, we have
Pry(M) = (MY, Pr (M) = (M¥)yy . )

The matrix M has no entries equal te-occ iff there is no circuits with negative
weight inP.

The min-plus Markov chain is called a Bellman chain, it is defined by a tran-
sition cost matrixM € M, satisfyingMe = e wheree denotes the column &
of sizen. Then, given an initial cost, which is a line vectrsatisfyingc®e = e,
we can define a cost on the set of path®, by c(x) = cgon(M) forall z € P
andl € N. Then, the analogue of the forward Kolmogorov equation is the forward
Bellman equatiort” = c"1 @ M, ¢ given. It gives the marginal cost, for the

Bellman chainX"(x) dzefnn, to be in state (node) € A/ at timen.
If a transition cost matrix satisfies

Mxy= Myx>0, Mxxzo, Vy#XEN,

then the matrixMy, defines a metric. Indeed, we had, = 0 andM;, <
My, + M, by definition of the matrix product and the fact tHdt‘M* = M*.

A path fromx to y in G(M) achieving the minimal cost among the paths of any
length is called gjeodesigoining x to y. We will still call a geodesic an optimal
path when the matris# is nonsymmetric.

3.1 Min-plus closed Jackson service networks

A closed Jackson network of queues is a set olistomers andh services. The
customers wait for services in queues attached to each service. The customers are
served in the order of arrival. The service is random and markovian. In discrete
time situation, am, m) transition probability matrix is given. The entry; is

the probability that a customer, served at queumes to queug, if the queua is

not empty. If the queue is empty, this probability is 0. Such a system is a Markov
chain with state space :

S,szef{xeNm:l.x=n},

where 1 denotes the vectors with all its entries equal to 1 with size adapted to the
context (herem). Itis clear that, if isirreducible, the Markov chain describing the
systemis irreducible. Therefore it has a unique invariant megsuréis measure

is explicitly computable :
Py = kgfl .. .grfqm ,

12



with 6 any solution obr = 6 andk a normalizing constant such thpt = 1.

The best way to understand what is a min-plus closed Jackson service network
is to consider the following problem. We consider a company renting cars. It has
n cars andm parkings in which customers can rent cars. The customers can rent
a car in a parking and leave the rented car in another parking. After some time
the distribution of the cars in the parkings is not satisfactory and the company has
to transport the cars to achieve a better distribution. Givéime (m, m) matrix
of transportation cost from a parking to another, the problem is to determine the
minimal cost of the transportation from a distributioe= (x4, - - - , Xm) of the cars
in the parking to another omg = (y1, - - -, Ym) and to compute the best plan of
transportation. Therefore the precise transportation problem is the following.

MIN-PLUS CLOSED JACKSON PROBLEM (TRANSPORTATION PROBLEM).

Given the(m, m) transition cost matrix r irreducible such thafjr > 0if i #
j=1---,mandt =0foralli =1,---,m, compute Mfor the the Bellman

chain on § of transition cost M defined by M x) d=efrij and

def
TI](X].”Xm) =e (levxl_lvvxj +1""’Xm),
fori,j=1,---,m.

The operatoiT;; corresponds to the transportation of a car from the parking
to the parkingj . We denotel” d=ef{Tij, i,j=1,---,m}.

If rj = eforalli = 1,---, m (the absence of transportation costs nothing)
the previous problem corresponds to the computation of the largest invariant cost
satisfyingc = ¢cM, andc, = e. Indeed, in this case the left eigen semimodule has
as many independent generators as staRemarking that the diagonal entries of
M* aree, itis clearM; M = My . Then, from the fact thaj = bM* is the largest

solution ofg = gM & b, we can prove that the searched extremal left eigenvector
is M.

3.2 Solution of them-parkings transportation problem
Let us consider then-parkings case. In this case a patle P is
xT 0)T20 T X) - y=To T 10 . THx) |

with T' € 7. Since the arc®; of r arex T (x) with x € N andT;; € T we can
code ¢) a pathr € P* in a simpler way by the couple >~ xu with x € A a

“Let us recall that in the min-plus context the irreduiliip of the transition matrix assures the
uniqueness of the eigenvalue but not the uniqueness of the generators of the eigen semimodule see
[10] Section 3.7.
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node ofG(M) andu € P a path ofG(r). Clearly we have :
(M) = u(r), Vo ~xpu € P*.

Remarking that the vectarij (x) — x is independent of let us call ity;; and
denotel’ = {yj, i, ] = 1,---, m}. These vectors are not mutually independent
indeed we have the relations :

Yik = ¥j +vik, Vi, j,k=1,---,m.

For a pathu € P/, the evaluationu(I") € Z™ is obtained by using the mor-
phism which to the concatenation associates the vectorial sum and to the letters
associate the corresponding vectorg ofFor example for the pathjikl € P;" we
have :

KIT) = vij + vik + wai -

Then, the constraint on the paths () = xywith x, y € Z™ is equivalent to the
constrainfu(I') = y — x for the pathr ~ xu.

The cost of a patlu(r) depends only of the number of times each arc appears
in « and not of the order of the arcs. Similarly the constraiGf) = y — X
does not depend of the order of the arcs in the pathince the evaluatiop (")
corresponds to additions of vectors, and addition of vector is commutative. To
take account of this symmetry of the problem we derfatehe set of equivalent
classes of paths (where two paths are equivalent if the arcs appear the same number
of times). Therefore, fop. € P we can take the representative= [[,.p, a™.
For example the path = ijijk belongs to the class ofj )2(ji)(jk).

Itis clear thafu(r*) < u(r) because;; > rijf. Moreover for eachu it existsji
such thafu(r*) = f(r) andu(I") = a(T"). The pathz is obtained by substituting
the arcsj of u by pathsui; such thatuj (rij) = rijf. Inside S this substitution
is always possible. This is not always possible on the bounda8jf tfecause the
pathxu may leaveS[". To avoid this difficulty we suppose that the costs on the
boundary arcs are nof butrj.

We can summarize the previous considerations in the following proposition.

Proposition 13. The optimal value of the transportation problem is :
M;(ky = P;(ky(M) = O (y — X),
with det
o2 = P .

HEPE
nl)=z
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The mathematical prograd, «(2) is a flow problem.

Proposition 14. Denoting by7 the incidence matrix nodes-arcs of the complete
graph with m nodes we have :

®r+(2) = inf pr*,
$>0
Jo=2

whereg.r =3 ; rij ¢ij -

Corollary 15. We have for all y and x satisfyingx= Ofor j #iandx =n
Mgy = ®(riﬂj<)yj ’
INES
and for all x and y satisfyingjy=0for j #iandy =n
My = @™ .
INES
Proof. In these two cases the flow problems are trivial. The nonnul components
are respectively;; = yj andgj; = x;, for j #1. O

This corollary gives the searched min-plus product form.

3.3 example

Let us consider the transportation system with 3 parkings and 6 cars, and trans-

portation costs :
0 1 +o©
r=140c0 O 1 ]=
1 +4oc0o O

We have :

Let us suppose that= (0, 0, 6) andy = (2, 3, 1), we can apply the corollary, we
have :
My = rip?ri)®=2x1+3x2=8.

The Geodesic is given in Fig. 1.
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(6,0,0) (0,0,6)

Figure 1: Transportation System (6 cars, 3 parkings)

4 Bellman Processes with independent Increments, Inf-
Convolution and Cramer Transform

4.1 Bellman Processes

We can easily define continuous time decision processes which correspond to de-
terministic controlled processes. We discuss here only decision processes with
continuous trajectories.

Definition 16. 1. A continuous time Bellman process ¥ith continuous tra-
jectories is a decision variable with valuei(R ™) & having the cost density

def

Cx(X() = ¢(X(0))+/O c(t, x(0), x'(t)dt,

with c(t, -, -) a family of transition costs (that is a functiorirom R3 to Ryin
such that infc(t, X, y) = 0, Vt, x) and¢ a cost density ofR. When the
integral is not defined the cost is by definition equal-so.

8C(R*) denotes the set of continuous functions frimto R.
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2. The Bellman process is sdidmogeneou c does not depend on tinte

3. The Bellman process is saidth independent incremenifsc does not de-
pend on stat&. Moreover if this process is homogeneoass reduced to
the cost density of a decision variable.

4. Thep-Brownian decision processlenoted byBP, is the process with in-
dependent increments and transition cost dertgityx, y) = %|y|p for all
X.

As in the discrete time case, the marginal cost to be in statetimet can be
computed recursively using a forward Bellman equation.

Theorem 17. The marginal cosb(t, X) def K(X; = X) is given by the Bellman
equation:

dv + €(0xv) =0, v(0,X) =¢(X), (8)

where€ means hergt(oxv)](t, X) dzefsug[yaxv(t, X) —c(t, x, y)].
For the Brownian decision process’Btarting from0, the marginal cost to be
at time t in state x satisfies the Bellman equation

v + (1/p)|oxv|P =0, v(©0,)=x.

Its solution can be computed explicitly, it igt, X) = Mgtl/p, (X) therefore we
have ’

p
VI (BP)] = inf {f(x)Jr XE] . ©)
X ptp/

4.2 Cramer Transform

Definition 18. The Cramer transforr@ is a function fromM, the set of positive

measures ot = R", to Cx defined byC ®r. logoL, whereL denotes the

Laplace transforth

From the definition and the properties of the Laplace and Fenchel transforms
the following result is clear.

Theorem 19. For i, v € M we havel (u * v) = C(u) x C(v).

u > [ e’ u(dx).
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Table 1: Properties of the Cramer transform.

I M | log(£L(M)) = FCM)) | CM) |
w €.(0) =log [€*du(x) | c.(X) = sup,@x — €(9))
0 —00 +o00
da fa Xa
AeX=HK H —68)+log(h/(A —80)) | H(X) + Ax — 1 — log(AX)
pdo + (1 — p)és log(p+ (1 — p)¢) xlog(7%5)

+(1 - x) log(15*)
+HX) +H@A—-x)

stable distrib.

mo + %IU@H’ +H(©)

cx) =ME, ., x>m

l<p <2 c(X) =0, x <m,
1/p+1/p=1
Gauss distrib. mo + 3|06 Mz
W* €. +¢6, Cu*Cy
K logk) + ¢ ¢ — log(k)
uw>0 ¢ convex |.s.c. ¢ convex l.s.c.
mo £ [ ¢(0) = log(mo) inf c(x) = — log(mo)
my=1 €0 =0 infyc(x) =0
S def CVX(SUppw)) € strictly convex inDg¢ f)czéﬂ
mo =1 ¢isC®in ISC cisClin DOC
mp=1 m d=8ff X[ ¢0) =m c(m) =0
mo=1 m d=8ff X2 &(0) = 02 E'm, — m? c’(m) = 1/0?

m=11<p <2
¢=100|P/p +0(6]")
+H ()

&) 0 =T(p)o P’

cP(0%) =T (p)/oP

The Cramer transform changes the convolutions into inf-convolutions and con-
sequently independent random variables into independent decision variables. In
Table 1 we summarize the main properties and examples concerning the Cramer
transform wherkE = R. The difficult results of this table can be found in Azencott
[8]. In this table we have denoted

def | O forx > 0,
H(x) =
+o00 elsewhere.

Let us give an example of utilization of these results in the domain of partial dif-
ferential equations (PDE). Processes with independent increments are transformed
in decision processes with independent increments. This implies that a generator
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€(—0y) of a stochastic process is transformed in the generator of the corresponding
decision process > —€(xv).

Theorem 20. The Cramer transform of the solutionr of the PDE on E R
—or +[€(—ax)](r) =0, r(0,.) =46,
(with € € Cx) satisfies the HIB equation
dv + E(0xv) =0, v(0,.) = x . (10)

This last equation is the forward HIB equation of the control problem of dynamic
x’ = u, instantaneous cos{) and initial costy.

Remark 21. First let us remark that is convex l.s.c.and not necessarily polyno-
mial which means that fractional derivatives may appear in the PDE .

Proof. The Laplace transform af denoted satisfies:
—3q(t,0) + €O)q(t,0) =0, q0,.)=1.
Thereforew = log(q) satisfies:
—dw(t,0) 4+ E0) =0, w(©,.)=0, (11)

which can be easily integrated. As soorg#sl.s.c and convew is |.s.c and convex
and can be considered as the Fenchel transform of a funetidrhe functionv
satisfies a PDE which can be easily computed. Indeed we have:

9=axv,

w(t, ) = supdx — v(t, X)) = { dw = —dv .

Thereforev satisfies equation (10). This equation is the forward HJB equation of
the control problem with dynamix’ = u, instantaneous costu) and initial cost
x because is the Fenchel transform af and the HIB equation of this control
problem is

—0iv + rTLin{—uaxv +cw} =0, v0,.)=y.

O

If € is independent of time the optimal trajectories are straight linesvaxd =
tc(x/t). This can be obtained by using (11).

Solution of linear PDE with constant coefficients can be computed explicitely
by Fourier transform. The previous theorem shows that that non linear convex first
order PDE with constant coefficients are isomorphic to linear PDE with constant
coefficients and therefore can be computed explicitely. Such explicit solutions of
HJB equation are known as Hopf formulas [16]. Let us develop the computations
on a non trivial example.
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Example 22. Let us consider the HJB equation
1 2
v+ 5 (0x0)° + S(0wD? =0, v(0,) = x .
From (11) we deduce that :
t.0) =to2+ Zpopd)
w(l, == A A )
2 3

therefore using the fact that the Fenchel transform of a sum is an inf-convolution
we obtain:
. B XZ |X|3
v(t,X) = > * 37
We can verify on this explicit formula a continuous time version of the central limit
theorem. Using the scaling= yt%3, we have

: 2/3y _ 1,3
tllToov(t,yt ) =VY/3,

since the shape around zero of the corresponding instantaneous(gpst
(U2/2) = (Jul®/3) is |uj®/3. Indeed a simple computation shows that) is ob-
tained from

u=1[yly+y.,

by elimination ofy. This system may be also considered as a parametrical defini-
tion of c(u).

{ c=1/2y*+ 1/3|yP°,

4.3 Min-Plus Perfect Gas

Let us show how the Cramer transform appears in statistical mechanics. Here a

mechanical system means min-plus linear finite state system. More precisely, we

consider the analogue of a system of independent particles (perfect gas) by building

a large min-plus system composed of independent min-plus subsystems. Following

standard methods of statistical mechanics, we compute the Gibbs distribution of the

min-plus subsystems. In this computation appears naturally the Cramer transform.
The tensor product of two min-plus rectangular matriéeand B is the min-

plus tensor of order 4 denoté&l = A © B with entriesCjj iy = Ajj ® Bji =

Aji + Bjir. On the set of such tensors, we define the prodGo®[ D]iikk =

D Ciii ® Djjriw-
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Proposition 23. Given a set of m min-plus matrices & M, suchthatj(A) are
irreducible, denoting,; their eigenvalues and ¢he identity matrix of dimension
ni, we have

(O A)(Gi Xi) = (®i 1) (Oi Xi) , (12)
P [©ite0 0 A © OLi180] @ X) = @@ X) |
for all eigenvectorgX;)i—1.n of (A)i=1.n.

Let us consider a system composed\bindependent subsystems (particles)
of k different kinds defined by their min-plus matricds i =1, - - - , k, which are
supposed to be irreducible with eigenvalaes

The repartition(N;,i = 1,---,Kk) (with >, Ni = N) of the N subsystems
among thek possibilities defines the probability

p=(p EN/N,i=1-- k).

The number of possible ways to achieve a given distribupias

M ZONT/(NLING! - - N

Using the Stirling formula, we have

k
S= (logM)/N ~ —> pilogp. whenN — +o0 .

i=1

This gives the asymptotics (with respectN) of the probability to observe the
empirical distributionp in a sample, of sizéN, drawn with the uniform law on
(1’ Y k)

Let us suppose that we observe the eigenvalue the complete system (the
total energy of the complete system in the mechanical analogy). Thanks to (12), it

is given by:
k
E=&@0".
i=1

that is

Y pir=UEE/N. (13)

Then, in a standard way, tli&ibbs distributions defined as the one maximiz-
ing Samong all the distributions satisfying the constraint (13).
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Theorem 24. The Gibbs distribution is given by

Aj
pi (0) = W ) (14)

whereé achieves the optimum in
c,(U) = m@ax[eu — logE(e™)] .

wherel is a random variable with uniform lawu) on {A;}.

Proof. The functionp — —S(p) is convex. Therefore we have to minimize a
convex function subject to linear constraints. Let us introduce the Lagrangian

L@, u, p)=Z(pi Ingi)+M<1_Zpi) +9<U —Zpiki) .

The saddle point, 1, p)* realizing max max, minp L(0, u, p) gives the Gibbs
distribution. First solving maxmin, L(6, 1, p) we obtain (14).
To computed as a function otJ we have to maximize the Lagrangian with

respect t@, that is
_ OAi
m@ax|:9U Iog(Ei e )] ,

which can be written as mapoU — log[E(e”*)] — logk , if A is a random variable
with uniform law on(%)i=1.... k- O

5 Notes and Comments.

Bellman [18] was aware of the interest of the Fenchel transform (which he calls
max transform) for the analytic study of the dynamic programming equations. The
bicontinuity of the Fenchel transform has been well studied in convex analysis
[38, 7, 6].

Maslov has started the study of idempotent integration in [41]. He has been
followed in particular by [39, 42, 32, 31, 4, 1, 2]. In [43] idempotent Sobolev
spaces have been introduced as a way to study HIB equation as a linear object. In
this paper the min-plus weak convergence has been also introduced but for compact
supporttest functions. This weak convergence is used in [33] for the approximation
of HIB equations. In [47] and [10] the law of large numbers and the central limit
theorem for decision variables has been given in the particular gase2. In
two independent works [32, 31] and [17] the study of decision variables has been
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started. The second work has been continued in [4]. A lot of results announced
in [4] are proved in [1] and [2]. Many of the missing proofs of results given here
can be found in [5]. The large deviation result is a known result in convex analysis
[25, 26] and the bibliography of these papers. The min-plus product form result
presented here comes from [20].

The Cramer transform is an important tool in large deviations literature [8, 37,
50, 34]. In [32, 10, 4] Cramer transform has been used in the min-plus context.
In [34] the connection between large deviations and statistical mechanics is done.
See also [48] for discussion of links existing between mechanics, thermodynamics
statistical mechanics. In this paper min-plus ergodic theorems are also presented.
Limit theorems of probabilities and decision theory can be putin a same framework
see [3].

Some aspects of [51, 11] are strongly related to the morphism between prob-
ability and decision calculus in particular the morphism between LQG and LEG
problems and the link witlii, problem.
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