Degree one homogeneous minplus dynamic
systems and traffic applications : Part II

N. Farhi, M. Goursat & J.-P. Quadrat

ABSTRACT. In this second part we discuss the phases appearing in the
fundamental diagrams of traffic systems modeled by 1-homogeneous
minplus dynamics and show the improvement obtained by traffic light
control.

Mpreover, we have shown in the first part that 1-homogeneous sys-
tems may have a chaotic behavior, we give here a new subclass of 1-
homogeneous dynamics having periodic trajectories. It generalizes the
standard cases which need a monotony property. Moreover we show
that this new, but still restrictive class, has applications to regular town
traffic with crossings but without turning possibilities.

1. The traffic fundamental diagram phases.

The fundamental diagrams of quite different systems are similar to the
one given in part I. We have studied the cases of two circular roads with
one crossing and two crossings and the cases of regular towns with various
number of roads on a torus. In all these cases we suppose the existence of
right priority.

The fundamental diagrams have always three phases corresponding re-
spectively to low, average and high densities. We see on the fundamental
diagram of Part I that : — for low densities the flow increases linearly with
the density, — for average densities the flow is constant, — for high density
there are deadlocks and the flows are null.

On Figures (1), (2) and (3) we show the typic asymptotic distribution

of vehicles in the three phases [3, 4].

FIGURE 1. Two circular roads with one crossing case. Car
distributions in the low average and high density phases.

We see that :
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FI1GURE 2. Four roads with two crossings. Car distributions
in the low average and high density phases.
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F1GURE 3. A regular town. Car distributions in the low
average and high density phases.
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e Low density phase. There are so few vehicles in the network that
after a transient regime, they move without obstructing each other
on the roads and in the crossings. Thus, the “priority to the right”
is not used, the vehicles moves as on a unique circular road and the
average flow is equal to the vehicle density in the network. This
phase corresponds to densities less than 1/4.

e Average density phase. When the density is between 1/4 and 1/2
(in the symmetric road cases), the vehicles can neither move freely
on the roads, nor avoid each other on the crossings. Therefore
“priority to the right” happens. The car on the priority road move
freely and the waiting cars are all in the non priority road. The
flow reaches the maximum value 1/4 corresponding to the full use
of the crossings.

o High density phase. When the density exceeds a quantity equal
to 1/2 (in the symmetric case), at asymptotic regime, a closed
circuit of vehicles on some nonpriority roads appears which creates
a complete deadlock of the system.

2. Traffic light control.

To avoid the deadlock due to right priority we can use traffic light con-
trols. A Petri net describing the junction with the traffic light control is
shown on Figure 4. The negative weight extension of Petri net is necessary
to model the light phases in a time invariant way. The part of the Petri
modeling the light control corresponds to the places ag, ac, ag,ac.. As long
as a. contains a token a. = 1 the green light is for the North street, when
a. = 1 the green light is for the East street. As long as a. = 1 we have
ag = 1 and g, is authorized to fire (since thanks to the loop ¢y, ag,q, as
soon as a token is consumed another one is generated in the place ay). The
main point is that when the token in a. goes in a. (phase change) the tokens
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in ay must be removed (this is done by the input arc with weight -1 of the
place ag). More generally without negative weight we cannot model tokens
staying less then a prescribed time.

FIGURE 4. Traffic lights modeling.

In Figure 5, we compare the fundamental diagrams of three crossing
policies for a system composed of two circular roads of same size with two
junctions. The three policies are : — right priority, — standard given phase
duration, — feedback controlled duration (based on the road congestion)
computed by LQG method.

The control improves the average and the high density phases, without
spoiling the low density one. The improvement given by the feedback control
achieves the throughput obtained on a unique circular road without crossing
but doubling the time spent in a place representing the crossing place.

Furthermore, the feedback control dissolves more efficiently the jams
(that can appear locally in transient regimes) than the other policies would
do.

FiGUrRE 5. Comparison of three policies of managing the
crossings : —right priority to the right (1), —open loop light
control (2), —feedback light control (3).

3. A subclass of triangular homogeneous dynamics

In this section we study a subclass of 1-homogeneous minplus linear
systems for which we can prove the periodicity. Their dynamics belongs to
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a subclass of 1-homogeneous triangular systems :

(31) { Uk+1 = C® Uk,
Tpr1 = Alug) @ v ® B(ug) ® ug.
where {ug}ren and {2k }ren are minplus column vectors, C' is a minplus
square matrix, A(uy) and B(uy) are two minplus 0-homegeneous matrices
depending of ur. We call this type of systems Triangular 1-Homogeneous
(T1H).
We call linear periodic dynamic (LP) a dynamic given by :

Tpy1 = A @ 11, 0 given,

where Ay, are minplus matrices periodic in k.
We can prove the following theorems (see the proves in [5]).

THEOREM 3.1. Every T1H dynamics behaves asymptotically as a LP
dynamics.

THEOREM 3.2. A T1H system with A(u) irreducible for every u € Rin
satisfies :

max 1, (up) = max s, (@),
uo eRmin uey

where : — gy denotes the initial condition of u, — piz(ug) = limg_o xx/k, —
V is the set of the minplus eigen vectors of the matriz C.

THEOREM 3.3. Fvery LP dynamic yx11 = Ex®yg, such that the matrices
FEy. have the same support, is realizable by a T1H dynamics.
4. Application to traffic

We show that the traffic of regular towns with traffic light, buffered junc-
tion but without turning possibilities can be modeled with a T1H dynamics.

F1GURE 6. Traffic light intersection without possibility of turning.
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On the Petri net of Figure 6 the traffic light is modeled by the subsystem
corresponding to the transitions wui,us, u3, us4, which has no input coming
from the rest of the system. The dynamic of this subsystem is minplus
linear. If the initial condition ug = (0,0,0,0) the number of tokens in the
places ag and by is boolean and periodic. To a cycle corresponds the four
phases given in the Table 1. The junction has a buffer place in each direction

| Phase | ag | by | Vertical light color | Horizontal light color |

1 110 green red
2 01]0 red red
3 011 red green
4 01]0 red red

TABLE 1. The phases of the traffic light.

(a1, b1) to avoid blocking. The phases 2 and 4 gives the time, for car entering
in the junction, to go in the buffer and then to free the crossing. Indeed, a
vehicle entering in the crossing (represented by the two places a,, and b,)
leaves it surely in one unit of time.

The green duration of phase 1 and 3 is the sojourn time of tokens in the
place ;. The phases 2 and 4 have a duration of one unit.

PROPOSITION 4.1. The dynamics of the Petri net of Figure 6 has the
T1H dynamics :

. . . SD4
. . . k+1 A+ (uF . k
k1 _ |1 k x | Ar(u®) x
U = ) 02 ) ) Qu, |:zk+1:| - |: . Ag(uk):| & |: k::| )
T P3

where - denotes oo, with

_Jaouy/ug if (i,5) = (n,n),
Ar(w)ij =9 .
independent of u elsewhere.
and
bous/U4 Zf (17]) - (mam)7
independent of u elsewhere.

Az(u)ij = {

We are able to explicit the asymptotic flows which are different according
the direction followed by the vehicles.

THEOREM 4.2. The average flow on the horizontal (resp. vertical) road
is given by \/4 where X is the unique eigenvalue of the irreducible matrix

®io A1 (uF) [resp. @j_g Az(u)].
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