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ABSTRACT. Werevisit some results obtained recently in min-plus alge-
brafollowing the ideas of statistical mechanics. Computation of geodes-
icsin agraph can be done by min-plus matrix products. A min-plus ma-
trix isseen asakind of finite statesmechanical system. Theenergy of this
system isthe eigenval ue of its min-plus matrix. The graph interpretation
of the eigenvalue may be seen as a kind of Mariotte law. The Cramer
transform is introduced by statistics on populations of independent min-
plus linear systems seen as a kind of perfect gas. It transforms probabil-
ity calculusin what we call decision calculus. Then, dynamic program-
ming equations, which are min-plus linear recurrences, may be seen as
min-plus Kolmogorov equationsfor Markov chains. An ergodic theorem
for Bellman chains, analogue of Markov chains, is given. The min-plus
counterparts of aggregation coherency and reversibility of Markov chains
arethen studied. They provide new decomposition resultsto compute so-
lutions of dynamic programming equations.

1. INTRODUCTION

Min-plus algebra, which isthe set of real numbers endowed with the min
and the plus operations, has been studied for a long time mainly in oper-
ations research. Within this mathematical structure, dynamic programming
or Hamilton Jacobi equations become linear equations (for example see[30,
29)).

This algebra has been used to describe, linearly, systems in which syn-
chronization is the main driving mechanism. Applications may be found in
production systems, transportation and parallel computations [9]. For ex-
ample, to achieve atask, in a production system, a machine and a part are
needed. A task can start only at the supremum of the availability times of
the machine and the part.

Min-plus algebra appears also in asymptotic computations. Indeed

&n + &M ~ gmln(n,m) ’

when ¢ issmall. Large deviations to the law of large numbers [39, 20, 17],
where such kind of assymptotics are used, suggests aduality between prob-
ability calculus and optimization theory. In some recent studies this duality
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has been formalized [36, 18, 19, 10, 4, 5, 1, 2]. Moreover, large deviations
arerelated to statistical mechanics (for example [20]).

In this paper we revisit some results on the min-plus linear systems fol-
lowing the most elementary ideas used in statistical mechanics. We first
recall min-plus terminology (Section 2.1) and a Perron Fobenius like the-
orem (Section 2.2). Then it is shown that a min-plus system can be seen
as amechanical system and that its min-plus eigenvalue corresponds to the
energy of a mechanica system. The graph interpretation of this eigenval-
ueis seen as akind of Mariotte law, or, more precisely, as the adiabatic in-
variant of a mechanical system (Section 2.3). Then, a collection of inde-
pendent min-plus systems with dynamics given in afinite set is seen as a
“perfect gas” (Section 3.1) composed of different kind of “molecules’. The
dynamic of the complete system being the tensor min-plus product of the
individual subsystems, its eigenvalue is the sum of the individual eigenval-
ues. Then the Gibbs distribution can be introduced as the most likely distri-
bution of the population of min-pluslinear subsystems compatible with the
observed eigenvalue of the complete system. In a standard way, the compu-
tation of the Gibbs distribution introduces the Cramér transform. The prop-
ertiesof the Cramér transform (Section 3.2) show clearly theduality existing
between probability calculus and optimization.

The min-plus analogue of probability calculus, called decision theory, is
recalled (Section4.1). An ergodic theorem for the anal ogue of Markov chain-
s, caled Bellman chains, is given (Section 4.2). Then, the properties of ag-
gregation coherency and reversibility of Bellman chains are introduced as
dual of the corresponding properties of Markov chainsin Section 5. When
some of these properties are true, it is possible to decompose the compu-
tation of the eigenvector of the min-plus system when it is unique (that is,
to decompose the computation of the value function of adynamic program-
ming equation in asymptotic regime). This, perhaps new result, illustrates
the interest of this duality.

2. MIN-PLUSLINEARITY GEODESICS AND
THERMODYNAMICS

2.1. MIN-PLUS STRUCTURES AND PATHS OF MINIMAL WEIGTH IN A
GRAPH

A semiring K is a set endowed with two operations denoted & and ®
where @ is associative, commutative with zero element denoted ¢, ® isas-
sociative, admits a unit element denoted e, and distributes over ®; zero is
absorbing (e ® a =a®e = ¢ foral a € ). Thissemiring iscommutative
when ® iscommutative. A module on asemiringiscalled asemimodule. A
dioid K isanidempotent (thatisa®a = a, Va € K) semiring. A [commu-
tative, resp. idempotent] semifield IC is a[commutative, resp. idempotent]
semiring whose nonzero elements are invertible.
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The set R U {+o0} endowed with the two operations ® = min, ® = +,
is denoted R, and called min-plus algebra. It is an idempotent semifield
withe = +ocoande = 0.

The semimodule of (n, p)-matrices with entriesin the semiring IC is de-
noted Mpp(K). Whenn = p, K = Rpin, wewrite M, Itisadioid and the
matrix product in M, is

def def .
[AB]” = [A® B]ij = mkln[Aik + Bkj] .

All the entries of the zero matrix of M,, are +o00. The diagonal entries of
the identity matrix of M, are 0, the other entries being +oc.

Withamatrix C in M,,(K), weassociate aprecedencegraph G(C) which
isthe pair (W (C), A(C)) where N (C) = {1, 2, - - - , n} isthe set of nodes,
and A(C) = {(X, y) | Cyx # ¢} isthe set of arcs, the weight of anarc (X, y)
being Cyx.

A path pisanordered set of nodesp = (Xp = X,---,X = Y) such
that (X, Xj41) isan arc. For apath p, | isitslength, x itsorigin and y its
destination?. The weight of a path p, denoted w(p), isthe ®-product of the
weights of its arcs. A path with the same origin and destination, x = v,
is called a circuit. The set of all paths of length | [resp. any length] with
origin x and destination y is denoted 7, (C) [resp. Px,(C)]. The set of all
paths [resp. circuits] isdenoted P(C) [resp. C(C)]. We have the following
interpretation of the matrix product.

ProrPosITION 1. For C € M, we have

inf =C' .
peP'xy<C>w(p) yx

The matrix C* def @f’io C' existsif we accept entriesin Rpin. The entry
Cyx theinfimum of the weights of the paths of any length connecting x to'y.

PROPOSITION 2. For C € M, such that
Cyy=Cyx>0, Cix>0, Yy #x e N(C),
C,x isadistance and we have

inf = C*. . 1
peny(c)w(p) Ix (1

Proof. Cj, = 0iff x = y and C}, < CJ, + C;,. Equation (1) follows from
the interpretation of the matrix product. O

A path achieving the optimum in (1) isageodesic joining x to y in G(C).

1The structure Ryyin completed with —oo (400 — oo = +00) isadioid caled Ryin.
2The paths of length 0 can be identified with the nodes.
CONF. MECA. STAT. 96
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2.2. EIGENVALUES AND TURNPIKE
An eigenvalue A and an eigenvector X are defined as solutions of
AX=CX, X+#¢.

As soon as C isirreducible® (see [23] for the general reducible case) there
exists a unique eigenvalue. The eigenvalue has the following graph inter-
pretation.

THEOREM 3. For C € M,, irreducible, one has that

. w(C)
A= o (2)

Proof. See[9, Th.3.23]. O]

Circuits achieving the optimum in (2) are called critical circuits. The sub-
graph which isthe union of the nodesand arcs of the critical circuitsiscalled
critical graph and denoted G... It may have many maximal strongly connect-
ed subgraphsm.s.c.s. (Z;, j = 1,---Q) caled critical classes. We denote
Z=A{7%,---,Zy} theset of the critical classes.

There may exist several eigenvectors associated with one eigenvalue. Let
us choose in each critical classz anode denoted z.The el gensemi modul e of

an irreduci bIe matrlx C isgenerated by the eigenvectors { XZ [CA]
Z} where Ck o a1 (see[9 Th.3. 2]). These elgenvectors satisfy X§ =e

Similarly the set {YZ [CA] Z € Z}isagenerating family of the left
eigensemimodule.

PROPOSITION 4. If C € M, issuch that all its eigenvalues A are nonneg-
ative, then C* = @, C'.

Proof. Any path of length larger than n contains a circuit with nonnegative
weigth therefore C" < @' C'. O

If the smallest eigenvalue of amatrix C is negative, CK goes to —oo when
k goes to +o0o and C* isidentically equal to —oco. We have the following
precise asymptotics.

THEOREM 5 (TURNPIKE). For C € M, irreducible

dIM>0,0p>0 : Vk>0, gq=ko+m, Cq=kq<®X7Y7) G

ez

where Z, X? and Y?Z are respectively the set of critical classes, and theright
and | eft elgensemimodul e generating families of C~.

Proof. It followsfrom Th.3.104, 3.109 and 3.112 of [9]. J

3y, y € N(C), Pxy(C) # 0.
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When the critical graph has only one m.s.c.s., (3) becomes, in standard no-
tation,
Cl=XI+kr+Y].

This result means that, for k large enough, the optimal path joining x to y
of length k can be decomposed in three optimal paths. The first path con-
nects x to anode z of the critical graph. The second isacircuit in the critical
graph starting and ending at z. Thethird connects zto y. The node z can be
choosen arbitrarily on the critical graph.

The asymptotic result on the min-plus linear recurrences Xy,; = C X
can be extended to the more general recurrences

m—1
X =P CiXesi -
i=0
Using the delay operator 8, this recurrence can be written
X =C®)X, (4)
with

m-1
C@®) = @aici .
i=0

These recurrences are sometimes used to describe the dynamics of timed
event graphs (aspecia class of timed Petri nets such that any place has only
one arc upstream and one arc downstream, see [9, ch.2]). In this case, the
vector X, hastheinterpretation of the numbers of transition firings up to the
date n.

We can associate a precedence graph G(C(8)) with the matrix C(8). The
weights of its arcs are now polynomialsin §. Let us suppose that they are
min-plus monomials* in §. Then, the weight of a path is also a min-plus

monomial w(p) = ¢ ® §' and we define w¢(p) o ¢ and we(Pp) o t. We
still call eigenvalue A and eigenvector X a pair satisfying
X=ChHX.
We have the following graph interpretation of the eigenvalue.
PrRoPOSITION 6. If C(8) isa (n, n) matrix, with monomial entries, such
that G(C(8)) isirreducibleand G(C(¢)) hasno circuitswith negativeweight,
then, C(8) admits a unique eigenvalue 1. Moreover one has
A= inf 2O 5)
ceC(C(5) we(C)

Proof. See[9, Th.3.28]. J
In the case of an irreducible event graph, the eigenvalue isthe number of fir-

ings by unit of time of any transition. Equation (5) saysthat the* throughput”
is equal to the infimum, among all the circuits, of the number of tokens in

“4In fact this assumption subsumes no loss of generality if we accept to change the real-
ization of the dynamical system.
CONF. MECA. STAT. 96
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the circuit divided by the total amount of time that the tokens have to spend
in the places of the circuit (see[9, Sect.3.2.5]).

2.3. MECHANICAL ANALOGY

L et us make an attempt to connect the objects discussed previously with
guantities appearing, classicaly, in mechanics. Let us consider the one di-
mensional harmonic oscillator with Lagrangian L (X, X) = (X2 — x?)/2. Its
Hamiltonian, defined by H(p, x) = sup,(px — L(X, X)), isH(X, p) =
(p? + x2)/2. We denote by v(t, y) the extremum of the action

t
A(t, x() = /0 L(x(t), x(t))dt + ¢(x(0)) ,

among the continuous piecewise derivable trgjectories satistying x(t) =,
for agiven initia cost ¢. It is solution of the Hamilton-Jacobi Bellman e-
quation (HJB):

v v
e +H (a—xx> =0, v(0,x)=¢().

For t small enough, v isindeed the infimum of the action. Then we have

R$DZ v(t.2 = Prizy) @) .
y

where
X(t)=z

nzy)= @ Atx0).

X0, x(0)=y

Therefore, R is amin-plus linear operator. We haver(y, 0) = s(t)y?/2,
where s is solution of the Riccati equation

$=—-(1+s9, s(0)=+oc.

Then, s(t) = —cotg(t) for0 <t < xw. Fort > mandy # 0, ry(y,0) =
—o0. The solution of the HIB equation gives an extremum of the action but
not an infimum anymore. Nevertheless the effective trgjectoriesfollowsthe
characteristic curves of the HIB equation. The dynamics describing the ex-
tremal trajectories are given by the Hamiltonian system

i« — daH(p, X) _
ap
dH(p.x)
oax
Themotion inthe phase space (the space of pairs (x, p) thatisR?) arecircles
centeredin Owith radiusequal to +/2E. Theextremal trajectoriesarex(t) =

V2EsSin(t + «) and p(t) = ~/2E cos(t + «), where E is the energy of
the system which can be seen as the negative of an eigenvalue of the HIB

9

p=
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eguation. Indeed, if we search for a solution of theform v(t, x) = —Et +
we (X) to the HIB equation, we have to solve

0
E=H (ﬂ x) .
dX
Two real eigenvectors exist wg and —wg where

we(X) = Earccos(x/ﬁ) — <\/2E — x2) X/2

which is defined only for —v/2E < x < +/2E.

The action computed along an extremal circuit, in the phase space, of en-
ergy E, is0. But A(E) = fOT p(t)dx(t), where the integral is computed
along the extremal curve of energy E, and T = 27 (thetimeto carry out a
circuit inthe phase space), isequal to 2 E (the surface of thecircle of radius
V2E). Theintegrand p(t)dx(t)/dt istwice the kinetic energy and the inte-
gral A(E) hasthe unit of an action. Therefore, wehave E = A/ T whichis
analogousto the graph interpretation of the eigenvalue of anirreducible min-
plus matrix. Indeed the unit of A correspondsto the unit of the entries of the
min-plus matrices. Fore more general situation we havedA(E)/dE = T
(see[7, Sect.50]).

Consider amore general harmonic oscillator of Lagrangian

L (X, X) = (M(t)X? — k(t)x?)/2,

wherem(t) and k(t) may vary with time, but, very slowly with respect to the
speed of the oscillator motion (for fixed m and k). 1nthe phase space, thetra-
jectorieslook like ellipses varying slowly with thetime. But, A(E(t)) stays
constant in first approximation with respect to the coefficient measuring the
slowness of the variation of m and k. It is called adiabatic invariant (se€|7,
ch.10, sect. E]). This adiabatic invariant can be seen as a Mariotte law for
one particle. Thisisclearer on the example of a particle with massm, speed
v, in aone dimensional box of length | with perfectly elastic walls. In this
case, the motion in the phase space is a rectangle and the adiabatic invari-
ant is 2mwl which is equal to twice the kinetic energy 1/2mv? (which stay
constant along the motion including the impacts) multiplied by T = 2| /v
(the time spent to make the cycle in the phase space). Therefore, we have
2E = A/T =1(2mv/T) where2mv/ T hasthe unit of aforce (correspond-
ing to the pressure in the one dimensional case) exerted on thewall. There-
fore we note that the pressure times the volume is equal to a constant times
the kinetic energy of the particle, that is, its temperature.

In the case of event graphs, this adiabatic invariant appears when the tran-
sition timings change while the number of tokens stays constant. The Mar-
iotte law is the graph interpretation of the eigenvalue during the variation.
If the critical circuit stays constant, we have N = AT (with N the number

of tokens of the critical circuit, T the time spent in the critical circuit and A
CONF. MECA. STAT. 96
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the troughput of the event graph). A thermodynamic theory may be devel-
opped based on this equality. For the time being, the interest of this kind of
thermodynamic theory is not clear.

3. STATISTICAL MECHANICS AND DUALITY BETWEEN
PROBABILITY AND OPTIMIZATION

If wethink intermsof statistical mechanics, the previous section was con-
cerned with one particle. In this section, we consider the analogue of a sys-
tem of independent particles (perfect gas) by building alarge min-plus sys-
tem composed of independent min-plus subsystems. Following standard me-
thods of statistical mechanics, we givethe Gibbsdistribution of the min-plus
subsystems which naturally introduces the Cramér transform playing anim-
portant role in the duality between probability calculus an optimization.

3.1. MIN-PLUS PERFECT GAS

The tensor product of two min-plus square matrices A and B, A € M,,
B € M,,, isthemin-plustensor of order 4 denoted C = A® B with entries
Cijir = Aji ® Bjir = Aji + Bjsi. Onthe set of such tensors, we define the
DFOdUCt [C ® D]ii/kk’ = EBjj’ Cii’jj’ &® Djj’kk’-
PROPOSITION 7. Given a set of m min-plus matrices A, € M,, such that
G(A) areirreducible, denoting A; their eigenvalues and g the identity ma-
trix of dimension n;, we have

(OGIA)(Gi Xi) = (®iri) (i Xi) , (6)
P [Odie) © A © (O 180] (@ X) = (@) (@i X) ,

for any eigenvector X; of A;.

Let us consider a system composed of N independent subsystems (parti-
cles) of k different kindsdefined by their min-plusmatrices Aj,i = 1, --- , k,
which are supposed irreducible with eigenvalues 1.

Therepartition (N;,i = 1,---, k) (with ), Ni = N) of the N subsys-
tems among the k possibities defines the probability

def :
p:(pl = NI/NvI :1» vk)
The number of possible waysto achieve a given distribution pis
M NT/(NZING! - - N
Using the Stirling formula, we have

k
s™ (logM)/N ~ —> pilogp. when N — +o0..
i=1
This gives the asymptotics (with respect to N) of the probability to draw
the empirical distribution p in a sample, of size N, of the uniform law on
(1’ e k)
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L et us suppose that we observe the eigenvalue E of the complete system
(thetotal energy of the complete system in the mechanical analogy). Thanks

to (6), itisgiven by:
k
E=Q0)" .
i=1

that is
Y ph=ULE/N. @)

Then, in astandard way, the Gibbs distribution is defined as the one max-
imizing S among all the distributions satisfying the constraint (7).
THEOREM 8. The Gibbs distribution is given by

Ai

>

pi(0) = 8

where 6 achieves the optimumin
meax[GU —logE(e")] .

where 1 isa random variable taking the value A; with probability 1/Kk.

Proof. The function p — —S(p) is convex. Therefore we have to mini-
mize a convex function subject to linear constraints. Let us introduce the
Lagrangian

L@O.m.p) =) (P Iogpi)+u<l—Zpi)+9<u _mei> ,

The saddle point (6, ., p)* realizing max, max, min, L (6, u, p) givesthe
Gibbs distribution. First solving max,, min, L (6, «, p) we obtain (8).

To compute 6 as a function of U we have to maximize the Lagrangian
with respect to 0, that is

| ()]

which can be written = max,[6U — log E(e¢’*)] — logk , if A isarandom
variable with uniform law on (%)i-1.... k. O
3.2. CRAMER TRANSFORM
The Cramér transform C, associate the convex function
c,:U — sup[oU — logE, ("]
0
with the probability law w of arandom variable . It has appeared naturally

(with 1 the uniform law) in computing the parameter 6 of the Gibbs distri-
bution. Let usrecall its well known, important, properties.

CONF. MECA. STAT. 96
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We remark that the Cramér transform can be written C; o Fologol ,
where L isthe Laplace transform and F the Fenchel transform defined by

[F(©)]0) 2 sup[ox — c(x)] .

Using the properties of the Laplace and Fenchel transforms, we have

C(uxv) =C(n)*C(v),

where x denotes the convolution operator and x the inf-convol ution operator
defined by

[f*gly) = igf[f(x) + 9y —x)],

for f and g two functionsfrom R into Ryyn.

Let .« bethe probability law of arandom variable X with mean m and vari-
ancev. Fromtheinvolution property of the Fenchel transformonl.s.c. (low-
€r semi continuous) proper convex functions, we have 7(c,) = logoL(u) ,
from which it is easy to deduce that

c.(m) = minc,(x), v=1/c;(m).
Moreover, if we denote
1
ME, 0% S(x=mi/o)", p=1,

asimple calculation shows that

with
6=[c"+5"1"", 1/p+1/p=1.

These properties suggest the existence of a calculus similar to the proba-
bility calculus, in the min-plus context.

4. ERGODIC THEOREMS FOR BELLMAN CHAINS

From the previous remarks on the Cramér transform and anal ogy between
Markov matrices and min-plus transition cost it is clear that a duality exists
between probability calculus and optimization. A min-plus probability the-
ory has been formalized and developped in [10, 19, 18, 4, 2, 5, 24]. It uses
the theory idempotent measures and integrals of Maslov [30] and is based
on probabilities with values in min-plus algebra, called cost measures. We
recall here basic definitions and results. Then, we give an ergodic theorem
for finite state Bellman chains which are the min-plus analogue of Markov
chains.
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4.1. DECISION THEORY

DEFINITION 9. Let U beatopological space and G the set of its open sets.
A finite min-plusidempotent measureon (U, G) isan application K from G
to Ryin such that
1. K@) =¢
2. K(UG)) =infK(Gp) forany G, € G.
n n

It isamin-plus probability or cost measureif in addition K(U) = e.

Let ¢ be abounded function from U to R, (that islower bounded, since
¢ isthe maximal element of R,;in). Then, K(G) = infycg c(u) isamin-plus
idempotent measure. If K hasthisform, ciscalled adensity of K. Any cost
measure K on (U, G) admitsaminimal extension K, to the power set P(U)
of U:

K.(A) = sup K(G).
GDA,Geg
If U isaseparable metrizable space, K has necessarily adensity. Itsminimal
density isequal to c*(x) = K, ({x}) andislower semicontinuous(l.s.c.) (see
[1] or [27] for a weaker result, see also the related results on capacities in
[28]).

In the sequel, xa denotes the min-plus characteristic function of the set
A: xa(X) = eif x e Aand xa(X) = ¢ otherwise. Given any cost measure
Kon (U, G), the Maslov integral with respect to K isthe unique Rp,-linear
form V on the set of lower bounded upper semicontinuous (u.s.c.) functions
f : U — Rpy, such that V(f,) decreases, and converges towards V( f)
when f,, decreases and convergestowards f and V(xa) = K(A) for Ae U/
(see[30, 1]). Theintegral V() iscalled thevalueof f : itisoneanalogue
of the expectation. When confusion may occur, we denoteit Vi () or sim-
ply K(f). If the cost measure K has adensity and c* isits minimal density,
V(f) = infycy (f(u) 4+ c*(u)). Therefore, the min-plus equivaent of the
Dirac measure in point X is the cost measure with density y.

Using this formalism, weak convergence and tightness of cost measures
is defined as usual.

DEFINITION 10. Wesay that K,, weakly convergestowards K, (K, el K),
if K,(f)—,K(f) for any bounded continuous® function f : U — Ryin.

DEFINITION 11. A set K of cost measuresistight iff
sup inf K(Q%) =& = 400,
Q Kek

where Q are compact sets.

Equivalent definitions of weak convergence, together with compactness
resultsusing tightnessmay befindin[28, 35, 34, 5]. Theseresultsaresimilar
to that of Billingsley [11] on the weak convergence of probabilities. Weak

Sendowed with the toplogy defined by the order relation (i.e. by lim,x, = x if-
flimsup, X, = liminf, X, = X).
CONF. MECA. STAT. 96
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convergence of cost measuresis also related to the epiconvergence of their
densities[5] (see[8] for definitions and results on epiconvergence).

Since the minimal extension of acost measureisacost measure on the set
of all subsets of U, the minimal extension of itsintegral exists and is equal
to the integral with respect to K, : it is then defined, linear and continuous
on all functions f. We denoteit also by K or V. We only consider minimal
extensions and densities, and omit the star.

Theseresultsallow usto defineall the notions of probability theory; some-
times with a change of name. The analogue of conditional probability is
called conditional cost excess: K(A|B) = K(A N B) — K(B), for any
sets A, B such that K(B) # . A decision variable (d.v.) with valuesin
atopological space E is any application X from U to E. Its cost measure
Ky isthe minimal extension of its restriction to the topology of E defined
by Kx(V) = K(X~1(V)); and its cost density is the minimal density cx
of Ky (when it exists). It isthel.s.c. enveloppe of the function €x(X) =
inf{c(u),u € U and X(u) = x}. Independence of d.v. is defined using
open sets, conditional cost excess of ad.v. with respect to another is defined
using minimal densitiesby cxy (X, y) = cx v(X, Y)—Cy(Y); clearly, when X
and Y take afinite number of values, cxy (X, y) = K(X = X|Y =y). The
conditional value may be defined using the conditional cost. Weak conver-
gence of decision variables corresponds to that of their cost measures.

A negligeable set is such that its cost is equal to ¢, that isto +o00. Then,
a sequence of decision variables X, converges almost surely towards X iff
Xn(u) — X(u) for al u with finite cost c(u) < +o0. Contrarily to clas-
sical probability theory, this convergence is implied by the convergencein
cost (the analogue of the convergence in probability), which implies (resp.
is equivalent to) the weak convergence when the limit istight (resp. a con-
stant) [18, 1].

Inadditionto classical notionsof probability, we definethe optimumQ(X)
of adv. X: O(X) = {x € E, cx(x) = 0}. Itisasecond (after the val-
ue V) analogue of the expectation. Indeed, for ad.v. X which isthe image
Cr(X’) by the Cramer transform of a random variable X’ (in the sense that
the cost density of X isthe image of the law of X’), the optimum of X is
equal to the expectation of X’ (see Section 3.2). If f is continuous and X
istight (that isif Ky istight), O (f(X)) = f (O(X)) (O(X) is compact).
Since the optimum of ad.v. only depends on its cost measure, we can define
the conditional optimum O(X|Y) : y — {X € E, cxy(X,y) = 0}.

4.2. ERGODIC THEOREMS FOR BELLMAN CHAINS

The analogue of a Markov chain is called a Bellman chain. Let X, bea
Bellman chain with values in a finite state space E, initial cost density v
and conditional cost excess K(Xni1 = Y| Xy = X) = Cyx. Since E" isa
separable and metrizabl e topol ogical space, we seethat the decision variable
X = (Xo, X1, ...) € E" hasacost density cx(X) = > -5 Cxr,1.x, + ¥ (X0),
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where X = (Xp, Xz ...) (the sum may be equal to +oo which is the zero of
Rmin)- Theinitial cost of achain startingat x € Eisy = xy .

We study herethe ergodic mean of afunction of aBellman chain X,,, using
the spectral min-plus theory recalled in Section 2.2. Proofs and generaliza-
tion will be given in [3]. Results about return time to a state will be given
in[38].

For acircuitc = (Xg, ..., X% = Xg) € C(C) andafunction f : E — F
with values in afinite dimensional normed vector space F, we denote

f(x) +---+ f(Xx)
I .

c(f)=

For asubgraph G of G(C), we denote
g(f) =convic(f),ce CH)},
where conv(A) isthe convex hull of A C F.

THEOREM 12. Let X,, beaBellman chainwith valuesin afinite state space
E, starting at x € E and with conditional cost C. If C irreducible, with
critical graph G, strongly connected, then

f(X a4 (X
(%) + - 1% =Y, whenn - +oo,
whereY isad.v. with cost density xg. 1) (that isthe uniformcost on G( 1)),
independently of x.

In order to compare Theorem 12 with the ergodic theorem for Markov
chains, we need to relate the limit G.( ) with some expectation of f with
respect to the invariant cost measure of the Bellman chain. The unique in-
variant cost density y, satisfying Cy = y, has the nodes of G, as opti-
mum. Indeed, yx = C;, forany z € G, and y, > Owhen x ¢ G.. Then,
O (Y)) = f(Ge) and Ge(f) C O(F(Y)) ifcy = y.

COROLLARY 13. Let y betheuniqueinvariant cost density of the Bellman
chain of Theorem 12. If O(f (Y)) with Y a d.v of density is reduced to one
point,

f(X) +---+ F(Xp)
n
where the convergence holds weakly, in cost and almost surely.

A sequence X, of independent d.v. with same cost measure v is the par-
ticular case of Bellman chainwhen Cy, = . Theinvariant cost measureis
¥, O(f(Y)) = O(f(Xy)) and Gc(f) = conv(O( f (X1))). Thisleadsto the
following law of large numbers which generalizes the results of [36, 5, 18],
where the optimum was supposed to be unique.

COROLLARY 14. Let X,, beindependent d.v. taking a finite number of val-
uesin F, and let Y bea d.v. with uniform cost on conv(Q(Xy)), then

X, bt X
%ﬂ{ whenn — 400 .

Another case where the limit is “unique” is the following.
CONF. MECA. STAT. 96
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COROLLARY 15. If the critical graph of the Bellman chain X, of Theo-
rem 12 isreduced to one circuit ¢, we have

f(X1)+"'+ f(Xn)
n
where the convergence holds weakly, in cost and almost surely.

In this case, the set G.( f) isreduced to one point c( f). Any optimal tra-
jectory of the Bellman chain starting at X, is deterministic after some finite
time, and the ergodic theorem isreduced to the classical ergodic theorem for
the“deterministic” applicationx; — X; 1 inthecritical classc = (Xo, ... , X).
The (classical) invariant measure of thisapplication isherethe uniform mea-
sure on C.

However, when the critical graph has more than one circuit, an optimal
trajectory hasto choose between many directions at each intersection of cir-
cuits. If we assign a probability law to choose, at random, between these
directions, the trgjectory becomes a Markov chain, and the ergodic theorem
says that the limit is the mean of f with respect to the invariant measure.
Theorem 12 saysthat this mean is always an element of G.( f), but depends
on the probability law assigned to the directions.

If the Bellman chain isirreducible, but with at least two critical classes,
theinvariant cost density isnot unique, and the limit of the mean of f onthe
chain depends on the initial point. The correponding more difficult results
will be given in aforthcoming paper [3].

— ¢(f), whenn — 400,

5. LuMPABILITY COHERENCY AND REVERSIBILITY OF
BELLMAN CHAINS

Statistical mechanicsis useful to study very large systems. For moderate
size systemsthe only methods are aggregation or separation of variables. We
study here aggregation and separation of variablesin the context of Bellman
chains.

5.1. RESIDUATION, LINEAR PROJECTION, AGGREGATION AND
COHERENCY

Theonly invertiblemin-plus matricesarethe diagonal matricesmultiplied
by permutation matrices. Fortunately, we can use the monotonicity proper-
tiesof min-pluslinear operatorsto define aminimal supersolution of alinear
min-plus system.

For A € My, B € Mpq with entriesin Ry, we define

X = A\BE min{X € M,y | AX > B},
which does exist. We have Xjx = max;(Bjx — Aj) .
For A € My, B € Mgn, wedefineaso
X = B/AZ min{X € Mgy, | XA> B}
We have Xy = maxj(Bk,- — A”) .
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GivenB:R". — R. andC:R. — R
of B and define (ker C), = C~1C(x) afibration of R ;..

The projection of x anm onim B parallel to ker C, denoted P, is de-
fined by im B N (ker C), when this set is nonempty and contains a unique
element. Inthis case we say that im B and ker C are transverse.

A necessary and sufficient condition of transversality [15] is that

CB((CB)\C) =C, and B = (B/(CB))CB.

we denoteim B theimage
n

Then we have
P =B(CB)\C) = (B/(CB))C.

Given B [resp. C], there does not always exist C [resp.B] such that im B
and ker C aretransverse. ThereexistsC [resp. B] iff B [resp. C] isregular,
that is, if there exists a generalized inverse X to B defined by BXB = B
[resp. CXC = C] (see[14, 15]).

Wesay that Aisaggregableby C if thereexists Ac suchthat CA = AcC.
In this case, the dynamic system X1 = AX, admits aggregate variables
Y = C X, satisfying areduced order dynamic Yy,; = Ac Yk.

THEOREM 16. Thematrix A isaggregable by theregular matrix C iff there

exists B satisfying P A = P AP, where P isthe projector on im B parallel
to ker C. Then, we have Ac = C A(B/(CB)).

Proof. Since C isregular, we know [15] that there exist B and P such that
CP=Cand PB=B.

The sufficiency condition is obtained by left multiplying P A= P AP by
C. We obtain

CPA=CPAP=CAP=CA(B/(CB))C = [CA(B/(CB))C .

The necessary condition is obtained by left multiplying CA = AcC by
(B/CB). Weobtain

PA=(B/(CB))CA= (B/(CB))AC = (B/(CB))AcCP

= (B/(CB))CAP=PAP.
0

We say that B is coherentwith A if there exists Ag such that AB = B Ag.
Then, if Xy € im B, the dynamical system Xy,1 = AX admits coherent
variables Uy such that X, = BUy. The coherent variables follow areduced
order dynamic Uy, ; = AgUy.

THEOREM 17. Thematrix A iscoherent with the regular matrix B iff there
exists C satisfying AP = P AP, where P isa projector onim B parallel to
ker C. Then, we have Az = ((CB)\C)AB.

Proof. The proof isdual to the proof of the previous theorem. [

CONF. MECA. STAT. 96
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REMARK 18. Without the assumption of regularity, which can be restric-
tive, we can obtain aggregated or coherent systems. But the dynamic of the
reduced system would not stay linear. These possibilities will be explored
in another work.

All the results about lumpability and reversibility givenin[16] can be ex-
tented to the min-plus context because they are purely combinatorial results.
Werecall them here because they give new results about aggregation and de-
composition of dynamic programming equations.

5.2. REVERSIBILITY

Let us consider an irreducible matrix A € M, with strongly connected
critical graph. The eigensemimodule associated to its unique eigenvalue is
generated by only one eigenvector v. Denoting V = diagv, we havev =
V E, where E isthen-vector with entriese. Wehave AV E = V E, therefore

V-IAVE = E which meansthat A% v AV has E’ as|eft eigenvector.
It isthe transition matrix of aBellman chain.

The matrix A issaid reversible when A = A. A reversible matricesis
normalized. It is quite easy to compute the right eigenvector of areversible
matrix.

THEOREM 19. For areversible matrix A (with right eigenvector v) and a
path p fromi to j we have

N @ e

Vi okep Pk
Proof. The proof isimmediate from the equality AV = V A satisfied by
A. [

5.3. LUMPABILITY AND COHERENCY

L et us consider adynamic system with transition matrix A. Aggregation
of A by the characteristic function C of a partition of the states is called
lumpability.

More precisaly, if we denote the state space by £ = {1,---,n} and if
we consider a partition I/ of the states, the characteristic function U of the
partition I/ is defined by

UiJ:{ E :I : ;j Vie&, Jel.
The matrix Aissaid lumpableif it is aggregable by the matrix C = U’.

L et usconsider theweight diagonal matrix W = diag (wy, - - - , wp), Where
w isnormalized, that isE'w = e. Then, thematrix S= U'WU isdiagonal.
Taking B = WU S, we have CB = g, then B and C are transverse and
P = BC. We havethetrivia result.
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THEOREM 20. A islumpable with aggregate matrix Ac = A = C ABiff
P A =Acs. Vied VI Kel. 9)
keK

In the following section we will only consider coherency with the matrix
B = WU S Itisimportant to seethat thismatrix isaconditional cost with
respect to the partition /. Indeed, we have
def Wj
B'J = wu =

J b @je\] wj

THEOREM 21. If Aisnormalized and coherent (with weight w and parti-

tion /), then there exists a right eigenvector q of A satisfying g = w".

, if j € J, ¢ otherwise.

Proof. If AisB coherent, wehave AB = B Ag. Denotingq any eigenvector
of Ag, we seethat g = BQ isan eigenvector of A. The result follows from
qu = B = u)u_ D

Denoting A = W AW, itisclear that:

e if AisC-aggregablethen A is B-coherent,

o if Ais B-coherent then Ais C-aggregable,

e if AP = APthen A = A and aggregability and coherency imply each

other.

When A is simutaneously aggregable and coherent, it is possible to de-
compose the computation of an eigenvector.

THEOREM 22. For A lumpable and coherent with respect to the partition
U and the weight w, there exists an eigenvector g satisfying
gy =0,0], Vjed VieUu,
d=Aq, AVql=Ajq],
where g7 isthe nonzero part of q”, A, ; isdefined by (9) and A’Y isthe Jth
diagonal block of A (having the size the number of elements of the set J).

Proof. Wehaveonly to provethat A’Jq; = A;;q;. Theother factsamount
to rephrasing Theorem 21. From the structure of B, AB = BAg and @ =
w" weseethat A’Jq) = (Ag);3q;. Thanksto the lumpability assumption
we know that the aggregate matrix is given by (9). [J

5.4. PARTIAL REVERSIBILITY

Itis possible to compute in adecomposed way the eigenvector (supposed
to be unique) of amatrix A under another assumption. We say that the matrix
Aispartially reversibleif it satisfies AQU = Q AU, with Q = diagq, for
q = Aaq.

PROPOSITION 23. The following statements are equivalent:

1. Aispartially reversible;

2. Dy Al = Djey Akl VI, K

3. AP = AP, with P = B(q)C.

CONF. MECA. STAT. 96
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Under partial reversibility, we can decompose the computation of g but
the local problemsthat we have to solve are different from those of the pre-
Vious section.

COROLLARY 24. The right eigenvector q of a partially reversible matrix
A satisfies q; = ;97 with AG = g and A’’q] = D’q}, where D’ =
diag(@jejAjk, keld).

Proof. Thisresultisarephrasing of statement 2 of the previous proposition.
]

The following result gives the relation existing between aggregability co-
herency and reversibility.

THEOREM 25. Under partial reversibility of amatrix A, aggregability and
coherency imply each other and the aggregate matrix A isreversible.

Under aggregability and coherency of the matrix A and the reversibility
of the aggregate A, we have

AP=PA=PAP=PAP=AP=PA.
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