
             

MIN-PLUS LINEARITY AND STATISTICAL MECHANICS

J.P. QUADRAT AND MAX-PLUS WORKING GROUP

ABSTRACT. We revisit some results obtained recently in min-plus alge-
bra following the ideas of statistical mechanics. Computation of geodes-
ics in a graph can be done by min-plus matrix products. A min-plus ma-
trix is seen as a kind of finite states mechanical system. The energy of this
system is the eigenvalue of its min-plus matrix. The graph interpretation
of the eigenvalue may be seen as a kind of Mariotte law. The Cramer
transform is introduced by statistics on populations of independent min-
plus linear systems seen as a kind of perfect gas. It transforms probabil-
ity calculus in what we call decision calculus. Then, dynamic program-
ming equations, which are min-plus linear recurrences, may be seen as
min-plus Kolmogorov equations for Markov chains. An ergodic theorem
for Bellman chains, analogue of Markov chains, is given. The min-plus
counterparts of aggregation coherency and reversibility of Markov chains
are then studied. They provide new decomposition results to compute so-
lutions of dynamic programming equations.

1. INTRODUCTION

Min-plus algebra, which is the set of real numbers endowed with the min
and the plus operations, has been studied for a long time mainly in oper-
ations research. Within this mathematical structure, dynamic programming
or Hamilton Jacobi equations become linear equations (for example see [30,
29]).

This algebra has been used to describe, linearly, systems in which syn-
chronization is the main driving mechanism. Applications may be found in
production systems, transportation and parallel computations [9]. For ex-
ample, to achieve a task, in a production system, a machine and a part are
needed. A task can start only at the supremum of the availability times of
the machine and the part.

Min-plus algebra appears also in asymptotic computations. Indeed

εn + εm ' εmin(n,m) ,

when ε is small. Large deviations to the law of large numbers [39, 20, 17],
where such kind of assymptotics are used, suggests a duality between prob-
ability calculus and optimization theory. In some recent studies this duality
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has been formalized [36, 18, 19, 10, 4, 5, 1, 2]. Moreover, large deviations
are related to statistical mechanics (for example [20]).

In this paper we revisit some results on the min-plus linear systems fol-
lowing the most elementary ideas used in statistical mechanics. We first
recall min-plus terminology (Section 2.1) and a Perron Fobenius like the-
orem (Section 2.2). Then it is shown that a min-plus system can be seen
as a mechanical system and that its min-plus eigenvalue corresponds to the
energy of a mechanical system. The graph interpretation of this eigenval-
ue is seen as a kind of Mariotte law, or, more precisely, as the adiabatic in-
variant of a mechanical system (Section 2.3). Then, a collection of inde-
pendent min-plus systems with dynamics given in a finite set is seen as a
“perfect gas” (Section 3.1) composed of different kind of “molecules”. The
dynamic of the complete system being the tensor min-plus product of the
individual subsystems, its eigenvalue is the sum of the individual eigenval-
ues. Then the Gibbs distribution can be introduced as the most likely distri-
bution of the population of min-plus linear subsystems compatible with the
observed eigenvalue of the complete system. In a standard way, the compu-
tation of the Gibbs distribution introduces the Cramér transform. The prop-
erties of the Cramér transform (Section 3.2) show clearly the duality existing
between probability calculus and optimization.

The min-plus analogue of probability calculus, called decision theory, is
recalled (Section 4.1). An ergodic theorem for the analogue of Markov chain-
s, called Bellman chains, is given (Section 4.2). Then, the properties of ag-
gregation coherency and reversibility of Bellman chains are introduced as
dual of the corresponding properties of Markov chains in Section 5. When
some of these properties are true, it is possible to decompose the compu-
tation of the eigenvector of the min-plus system when it is unique (that is,
to decompose the computation of the value function of a dynamic program-
ming equation in asymptotic regime). This, perhaps new result, illustrates
the interest of this duality.

2. MIN-PLUS LINEARITY GEODESICS AND

THERMODYNAMICS

2.1. MIN-PLUS STRUCTURES AND PATHS OF MINIMAL WEIGTH IN A

GRAPH

A semiring K is a set endowed with two operations denoted ⊕ and ⊗
where ⊕ is associative, commutative with zero element denoted ε, ⊗ is as-
sociative, admits a unit element denoted e, and distributes over ⊕; zero is
absorbing (ε ⊗ a = a ⊗ ε = ε for all a ∈ K). This semiring is commutative
when ⊗ is commutative. A module on a semiring is called a semimodule. A
dioid K is an idempotent (that is a⊕a = a, ∀a ∈ K) semiring. A [commu-
tative, resp. idempotent] semifield K is a [commutative, resp. idempotent]
semiring whose nonzero elements are invertible.
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The set R ∪ {+∞} endowed with the two operations ⊕ = min, ⊗ = +,
is denoted Rmin

1 and called min-plus algebra. It is an idempotent semifield
with ε = +∞ and e = 0.

The semimodule of (n, p)-matrices with entries in the semiring K is de-
notedMnp(K). When n = p, K = Rmin, we writeMn. It is a dioid and the
matrix product inMn is

[AB]i j
def= [A ⊗ B]i j

def= min
k

[Aik + Bkj ] .

All the entries of the zero matrix ofMn are +∞. The diagonal entries of
the identity matrix ofMn are 0, the other entries being +∞.

With a matrix C inMnn(K), we associate a precedence graphG(C) which
is the pair (N (C),A(C)) where N (C) = {1, 2, · · · , n} is the set of nodes,
andA(C) = {(x, y) | Cyx 6= ε} is the set of arcs, the weight of an arc (x, y)

being Cyx.
A path p is an ordered set of nodes p = (x0 = x, · · · , xl = y) such

that (xi , xi +1) is an arc. For a path p, l is its length, x its origin and y its
destination2. The weight of a path p, denoted w(p), is the ⊗-product of the
weights of its arcs. A path with the same origin and destination, x = y,
is called a circuit. The set of all paths of length l [resp. any length] with
origin x and destination y is denoted P l

xy(C) [resp. Pxy(C)]. The set of all
paths [resp. circuits] is denoted P(C) [resp. C(C)]. We have the following
interpretation of the matrix product.

PROPOSITION 1. For C ∈Mn we have

inf
p∈P l

xy(C)
w(p) = Cl

yx .

The matrix C∗ def= ⊕∞
i =0 Ci exists if we accept entries in Rmin. The entry

C∗
yx the infimum of the weights of the paths of any length connecting x to y.

PROPOSITION 2. For C ∈Mn such that

Cxy = Cyx > 0, Cxx ≥ 0, ∀y 6= x ∈ N (C) ,

C∗
yx is a distance and we have

inf
p∈Pxy(C)

w(p) = C∗
yx . (1)

Proof. C∗
yx = 0 iff x = y and C∗

yx ≤ C∗
yz + C∗

zx. Equation (1) follows from
the interpretation of the matrix product.

A path achieving the optimum in (1) is a geodesic joining x to y in G(C).

1The structure Rmin completed with −∞ (+∞ − ∞ = +∞) is a dioid called Rmin.
2The paths of length 0 can be identified with the nodes.

CONF. MECA. STAT. 96



                 

4 J.P. QUADRAT AND MAX-PLUS WORKING GROUP

2.2. EIGENVALUES AND TURNPIKE

An eigenvalue λ and an eigenvector X are defined as solutions of

λX = C X, X 6= ε .

As soon as C is irreducible3 (see [23] for the general reducible case) there
exists a unique eigenvalue. The eigenvalue has the following graph inter-
pretation.

THEOREM 3. For C ∈Mn, irreducible, one has that

λ = min
c∈C(C)

w(c)

l (c)
. (2)

Proof. See [9, Th.3.23].

Circuits achieving the optimum in (2) are called critical circuits. The sub-
graph which is the union of the nodes and arcs of the critical circuits is called
critical graph and denoted Gc. It may have many maximal strongly connect-
ed subgraphs m.s.c.s. (zj , j = 1, · · · g) called critical classes. We denote
Z = {z1, · · · , zg} the set of the critical classes.

There may exist several eigenvectors associated with one eigenvalue. Let
us choose in each critical class z a node denoted z.The eigensemimodule of

an irreducible matrix C is generated by the eigenvectors {Xz def= [Cλ]∗.z, z ∈
Z} where Cλ

def= λ−1C (see [9, Th.3.2]). These eigenvectors satisfy Xz
z = e.

Similarly the set {Yz def= [Cλ]∗z., z ∈ Z} is a generating family of the left
eigensemimodule.

PROPOSITION 4. If C ∈Mn is such that all its eigenvalues λ are nonneg-
ative, then C∗ = ⊕n−1

i =0 Ci .

Proof. Any path of length larger than n contains a circuit with nonnegative
weigth therefore Cn ≤ ⊕n−1

i =0 Ci .

If the smallest eigenvalue of a matrix C is negative, Ck goes to −∞ when
k goes to +∞ and C∗ is identically equal to −∞. We have the following
precise asymptotics.

THEOREM 5 (TURNPIKE). For C ∈Mn irreducible

∃m ≥ 0, ρ > O : ∀k ≥ 0, q = kρ + m, Cq = λq

(⊕
z∈Z

XzYz

)
, (3)

where Z , Xz and Yz are respectively the set of critical classes, and the right
and left eigensemimodule generating families of Cρ .

Proof. It follows from Th.3.104, 3.109 and 3.112 of [9].

3∀x, y ∈ N (C), Pxy(C) 6= ∅.
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When the critical graph has only one m.s.c.s., (3) becomes, in standard no-
tation,

Ck
yx = Xz

y + kλ + Yz
x .

This result means that, for k large enough, the optimal path joining x to y
of length k can be decomposed in three optimal paths. The first path con-
nects x to a node z of the critical graph. The second is a circuit in the critical
graph starting and ending at z. The third connects z to y. The node z can be
choosen arbitrarily on the critical graph.

The asymptotic result on the min-plus linear recurrences Xk+1 = C Xk

can be extended to the more general recurrences

Xk =
m−1⊕
i =0

Ci Xk−i .

Using the delay operator δ, this recurrence can be written

X = C(δ)X , (4)

with

C(δ) =
m−1⊕
i =0

δi Ci .

These recurrences are sometimes used to describe the dynamics of timed
event graphs (a special class of timed Petri nets such that any place has only
one arc upstream and one arc downstream, see [9, ch.2]). In this case, the
vector Xn has the interpretation of the numbers of transition firings up to the
date n.

We can associate a precedence graph G(C(δ)) with the matrix C(δ). The
weights of its arcs are now polynomials in δ. Let us suppose that they are
min-plus monomials4 in δ. Then, the weight of a path is also a min-plus

monomial w(p) = c ⊗ δt and we define wc(p)
def= c and we(p)

def= t . We
still call eigenvalue λ and eigenvector X a pair satisfying

X = C(λ−1)X .

We have the following graph interpretation of the eigenvalue.

PROPOSITION 6. If C(δ) is a (n, n) matrix, with monomial entries, such
thatG(C(δ)) is irreducible andG(C(ε)) has no circuits with negative weight,
then, C(δ) admits a unique eigenvalue λ. Moreover one has

λ = inf
c∈C(C(δ))

wc(c)

we(c)
. (5)

Proof. See [9, Th.3.28].

In the case of an irreducible event graph, the eigenvalue is the number of fir-
ings by unit of time of any transition. Equation (5) says that the “throughput”
is equal to the infimum, among all the circuits, of the number of tokens in

4In fact this assumption subsumes no loss of generality if we accept to change the real-
ization of the dynamical system.
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the circuit divided by the total amount of time that the tokens have to spend
in the places of the circuit (see [9, Sect.3.2.5]).

2.3. MECHANICAL ANALOGY

Let us make an attempt to connect the objects discussed previously with
quantities appearing, classicaly, in mechanics. Let us consider the one di-
mensional harmonic oscillator with Lagrangian L(ẋ, x) = (ẋ2 − x2)/2. Its
Hamiltonian, defined by H(p, x) = supẋ(pẋ − L(ẋ, x)), is H(x, p) =
(p2 + x2)/2. We denote by v(t, y) the extremum of the action

A(t, x()) =
∫ t

0
L(ẋ(t), x(t))dt + φ(x(0)) ,

among the continuous piecewise derivable trajectories satistying x(t) = y,
for a given initial cost φ. It is solution of the Hamilton-Jacobi Bellman e-
quation (HJB):

∂v

∂t
+ H

(
∂v

∂x
, x

)
= 0, v(0, x) = φ(x) .

For t small enough, v is indeed the infimum of the action. Then we have

(Rtφ)(z)
def= v(t, z) =

⊕
y

rt(z, y) ⊗ φ(y) ,

where

rt(z, y) =
x(t)=z⊕

x(), x(0)=y

A(t, x()) .

Therefore, Rt is a min-plus linear operator. We have rt(y, 0) = s(t)y2/2,
where s is solution of the Riccati equation

ṡ = −(1 + s2), s(0) = +∞ .

Then, s(t) = −cotg(t) for 0 ≤ t < π . For t ≥ π and y 6= 0, rt(y, 0) =
−∞. The solution of the HJB equation gives an extremum of the action but
not an infimum anymore. Nevertheless the effective trajectories follows the
characteristic curves of the HJB equation. The dynamics describing the ex-
tremal trajectories are given by the Hamiltonian system

ẋ = ∂ H(p, x)

∂p
= p ,

ṗ = −∂ H(p, x)

∂x
= −x .

The motion in the phase space (the space of pairs (x, p) that is R2) are circles
centered in 0 with radius equal to

√
2E. The extremal trajectories are x(t) =√

2E sin(t + α) and p(t) = √
2E cos(t + α), where E is the energy of

the system which can be seen as the negative of an eigenvalue of the HJB
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equation. Indeed, if we search for a solution of the form v(t, x) = −Et +
wE(x) to the HJB equation, we have to solve

E = H

(
∂wE

∂x
, x

)
.

Two real eigenvectors exist wE and −wE where

wE(x) = Earccos
(

x/
√

2E
)

−
(√

2E − x2
)

x/2 ,

which is defined only for −√
2E ≤ x ≤ √

2E.
The action computed along an extremal circuit, in the phase space, of en-

ergy E, is 0. But A(E) = ∫ T
0 p(t)dx(t), where the integral is computed

along the extremal curve of energy E, and T = 2π (the time to carry out a
circuit in the phase space), is equal to 2π E (the surface of the circle of radius√

2E). The integrand p(t)dx(t)/dt is twice the kinetic energy and the inte-
gral A(E) has the unit of an action. Therefore, we have E = A/T which is
analogous to the graph interpretation of the eigenvalue of an irreducible min-
plus matrix. Indeed the unit of A corresponds to the unit of the entries of the
min-plus matrices. Fore more general situation we have d A(E)/d E = T
(see [7, Sect.50]).

Consider a more general harmonic oscillator of Lagrangian

L(ẋ, x) = (m(t)ẋ2 − k(t)x2)/2 ,

where m(t) and k(t) may vary with time, but, very slowly with respect to the
speed of the oscillator motion (for fixed mand k). In the phase space, the tra-
jectories look like ellipses varying slowly with the time. But, A(E(t)) stays
constant in first approximation with respect to the coefficient measuring the
slowness of the variation of m and k. It is called adiabatic invariant (see[7,
ch.10, sect. E]). This adiabatic invariant can be seen as a Mariotte law for
one particle. This is clearer on the example of a particle with mass m, speed
v, in a one dimensional box of length l with perfectly elastic walls. In this
case, the motion in the phase space is a rectangle and the adiabatic invari-
ant is 2mvl which is equal to twice the kinetic energy 1/2mv2 (which stay
constant along the motion including the impacts) multiplied by T = 2l/v
(the time spent to make the cycle in the phase space). Therefore, we have
2E = A/T = l (2mv/T) where 2mv/T has the unit of a force (correspond-
ing to the pressure in the one dimensional case) exerted on the wall. There-
fore we note that the pressure times the volume is equal to a constant times
the kinetic energy of the particle, that is, its temperature.

In the case of event graphs, this adiabatic invariant appears when the tran-
sition timings change while the number of tokens stays constant. The Mar-
iotte law is the graph interpretation of the eigenvalue during the variation.
If the critical circuit stays constant, we have N = λT (with N the number
of tokens of the critical circuit, T the time spent in the critical circuit and λ

CONF. MECA. STAT. 96
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the troughput of the event graph). A thermodynamic theory may be devel-
opped based on this equality. For the time being, the interest of this kind of
thermodynamic theory is not clear.

3. STATISTICAL MECHANICS AND DUALITY BETWEEN

PROBABILITY AND OPTIMIZATION

If we think in terms of statistical mechanics, the previous section was con-
cerned with one particle. In this section, we consider the analogue of a sys-
tem of independent particles (perfect gas) by building a large min-plus sys-
tem composed of independent min-plus subsystems. Following standard me-
thods of statistical mechanics, we give the Gibbs distribution of the min-plus
subsystems which naturally introduces the Cramér transform playing an im-
portant role in the duality between probability calculus an optimization.

3.1. MIN-PLUS PERFECT GAS

The tensor product of two min-plus square matrices A and B, A ∈ Mn,
B ∈Mn′ , is the min-plus tensor of order 4 denoted C = A¯ B with entries
Cj j ′i i ′ = Aji ⊗ Bj ′i ′ = Aji + Bj ′i ′ . On the set of such tensors, we define the
product [C ⊗ D]i i ′kk′ = ⊕

j j ′ Cii ′ j j ′ ⊗ Dj j ′kk′ .

PROPOSITION 7. Given a set of m min-plus matrices Ai ∈ Mni such that
G(Ai ) are irreducible, denoting λi their eigenvalues and ei the identity ma-
trix of dimension ni , we have

(¯i Ai )(¯i Xi ) = (⊗i λi )(¯i Xi ) , (6)⊕
i

[
(¯i −1

k=1ek) ¯ Ai ¯ (¯m
k=i +1ek)

]
(¯i Xi ) = (⊕i λi )(¯i Xi ) ,

for any eigenvector Xi of Ai .

Let us consider a system composed of N independent subsystems (parti-
cles) of k different kinds defined by their min-plus matrices Ai , i = 1, · · · , k,
which are supposed irreducible with eigenvalues λi .

The repartition (Ni , i = 1, · · · , k) (with
∑

i Ni = N) of the N subsys-
tems among the k possibities defines the probability

p = (pi
def= Ni /N, i = 1, · · · , k) .

The number of possible ways to achieve a given distribution p is

M
def= N!/(N1!N2! · · · Nk!) .

Using the Stirling formula, we have

S
def= (log M)/N ∼ −

k∑
i =1

pi log pi , when N → +∞ .

This gives the asymptotics (with respect to N) of the probability to draw
the empirical distribution p in a sample, of size N, of the uniform law on
(1, · · · , k).
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Let us suppose that we observe the eigenvalue E of the complete system
(the total energy of the complete system in the mechanical analogy). Thanks
to (6), it is given by:

E =
k⊗

i =1

(λi )
Ni .

that is ∑
i

pi λi = U
def= E/N . (7)

Then, in a standard way, the Gibbs distribution is defined as the one max-
imizing Samong all the distributions satisfying the constraint (7).

THEOREM 8. The Gibbs distribution is given by

pi (θ) = eθλi∑
i eθλi

, (8)

where θ achieves the optimum in

max
θ

[θU − log E(eθλ)] .

where λ is a random variable taking the value λi with probability 1/k.

Proof. The function p 7→ −S(p) is convex. Therefore we have to mini-
mize a convex function subject to linear constraints. Let us introduce the
Lagrangian

L(θ, µ, p) =
∑

i

(pi log pi ) + µ

(
1 −

∑
i

pi

)
+ θ

(
U −

∑
i

pi λi

)
.

The saddle point (θ, µ, p)∗ realizing maxθ maxµ minp L(θ, µ, p) gives the
Gibbs distribution. First solving maxµ minp L(θ, µ, p) we obtain (8).

To compute θ as a function of U we have to maximize the Lagrangian
with respect to θ , that is

max
θ

[
θU − log

(∑
i

eθλi

)]
,

which can be written = maxθ [θU − log E(eθλ)] − log k , if λ is a random
variable with uniform law on (λi )i =1,··· ,k.

3.2. CRAMÉR TRANSFORM

The Cramér transform Cr associate the convex function

cµ : U 7→ sup
θ

[θU − log Eµ(eθλ)]

with the probability law µ of a random variable λ. It has appeared naturally
(with µ the uniform law) in computing the parameter θ of the Gibbs distri-
bution. Let us recall its well known, important, properties.

CONF. MECA. STAT. 96



           

10 J.P. QUADRAT AND MAX-PLUS WORKING GROUP

We remark that the Cramér transform can be written Cr
def= F ◦ log ◦L ,

where L is the Laplace transform and F the Fenchel transform defined by

[F(c)](θ)
def= sup

x
[θx − c(x)] .

Using the properties of the Laplace and Fenchel transforms, we have

Cr (µ ∗ ν) = Cr (µ) ? Cr (ν) ,

where ∗ denotes the convolution operator and ? the inf-convolution operator
defined by

[ f ? g](y) = inf
x

[ f (x) + g(y − x)] ,

for f and g two functions from R into Rmin.
Let µ be the probability law of a random variable X with mean mand vari-

ance v. From the involution property of the Fenchel transform on l.s.c. (low-
er semi continuous) proper convex functions, we haveF(cµ) = log ◦L(µ) ,

from which it is easy to deduce that

cµ(m) = min
x

cµ(x), v = 1/c′′
µ(m) .

Moreover, if we denote

Mp
m,σ (x)

def= 1

p
(|x − m|/σ)p, p ≥ 1 ,

a simple calculation shows that

Mp
m,σ ?Mp

m̄,σ̄ =Mp
m+m̄,σ̂

,

with

σ̂ = [σ p′ + σ̄ p′
]1/p′

, 1/p + 1/p′ = 1 .

These properties suggest the existence of a calculus similar to the proba-
bility calculus, in the min-plus context.

4. ERGODIC THEOREMS FOR BELLMAN CHAINS

From the previous remarks on the Cramér transform and analogy between
Markov matrices and min-plus transition cost it is clear that a duality exists
between probability calculus and optimization. A min-plus probability the-
ory has been formalized and developped in [10, 19, 18, 4, 2, 5, 24]. It uses
the theory idempotent measures and integrals of Maslov [30] and is based
on probabilities with values in min-plus algebra, called cost measures. We
recall here basic definitions and results. Then, we give an ergodic theorem
for finite state Bellman chains which are the min-plus analogue of Markov
chains.
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4.1. DECISION THEORY

DEFINITION 9. Let U be a topological space and G the set of its open sets.
A finite min-plus idempotent measure on (U,G) is an application K from G
to Rmin such that

1. K(∅) = ε

2. K(∪
n

Gn) = inf
n

K(Gn) for any Gn ∈ G.

It is a min-plus probability or cost measure if in addition K(U ) = e.

Let c be a bounded function from U to Rmin (that is lower bounded, since
ε is the maximal element of Rmin). Then, K(G) = infu∈G c(u) is a min-plus
idempotent measure. If K has this form, c is called a density of K. Any cost
measure K on (U,G) admits a minimal extension K∗ to the power set P(U )

of U :

K∗(A) = sup
G⊃A,G∈G

K(G).

If U is a separable metrizable space, K has necessarily a density. Its minimal
density is equal to c∗(x) = K∗({x}) and is lower semicontinuous (l.s.c.) (see
[1] or [27] for a weaker result, see also the related results on capacities in
[28]).

In the sequel, χA denotes the min-plus characteristic function of the set
A : χA(x) = e if x ∈ A and χA(x) = ε otherwise. Given any cost measure
K on (U,G), the Maslov integral with respect to K is the unique Rmin-linear
form V on the set of lower bounded upper semicontinuous (u.s.c.) functions
f : U → Rmin such that V( fn) decreases, and converges towards V( f )

when fn decreases and converges towards f and V(χA) = K(A) for A ∈ U
(see [30, 1]). The integral V( f ) is called the value of f : it is one analogue
of the expectation. When confusion may occur, we denote it VK ( f ) or sim-
ply K( f ). If the cost measure K has a density and c∗ is its minimal density,
V( f ) = infu∈U ( f (u) + c∗(u)). Therefore, the min-plus equivalent of the
Dirac measure in point x is the cost measure with density χx.

Using this formalism, weak convergence and tightness of cost measures
is defined as usual.

DEFINITION 10. We say that Kn weakly converges towards K, (Kn
w→ K),

if Kn( f ) →n K( f ) for any bounded continuous5 function f : U → Rmin.

DEFINITION 11. A set K of cost measures is tight iff

sup
Q

inf
K ∈K

K(Qc) = ε = +∞ ,

where Q are compact sets.

Equivalent definitions of weak convergence, together with compactness
results using tightness may be find in [28, 35, 34, 5]. These results are similar
to that of Billingsley [11] on the weak convergence of probabilities. Weak

5endowed with the toplogy defined by the order relation (i.e. by limn xn = x if-
f lim supn xn = lim infn xn = x).
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convergence of cost measures is also related to the epiconvergence of their
densities [5] (see [8] for definitions and results on epiconvergence).

Since the minimal extension of a cost measure is a cost measure on the set
of all subsets of U , the minimal extension of its integral exists and is equal
to the integral with respect to K∗ : it is then defined, linear and continuous
on all functions f . We denote it also by K or V. We only consider minimal
extensions and densities, and omit the star.

These results allow us to define all the notions of probability theory; some-
times with a change of name. The analogue of conditional probability is
called conditional cost excess : K(A|B) = K(A ∩ B) − K(B), for any
sets A, B such that K(B) 6= ε. A decision variable (d.v.) with values in
a topological space E is any application X from U to E. Its cost measure
KX is the minimal extension of its restriction to the topology of E defined
by KX(V) = K(X−1(V)); and its cost density is the minimal density cX

of KX (when it exists). It is the l.s.c. enveloppe of the function c̃X(x) =
inf{c(u), u ∈ U and X(u) = x}. Independence of d.v. is defined using
open sets, conditional cost excess of a d.v. with respect to another is defined
using minimal densities by cX|Y(x, y) = cX,Y(x, y)−cY(y); clearly, when X
and Y take a finite number of values, cX|Y(x, y) = K(X = x|Y = y). The
conditional value may be defined using the conditional cost. Weak conver-
gence of decision variables corresponds to that of their cost measures.

A negligeable set is such that its cost is equal to ε, that is to +∞. Then,
a sequence of decision variables Xn converges almost surely towards X iff
Xn(u) → X(u) for all u with finite cost c(u) < +∞. Contrarily to clas-
sical probability theory, this convergence is implied by the convergence in
cost (the analogue of the convergence in probability), which implies (resp.
is equivalent to) the weak convergence when the limit is tight (resp. a con-
stant) [18, 1].

In addition to classical notions of probability, we define the optimum O(X)

of a d.v. X : O(X) = {x ∈ E, cX(x) = 0}. It is a second (after the val-
ue V) analogue of the expectation. Indeed, for a d.v. X which is the image
Cr(X′) by the Cramer transform of a random variable X′ (in the sense that
the cost density of X is the image of the law of X′), the optimum of X is
equal to the expectation of X′ (see Section 3.2). If f is continuous and X
is tight (that is if KX is tight), O ( f (X)) = f (O(X)) (O(X) is compact).
Since the optimum of a d.v. only depends on its cost measure, we can define
the conditional optimum O(X|Y) : y 7→ {x ∈ E, cX|Y(x, y) = 0}.

4.2. ERGODIC THEOREMS FOR BELLMAN CHAINS

The analogue of a Markov chain is called a Bellman chain. Let Xn be a
Bellman chain with values in a finite state space E, initial cost density ψ

and conditional cost excess K(Xn+1 = y|Xn = x) = Cyx. Since EN is a
separable and metrizable topological space, we see that the decision variable
X = (X0, X1, . . . ) ∈ EN has a cost density cX(x) = ∑∞

n=0 Cxn+1,xn +ψ(x0),
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where x = (x0, x1 . . . ) (the sum may be equal to +∞ which is the zero of
Rmin). The initial cost of a chain starting at x ∈ E is ψ = χx .

We study here the ergodic mean of a function of a Bellman chain Xn, using
the spectral min-plus theory recalled in Section 2.2. Proofs and generaliza-
tion will be given in [3]. Results about return time to a state will be given
in [38].

For a circuit c = (x0, . . . , xl = x0) ∈ C(C) and a function f : E → F
with values in a finite dimensional normed vector space F , we denote

c( f ) = f (x1) + · · · + f (xl )

l
.

For a subgraph G of G(C), we denote

G( f ) = conv{c( f ), c ∈ C(G)} ,

where conv(A) is the convex hull of A ⊂ F .
THEOREM 12. Let Xn be a Bellman chain with values in a finite state space
E, starting at x ∈ E and with conditional cost C. If C irreducible, with
critical graph Gc strongly connected, then

f (X1) + · · · + f (Xn)

n
w→ Y, when n → +∞ ,

where Y is a d.v. with cost density χGc( f ) (that is the uniform cost on Gc( f )),
independently of x.

In order to compare Theorem 12 with the ergodic theorem for Markov
chains, we need to relate the limit Gc( f ) with some expectation of f with
respect to the invariant cost measure of the Bellman chain. The unique in-
variant cost density γ , satisfying Cγ = γ , has the nodes of Gc as opti-
mum. Indeed, γx = C∗

zx for any z ∈ Gc and γx > 0 when x 6∈ Gc. Then,
O( f (Y)) = f (Gc) and Gc( f ) ⊂ O( f (Y)) if cY = γ .
COROLLARY 13. Let γ be the unique invariant cost density of the Bellman
chain of Theorem 12. If O( f (Y)) with Y a d.v of density is reduced to one
point,

f (X1) + · · · + f (Xn)

n
→ O( f (Y)), when n → +∞ ,

where the convergence holds weakly, in cost and almost surely.

A sequence Xn of independent d.v. with same cost measure ψ is the par-
ticular case of Bellman chain when Cyx = ψy. The invariant cost measure is
ψ , O( f (Y)) = O( f (X1)) and Gc( f ) = conv(O( f (X1))). This leads to the
following law of large numbers which generalizes the results of [36, 5, 18],
where the optimum was supposed to be unique.
COROLLARY 14. Let Xn be independent d.v. taking a finite number of val-
ues in F, and let Y be a d.v. with uniform cost on conv(O(X1)), then

X1 + · · · + Xn

n
w→ Y, when n → +∞ .

Another case where the limit is “unique” is the following.
CONF. MECA. STAT. 96
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COROLLARY 15. If the critical graph of the Bellman chain Xn of Theo-
rem 12 is reduced to one circuit c, we have

f (X1) + · · · + f (Xn)

n
→ c( f ), when n → +∞ ,

where the convergence holds weakly, in cost and almost surely.

In this case, the set Gc( f ) is reduced to one point c( f ). Any optimal tra-
jectory of the Bellman chain starting at x, is deterministic after some finite
time, and the ergodic theorem is reduced to the classical ergodic theorem for
the “deterministic” application xi 7→ xi +1 in the critical class c = (x0, . . . , xl ).
The (classical) invariant measure of this application is here the uniform mea-
sure on c.

However, when the critical graph has more than one circuit, an optimal
trajectory has to choose between many directions at each intersection of cir-
cuits. If we assign a probability law to choose, at random, between these
directions, the trajectory becomes a Markov chain, and the ergodic theorem
says that the limit is the mean of f with respect to the invariant measure.
Theorem 12 says that this mean is always an element of Gc( f ), but depends
on the probability law assigned to the directions.

If the Bellman chain is irreducible, but with at least two critical classes,
the invariant cost density is not unique, and the limit of the mean of f on the
chain depends on the initial point. The correponding more difficult results
will be given in a forthcoming paper [3].

5. LUMPABILITY COHERENCY AND REVERSIBILITY OF

BELLMAN CHAINS

Statistical mechanics is useful to study very large systems. For moderate
size systems the only methods are aggregation or separation of variables. We
study here aggregation and separation of variables in the context of Bellman
chains.

5.1. RESIDUATION, LINEAR PROJECTION, AGGREGATION AND

COHERENCY

The only invertible min-plus matrices are the diagonal matrices multiplied
by permutation matrices. Fortunately, we can use the monotonicity proper-
ties of min-plus linear operators to define a minimal supersolution of a linear
min-plus system.

For A ∈Mnp, B ∈Mnq with entries in Rmin, we define

X = A\B
def= min{X ∈Mpq | AX ≥ B} ,

which does exist. We have Xlk = max j (Bjk − Ajl ) .

For A ∈Mpn, B ∈Mqn, we define also

X = B/A
def= min{X ∈Mqp | X A ≥ B} .

We have Xkl = max j (Bkj − Al j ) .
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Given B : Rp

min → Rn

min and C : Rn

min → Rq

min, we denote im B the image
of B and define (ker C)x = C−1C(x) a fibration of Rn

min.
The projection of x ∈ Rn

min on im B parallel to ker C, denoted Px, is de-
fined by im B ∩ (ker C)x when this set is nonempty and contains a unique
element. In this case we say that im B and ker C are transverse.

A necessary and sufficient condition of transversality [15] is that

C B((C B)\C) = C, and B = (B/(C B))C B .

Then we have

P = B((C B)\C) = (B/(C B))C .

Given B [resp. C], there does not always exist C [resp.B] such that im B
and ker C are transverse. There exists C [resp. B] iff B [resp. C] is regular,
that is, if there exists a generalized inverse X to B defined by B X B = B
[resp. C XC = C] (see [14, 15]).

We say that A is aggregable by C if there exists AC such that C A = ACC.

In this case, the dynamic system Xn+1 = AXn admits aggregate variables
Yk = C Xk satisfying a reduced order dynamic Yk+1 = ACYk.

THEOREM 16. The matrix A is aggregable by the regular matrix C iff there
exists B satisfying P A = P AP, where P is the projector on im B parallel
to ker C. Then, we have AC = C A(B/(C B)).

Proof. Since C is regular, we know [15] that there exist B and P such that
C P = C and P B = B.

The sufficiency condition is obtained by left multiplying P A = P AP by
C. We obtain

C P A= C P AP= C AP = C A(B/(C B))C = [C A(B/(C B))]C .

The necessary condition is obtained by left multiplying C A = ACC by
(B/C B). We obtain

P A = (B/(C B))C A = (B/(C B))ACC = (B/(C B))ACC P

= (B/(C B))C AP = P AP .

We say that B is coherentwith A if there exists AB such that AB = B AB.

Then, if X0 ∈ im B, the dynamical system Xk+1 = AXk admits coherent
variables Uk such that Xk = BUk. The coherent variables follow a reduced
order dynamic Uk+1 = ABUk.

THEOREM 17. The matrix A is coherent with the regular matrix B iff there
exists C satisfying AP = P AP, where P is a projector on im B parallel to
ker C. Then, we have AB = ((C B)\C)AB.

Proof. The proof is dual to the proof of the previous theorem.
CONF. MECA. STAT. 96
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REMARK 18. Without the assumption of regularity, which can be restric-
tive, we can obtain aggregated or coherent systems. But the dynamic of the
reduced system would not stay linear. These possibilities will be explored
in another work.

All the results about lumpability and reversibility given in [16] can be ex-
tented to the min-plus context because they are purely combinatorial results.
We recall them here because they give new results about aggregation and de-
composition of dynamic programming equations.

5.2. REVERSIBILITY

Let us consider an irreducible matrix A ∈ Mn with strongly connected
critical graph. The eigensemimodule associated to its unique eigenvalue is
generated by only one eigenvector v. Denoting V = diag v, we have v =
V E, where E is the n-vector with entries e. We have AV E = V E, therefore

V−1 AV E = E which means that Â
def= V A′V−1 has E′ as left eigenvector.

It is the transition matrix of a Bellman chain.
The matrix A is said reversible when A = Â. A reversible matrices is

normalized. It is quite easy to compute the right eigenvector of a reversible
matrix.

THEOREM 19. For a reversible matrix A (with right eigenvector v) and a
path p from i to j we have

v j

vi
=

⊗
(k,k′)∈p

Ak′k

Akk′
.

Proof. The proof is immediate from the equality AV = V A′ satisfied by
A.

5.3. LUMPABILITY AND COHERENCY

Let us consider a dynamic system with transition matrix A. Aggregation
of A by the characteristic function C of a partition of the states is called
lumpability.

More precisely, if we denote the state space by E = {1, · · · , n} and if
we consider a partition U of the states, the characteristic function U of the
partition U is defined by

Ui J =
{

e if i ∈ J,

ε if i 6∈ J,
∀i ∈ E, J ∈ U .

The matrix A is said lumpable if it is aggregable by the matrix C = U ′.
Let us consider the weight diagonal matrix W = diag (w1, · · · , wn), where

w is normalized, that is E′w = e. Then, the matrix S = U ′WU is diagonal.
Taking B = WU S−1, we have C B = e, then B and C are transverse and
P = BC. We have the trivial result.
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THEOREM 20. A is lumpable with aggregate matrix AC = Ā = C AB iff⊕
k∈K

Akj = ĀK J, ∀ j ∈ J, ∀J, K ∈ U . (9)

In the following section we will only consider coherency with the matrix
B = WU S−1. It is important to see that this matrix is a conditional cost with
respect to the partition U . Indeed, we have

Bj J = wUj J
def= w j⊕

j ∈J w j
, if j ∈ J, ε otherwise .

THEOREM 21. If A is normalized and coherent (with weight w and parti-
tion U ), then there exists a right eigenvector q of A satisfying qU = wU .

Proof. If A is B coherent, we have AB = B AB. Denoting q any eigenvector
of AB, we see that q = Bq is an eigenvector of A. The result follows from
qU = B = wU .

Denoting Â = W A′W−1, it is clear that:

• if A is C-aggregable then Â is B-coherent,
• if A is B-coherent then Â is C-aggregable,

• if AP = ÂP then Ā = ¯̂A and aggregability and coherency imply each
other.

When A is simutaneously aggregable and coherent, it is possible to de-
compose the computation of an eigenvector.
THEOREM 22. For A lumpable and coherent with respect to the partition
U and the weight w, there exists an eigenvector q satisfying

qj = q̄JqJ
j , ∀ j ∈ J, ∀J ∈ U ,

q̄ = Āq̄, AJ JqJ
+ = ĀJ Jq

J
+ ,

where qJ
+ is the nonzero part of qJ, ĀJ J is defined by (9) and AJ J is the Jth

diagonal block of A (having the size the number of elements of the set J).

Proof. We have only to prove that AJ JqJ
+ = ĀJ JqJ

+. The other facts amount
to rephrasing Theorem 21. From the structure of B, AB = B AB and qU =
wU we see that AJ JqJ

+ = (AB)J JqJ
+. Thanks to the lumpability assumption

we know that the aggregate matrix is given by (9).

5.4. PARTIAL REVERSIBILITY

It is possible to compute in a decomposed way the eigenvector (supposed
to be unique) of a matrix A under another assumption. We say that the matrix
A is partially reversible if it satisfies AQU = Q A′U , with Q = diag q, for
q = Aq.
PROPOSITION 23. The following statements are equivalent:

1. A is partially reversible;
2.

⊕
j ∈J Akjqj = ⊕

j ∈J Ajkqk, ∀J, k ;
3. AP = ÂP, with P = B(q)C.

CONF. MECA. STAT. 96
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Under partial reversibility, we can decompose the computation of q but
the local problems that we have to solve are different from those of the pre-
vious section.

COROLLARY 24. The right eigenvector q of a partially reversible matrix
A satisfies qj = q̄JqJ

j with Āq̄ = q̄ and AJ JqJ
+ = DJqJ

+, where DJ =
diag (⊕ j ∈J Ajk, k ∈ J).

Proof. This result is a rephrasing of statement 2 of the previous proposition.

The following result gives the relation existing between aggregability co-
herency and reversibility.

THEOREM 25. Under partial reversibility of a matrix A, aggregability and
coherency imply each other and the aggregate matrix Ā is reversible.

Under aggregability and coherency of the matrix A and the reversibility
of the aggregate Ā, we have

AP = P A = P AP = PÂP = ÂP = PÂ .
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