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1 Description of the problem

Let Aard B be (m, n) matriceswithred nonregaiveentries Let C and D be (p, n) matriceswith entries
inR =R U {—oc}. Wedenot by ® the max-plus matrix produd definel by

[EQ F]ij = mkaX(Eik + Fyj) .

Let § denoe the backwad shift operate on sequencex = (Xx)kez With entries in R, definal by
(6X)k = Xk—1. Let A(5),B(8), [resp C(8) ard D(8)] be matrices whose entries are monomias [resp.
max-plus monomiald in § with nonregatve codficients [resp with codficientsin R].

We are intereste in solving the following problems.

1. Descrike the se of n-vectors X with entriesin R satisfying

0 AX =BX,
CeX=D®X.

In the first equatian we adog the convention 0 x (—oo) = 0.

2. Descrite the se of n-vectoss of sequence X satisfying

n AG)X = B)X ,
CE®X=D®)®X.

3. Descrike the se of couples (1, X), where X isan n-vecta with entriesin R and A € R, satisfying

an AG)X = BOW)X ,
CMHRX=DM®X,

whete Ajj (1), Bjj (A) denoethe standad evaluatiors of the correspondig monomialsand Cjj (1),
Dij (1) denoe the max-plis evaluatiors of the correspondig monomias (the evaluatian of a max-
plus monomid m(8) = as" at A (ared numbe} isdefinal by m(A) = nA +a).

2 Motivations

Sud problens arise in at leag two differert coniexts.



1. Markov Decision processe£lassical stochastic dynamic programming equations correspond to
the second problem (I). Indeed we can patrtition the vedtanto (Y, Z). Then, choosing the
matricesA(8) = (I, 0), B(§) = (0, B), C(8) = (¢, E), D(8) = (8D’, ¢) (wherel is the standard
identity matrix, E the max-plus identity matrix and the zero max-plus matrix), System (Il)
describes the recurrence

Y = B'Z ,
{ Zk=D"® Yg_1 .

If we are interested in the componéehive obtain
Zy=D'® (B'Z-1) ,

which is a standard stochastic dynamic programming equation as sBbhasl. The asymptotics
of these problems whamgoes taco leads to Problem (lll). Indeed, the equation

Z=D®(B'Z)+x,

is a standard stochastic dynamic programming equation for computing the maximal cost by unit of
time in the ergodic case [18].

2. Simulation of general Petri netsThe dynamic of a general Petri net can be described by special
classes of the second type of equations (see [14] Th.11.2), which are more general than the stochastic
dynamic programming equations. For some particular routing policies, simulating Petri nets is
equivalent to solving stochastic dynamic programming equations (see [4]).

3 Available results

Clearly a lot of results are known in particular cases, but the general theory does not exist.

1. WhenC andD are max-plus zero matrices, we are in the standard linear algebraic situation.
2. WhenA andB are conventional zero matrices, we are in the max-plus linear situation.

(a) WhenC is the max-plus identity matrix, Problem (Il) corresponds to deterministic dynamic
programming.

(b) When the matribD has only one max-plus nonzero column, Problem (I) can be solved using
residuation theory (see for example [2], [1, Ch.4.]).

(c) ACramertheory exists for Problem (1) with geneCadndD matrices (see[1, Ch.3 Sect.4],[10,
Ch.3],[15]). This problem can also be solved by elimination methods [3, 11],[10, Ch.3].

The references [5, 6] may be useful to understand the kernels and the images of max-plus linear
operators. See also [17, 12] for available results on semimodules and semirings.

3. Some special instances of Problem (1) are seen in [9, Ch.3 and Ch.4] as extended linear comple-
mentary problems. The set of solutions, which is an union of faces of polyedra, cannot be simple
in full generality. A kind of max-plus algebraic geometry has to be developped for solving this
problem for matrices with integer entries. Some preliminary results on max-plus polynomials can
be found in [1, Ch.3 Sect.6],[8, Sec. VIII].

4. Pure standard algebra or max-plus eigenvalues problems are understood, see [7, 13, 16, 10, 1] for
the max-plus case. The Markov decision process case is also standard [18]. The problem with
simultaneous dependencegjof Ain one hand, an@ andD in the other hand, is nothomogeneous
and may have no practical interest. For example, in the stochastic dynamic programmirig case,
and A do not depend of.
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