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Abstract

The article describes a stochastic formal language
adapted to the botanical concepts underlying the GreenLab
organogenesis model. It is based on stochastic L-systems
(parallel rewriting grammars) and on multi-type branch-
ing processes: stochastic processes control bud productions
and at each growth cycle, each new growth unit is the result
of a random variable. This formalism allows determining
inductively the generating functions of the resulting plant
structures and of the numbers of organs, which fully char-
acterizes the plant development resulting from the elemen-
tary stochastic processes of bud productions. The moments
of the stochastic distributions of the numbers of organs are
also explicitly deduced.

1. Introduction

Plant organogenesis models describe the dynamic cre-
ation of organs (leaves, internodes, flowers/fruits) and how
they arrange to form plant structures (at least the above
ground parts). This botanical knowledge is used as a ba-
sis for plant geometric models, that is to say to represent
realistic 3D plant architectures in computer graphics [4],
[5], [17]. To simulate plant structural development, paral-
lel rewriting grammar language also called L-systems [15]
have been broadly used since [19], [16]. The stochastic ver-
sion of this type of grammar gave interesting results from
a simulation point of view by increasing the realistic aspect
of the geometric plants [16], [8]. However, the formalism
of stochastic grammars has not been taken advantage of to

derive the theoretical distributions of plant structures.
In this article, we present a stochastic formal language
based on L-Systems adapted to the specific botanical con-
cepts underlying the GreenLab organogenesis model ([7],
[6]), principally the plant hierarchical organization and the
repetition of elementary constructional units, see [1]. The
production rules correspond to the meristematic production
of growth units and plant development results from multi-
type branching processes, [11]. We thus deduce a method
to compute inductively the generating functions of plant
structures when the organogenesis grammar is known. We
also deduce the moments of the stochastic distributions of
the numbers of organs. If the method is illustrated on the
GreenLab model of plant growth, the same principles would
apply in more general contexts.
The article starts with the presentation of the basic botan-
ical concepts that are used in the GreenLab organogenesis
model and explains how a stochastic formal language is de-
rived. The inductive relationship to compute the generating
functions of plant structures is then introduced and finally
applied to obtain the moments of the numbers of organs.

2. Botanical concepts for GreenLab organo-
genesis

The GreenLab model of plant growth is a functional-
structural model, i.e. it combines the description of plant
architecture at the organ level and that of biomass produc-
tion and allocation. Literature is already abundant on this
model ([7], [20], [10], [3]), and we mainly focus in this sec-
tion on the basic botanical concepts underlying the Green-
Lab organogenesis model.



As explained in [1], the architecture of a plant can be seen
as a hierarchical branching system in which the axes can be
grouped into categories characterized by a particular com-
bination of morphological parameters. Thus, the concept
of Physiological Age was introduced to represent the differ-
ent types of axes. For instance, on coffee trees, there are
two types: orthotropic trunk and plagiotropic branches. We
need less than 5 physiological ages to describe the axis ty-
pology of most trees. The main trunk’s physiological age is
equal to 1 and the oldest physiological age corresponds to
the ultimate state of differentiation for an axis, it is usually
short, without branches. Except in some very rare cases, an
axis of physiological age p always bears axillary branches
of physiological ages ≥ p (= in the case of reiterations).
Moreover, plants can be considered as modular organisms
that develop by the repetition of botanical entities or con-
structional units at different scales, see for example [2]. The
metamer (or phytomer) is one of these entities and it is cho-
sen as the elementary scale to model plant architectural de-
velopment. A metamer is composed of an internode bear-
ing organs: buds, leaves, flowers. Depending on species,
metamers are set in place rhythmically or continuously.
In the rhythmic case, see Figure 1, the plant grows by suc-
cessive shoots of several metamers produced by buds. The
appearance of these shoots defines the architectural Growth
Cycle. A Growth Unit is the set of metamers built by a
bud during a growth cycle. These metamers can be of dif-
ferent kinds and ordered according to botanical rules, like
acrotony. For example, most temperate trees grow rhythmi-
cally, new shoots appearing at spring. For such plants, and
if we do not consider polycyclism and neoformation, the ar-
chitectural growth cycle corresponds to one year.
Plant growth is said continuous when meristems keep on
functioning and generate metamers one by one, see Figure
1. The number of metamers on a given axis (that is to say
generated by the same meristem) is generally proportional
to the sum of daily temperatures received by the plant, see
[12]. The growth cycle is defined as the thermal time unit
necessary for a bud to build a new metamer, it can be quite
short, corresponding to a couple of days. The growth of
tropical trees, bushes or agronomic plants is often continu-
ous.
In both continuous and rhythmic cases, the Chronological
Age of a plant (or of an organ) is defined as the number of
growth cycles it has existed for. In this work, we do not
consider time scales that are smaller than the architectural
growth cycle. We refer to [7] for more details on the defini-
tion of GreenLab organogenesis cycle.

Figure 1. Growth Cycle (GC), Growth Unit
(GU) and Metamer in GreenLab. The axis
length is given as a function of time for con-
tinuous and rhythmic growths, see [3]

3. Describing botanical concepts with a formal
grammar

In computational models, plants are generally repre-
sented as words in a formal language, more precisely a lan-
guage based on a generative parallel rewriting grammar also
called L-system [15], [19], [16]. In GreenLab, the alphabet
A is given by the set of metamers (terminal symbols) and
buds (non-terminal symbols), see [3]. Let mp and sp de-
note respectively a metamer and a bud of physiological age
p, with 1 ≤ p ≤ P , P being the maximal physiological age
of the plant. We have:

A = {m1, · · · ,mP , s1, · · · , sP } . (1)

We do not consider symbols for organs since the consti-
tution of a metamer is supposed fixed by botanical rules
(an internode and a given number of leaves and fruits). If,
for example, flowering is particularly studied, symbols de-
noting flowers would be introduced in the alphabet with-
out difficulty. In the following, we will distinguish m =
(m1, . . . ,mP ) (terminal symbols) and s = (s1, . . . , sP )
(non-terminal symbols).
The set of words endowed with the concatenation operator
seen as an internal, non-commutative operation is denoted
A∗. For example, m1s2s1 ∈ A∗ represents a structure com-
posed of an internode of physiological age 1, bearing a lat-
eral bud of physiological age 2 and an apical bud of physi-
ological age 1.
Note that if the physiological age of an axillary bud is al-
ways strictly superior to that of its bearing axis (i.e. no re-
iteration), the plant topology can be deduced from the word



unequivocally, without needing additional symbols in the
alphabet like brackets which are classically used since [16]
to distinguish branches.
Sp(k) denotes a structure of physiological age p and
chronological age k. It is defined as the complete plant
structure that is generated after k cycles by a bud of phys-
iological age p. In the deterministic case, all the structures
with the same physiological and chronological ages are thus
identical, they are monomials inA∗. We recall here that the
physiological age of the main trunk is 1. Thus, at growth
cycle t, S1(t), represents the whole plant.
In the stochastic case, the probability distribution of a ran-
dom structure Sp(k) can be described by its generating
function Sp(k). It is defined as:

Sp(k)(m, s) =
∑

w∈A∗

P (Sp(k) = w)w(m, s) . (2)

where P (Sp(k) = w) is the probability that the random
structure Sp(k) is equal to w.
We will denote:

S(k) =

 S1(k)
...
SP (k)

 . (3)

The generating functions of plant topological structures are
multivariate polynomials in the letters of the alphabet. They
are non-commutative for the multiplicative (concatenation)
operator.

4. Organogenesis and branching processes

We study in this section the dynamics of plant structural
development, without considering organ sizes or geometry.

4.1 Production rules

The initial word (start symbol) of the generative gram-
mar describing plant development is given by the plant seed,
which is equivalent to s1, and the productions rules corre-
spond to the meristematic productions of growth units at
each growth cycle, including lateral and apical buds.
An example of the deterministic case is given in Figure 2,
which illustrates the construction of a simplified coffee tree
with two physiological ages and the following deterministic
production rules:

s1 → m1s
2
2s1, s2 → m2s2. (4)

Note that since the multiplicative sign is used for the con-
catenation operator, s2

2 simply means s2s2.
In the stochastic case, the production rules may not be

Figure 2. Example of production rules. (a)
illustrates the production rules, with rectan-
gles representing metamers and disks repre-
senting buds, black is for PA 1 and grey for
PA 2. A schematic representation and a 3D
drawing of the tree at age 10 are also given in
(b) and (c) respectively.

unique for a given symbol and are augmented with proba-
bilities. The sum of probabilities of all the production rules
associated to a non-terminal symbol is equal to 1, see for
example [16], [14]. In the stochastic organogenesis model
of GreenLab, buds of the same type may develop into dif-
ferent growth units [5]. Therefore, several derivation rules
are possible for a bud, each with a certain probability. From
a botanical point of view, the potential growth units result
from the combination of several probabilities concerning
bud death or pause, branching and metamer appearance.
See [13] for more details. If we go back to the coffee tree
example, it was observed [4] that not all the metamers of
physiological age 1 bear axillary branches, and the axillary
branches of physiological age 2 do not develop at the same
rhythm as the main trunk. In a very simplistic way, we could
write for example the following rules to take into account
these phenomena:

s1 → m1s
2
2s1 | s1 | 1

(0.9) (0.09) (0.01)

s2 → m2s2 | s2 | 1
(0.6) (0.3) (0.1)

(5)

where we use the classical notation in language theory: s1

may produce m1s
2
2s1 with probability 0.9, s1 with proba-

bility 0.09 and may die with probability 0.01. 1 denotes the
neutral element for the concatenation operator and may thus
be used to characterize bud death.



When a production rule is of the type: sp → sp, it means
that the axis elongation pauses, i.e. no growth unit is pro-
duced by the bud during the growth cycle even if the meris-
tem is still alive. When the probability for the bud to de-
velop into the ”complete” growth unit varies with its phys-
iological age, the main and axillary axes will (on average)
grow at different rhythms: in the example given in Equation
(5), the main trunk grows on average 1.5(= 0.9/0.6) times
as quickly as axillary branches.
The parameters of stochastic organogenesis models can be
estimated from experimental observations on plant popula-
tions and statistical analyses, see [4] for original works or
[9] more recently.

4.2 Generating functions

We introduce the generating function G : A → (R [A])P

to give the production of buds:

G(m, s) = [G1(m, s), G2(m, s), . . . , GP (m, s)] , (6)

with Gi(m, s) the generating series for si, which is a poly-
nomial in (m, s):

Gi(m, s) =
∑

w∈A∗

P (si → w) w(m, s) , (7)

with P (si → w), the probability that the production rule
(si → w) applies. In the deterministic case, Gi(m, s) are
monomials in (m, s), that is to say Gi(m, s) ∈ A∗
For the example on the stochastic development of coffee
trees given in section 4.1, the components of the generating
function G are:

G1(m, s) = 0.9 m1s
2
2s1 + 0.09 s1 + 0.01

G2(m, s) = 0.6 m2s2 + 0.3 s2 + 0.1
(8)

Plant development can thus be seen as a multitype branch-
ing process and the dynamic equations of organogenesis are
deduced from the classical equations giving the evolution of
these processes [11] as follows.
We can deduce Sp(k) from Sp(k − 1) by exploring all the
possible growth units that the buds of Sp(k − 1) may de-
velop into. It corresponds to compose Sp(k − 1) with the
generating function G.

Sp(k)(m, s) =
∑

w∈A∗

P (Sp(k − 1) = w) w(m,G(m, s)) .

(9)
This holds for all p, and we can write in a compact way:

S(k)(m, s) = S(k − 1)(m,G(m, s)) (10)

From classical properties of multi-type branching processes
[11], we also have:

S(k)(m, s) = G (m,S(k − 1)(m, s)) (11)

By induction, we can thus compute S(k) for all k, starting
with S(0) = s.
Software developed in Scilab (see www.greenscilab.org)
reads the organogenesis parameters of GreenLab and com-
putes the generating function of the stochastic plant thus ob-
tained. However, exploring all the possible stochastic plants
becomes tedious quite quickly since the number of sce-
narios increases exponentially with the plant chronological
age. The interest of Equation (11) mainly lies in its applica-
tion to compute the moments of the numbers of metamers
or organs in the plant structure as detailed in section 5.

5. Distributions of the numbers of organs

In some cases, the variables of interest are the numbers
of organs (for example when studying the functional part
of plant growth at the organ level, see [20] for GreenLab)
and it may prove useful to compute their distributions and
their moments. Since we suppose that the composition of
each type of metamer is given by botanical rules, we re-
strict ourselves to studying the numbers of metamers of all
physiological ages in the plant.
The generating functions of the numbers of metamers and
buds in the structures Sp(k) is directly deduced from S(k)
by considering the concatenation operator commutative and
considering the generating functions S(k) as real-valued
functions of the real vectors m and s.
We can use the classical formula giving the moments of
multi-type branching processes from their generating func-
tions [11], [18]. In the following, we will show how to
compute the expectations of the numbers of metamers. Mo-
ments of higher orders can be derived in the same way.
1̄ will denote the vector whose components are all equal to
1 (independently of the vector dimension).
Let M(k) be a real square matrix of order P giving the ex-
pectations of the numbers of metamers of all physiological
ages in the plant structures of chronological age k. More
precisely, for all (i, j) ∈ [1;P ]2, [M(k)]ij denotes the ex-
pectation of the number of metamers of physiological age
j in Si(k). Since a structure of physiological age i can
not bear metamers of physiological age strictly inferior to
i, M(k) is upper triangular.
We know that:

M(k) =
∂S(k)
∂m

(1̄) (12)

Differentiating Equation (11) with respect to m, and since
S(k − 1) (1̄) = 1̄, we get:

M(k) =
∂G

∂m
(1̄) +

∂G

∂s
(1̄)

∂S(k − 1)
∂m

(1̄) (13)

and thus:

M(k) = M(1) + AM(k − 1) (14)



where A denotes
∂G

∂S
(1̄).

M(1) and A being directly obtained from the production
rules, M(k) is deduced by induction for all k.
Since the inductive relationship giving M(k) is
arithmetico-geometric, the explicit expression ofM(k) can
be given, provided that A − I is invertible. In such case,
we have:

M(k) =
[
I −Ak

]
(I −A)−1 M(1) (15)

For the coffee tree example with the production rules given
by 5, we have:

A =
[
0.99 1.8
0 0.9

]
and M(1) =

[
0.9 0
0 0.6

]
(16)

6. Discussion

The article describes a stochastic formal language for the
GreenLab organogenesis model. The generating functions
of plant structures and of the numbers of organs are derived,
as well as the moments of the stochastic distributions of the
numbers of organs. These variables are of crucial interest
when we want to study biomass production and allocation
[20]. However, since organs with different chronological
ages have different characteristics as sources and sinks, the
alphabet A should be improved to take into account the
chronological ages of metamers, as done in [3].
Likewise, the proposed framework can not deal directly
with an important phenomenon observed by botanists, the
modification of the morphogenetic characteristics of growth
units along an axis during the successive stages of its de-
velopment [1]. For the GreenLab organogenesis model, it
corresponds to a semi-Markov process driving the succes-
sive changes of the physiological age of the apical meristem
along the axis. We refer to [21] for a detailed description of
this phenomenon. As a consequence, the generating func-
tion G depends on the state occupancy law, and the pro-
posed framework has to be adapted in order to cope with
such cases. It can be done quite easily by increasing the
number of physiological ages and adapting the generating
functions accordingly. As an example, we consider a mono-
stem plant, with deterministic development, two physiolog-
ical ages, and a deterministic transition from physiological
age 1 to physiological age 2 after 5 metamers, see Figure 3.
This example could correspond to cereal plants for which
the morphology of the first internodes that can bear tillers is
different from that of the following ones.
We consider the following alphabet:

A = {m1,m2, s10, s11, s12, s13, s14, s2}

Figure 3. A simple mono-stem plant with tran-
sition from physiological age 1 to physiolog-
ical age 2 after 5 metamers.

and the generating functions:

G10(m, s) = m1s11

G11(m, s) = m1s12

G12(m, s) = m1s13

G13(m, s) = m1s14

G14(m, s) = m1s2

G2(m, s) = m2s2

(17)

With this formulation, the problem of morphogenetic
gradients along axes is shown to be a particular case of the
general formalism introduced in this article.
A limitation of the stochastic organogenesis model is that
the parameters of the stochastic organogenesis processes
may strongly be influenced by plant functioning, which is
well-known since [4]. This aspect is currently under inves-
tigation.
Finally, we restricted ourselves to the study of parallel
rewriting grammars. Other languages based on automata
that are less formalized but closer to botany have also been
developed [5] and could be studied with the same objective
of deriving the distributions and moments of the numbers of
organs.

7 Acknowledgements

We thank the anonymous reviewers for helping us
to improve the manuscript. This work is supported
in part by LIAMA (Sino-French Laboratory in Informa-
tion, Automation and Applied Mathematics), Natural Sci-
ence Foundation of China (60073007), Chinese 863 pro-
gram (2006AA10Z229), and PostDoc funding from INRIA
granted to M.Z. Kang.



References
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