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TIMED EVENT GRAPHS WITH MULTIPLIERS AND
HOMOGENEOUS MIN-PLUS SYSTEMS

G. COHEN, S. GAUBERT, JP. QUADRAT

ABSTRACT. We study fluid analogues of a subclass of Petri nets, called
Fluid Timed Event Graphs with Multipliers, which are atimed extension
of weighted T-Systems studied in the Petri Net literature. These event
graphs can be studied naturally, with anew algebra, analogousto the min-
plus algebra, but defined on piecewise linear concave increasing func-
tions, endowed with the pointwise minimum as addition, and the com-
position of functions as multiplication. A subclass of dynamical systems
in this algebra, which have a property of homogeneity, can be reduced
to standard min-plus linear systems after a change of counting units. We
give anecessary and sufficient condition under which afluid timed event
graph with multipliers can be reduced to a fluid timed event graph with-
out multipliers. In the fluid case, this class corresponds to the so-called
expansible timed event graphs with multipliers of A. Munier, or to con-
servative weigthed T-systems. The change of variable is called here a
potential. Its restriction to the transitions nodes of the event graph is a
T-semiflow.

Key words. Timed Petri Nets, Timed Event Graphs, Dynamic Program-
ming, Discrete Event Systems, Max-Plus Algebra, Potentias, Weighted
T-Systems.

1. INTRODUCTION

An event graph is a Petri net such that each place has only one input arc
and one output arc. If the tokens have to stay a minimum amount of time
in the places, we speak of Timed Event Graph (TEG). These TEGs are well
adapted for modeling synchronizations. In many systems, synchronization
isessential. In manufacturing, in order to start atask, a machine and a part
must be both ready. In computer science, in order to achieve acomputation,
we need a processor and an information.

Several units of the same resource may be required to achieve a specif-
ic task. Then, the corresponding event graph consumes or produces more
than one token in adjacent places, at each transition firing. The correspon-
ding event graph is called a Timed Event Graph with Multipliers (TEGM).
To assemble a bicycle, two wheels, a frame and a certain amount of man-
power are needed. In achemical process, areaction producing a molecule
consumes in general more than one atom of a given sort.
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Synchronization is not specific to discrete systems, and we will consider
here Fluid analogues of Timed Event Graphs with Multipliers (FTEGM) in
whichfluidscirculateinstead of tokens. For instance, in chemical processes,
synchronization (stoichiometry here) is essential and the products used in a
chemical reaction may be fluids.

We give some mathematical tools well suited to manipulate FTEGM. In
particular, very briefly, we introduce a new kind of power series, extending
that considered in [1], which allow us to express the input-output relations
of FETGM (in[7], asystematic classification of all thekindsof power series
that may pop up in Petri net modeling is presented). These power seriesare
elements of a new noncommutative min-plus algebra: the set of piecewise
linear concave functions, endowed with the pointwise minimum as addition,
and the composition of functionsas multiplication. Thisisthe mathematical
cost to pay for dealing with multipliers. Thisis a somewhat expensive cost
and it is natural to try to find particular cases for which this can be avoided.

In [14], A. Munier introduced and studied an important subclass of
TEGM, that we will call conservative, in which the product of multipliers
along any circuit is equal to one. The main result of [14] reduces such a
TEGM to aconventional TEG after aduplication of transitions. In the con-
text of Petri nets where only the logical aspect is considered, thissubclassis
known as conservative weihted T-systems [17, 13].

When the multipliers derive from a potential (a vector indexed by both
places and transitions), the dynamic of a FTEGM can be reduced to clas-
sical min-plus linear recurrent equations by a diagonal change of variables,
given by the potential. The existence of apotential isequivalent to the prop-
erty pointed out by A. Munier. Therestriction of apotentia to transitionsis
called asemiflow in the Petri net literature [17]. In the example of the bicy-
cle, counting pairs of wheels instead of wheelsis quite natural. It isimpor-
tant to remark that thischange of variables, called linearization, isamin-plus
algebranonlinear operation. However with thisway of counting the dynam-
ic becomes linear.

Asaby-product of the linearization, the existence of an eventual periodic
regimeisreadily obtained, the performance being characterized in terms of
invariants of the original net. We also show that linearizable FTEGM are
characterized by an input-output homogeneity property, which isessentially
aconservation law between input and output quantities.

The fluid case, considered here, is much simpler than the discrete case
considered by Munier. The linearization procedure does not increase the
number of transitions of the system, while the expansion procedure of [14]
resultsin ablow up of the number of transitions.

The fact that a fluid approximation is considered in the case of discrete
systems may have an impact on the liveness of the Petri net. For instance, if
asinglewheel isavailable, in redlity, the production is blocked, but thefluid
model givesaproduction of one half of bicycle. Thislivenessissueissolved
by Munier [14] (see also [4] for nets with asingle circuit). In this paper, we
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show that the discrete and fluid behaviors coincide when the integer marking
isamultiple of acertain minimal marking. Finding good units for counting
has nothing to do with liveness but with flows. Fluid analogues are suited to
find these units but not to study liveness problems.

The paper isorganized asfollows. In section 2, werecall classical defini-
tions about Petri nets and introduce the subclass of TEGs with Multipliers.
In section 3, weintroduce an algebraof operatorswhich yieldsasimplerep-
resentation of FTEGM. In section 4, we state the main results of the paper,
namely, the characterization of linearizable FTEGM, periodic regime, per-
formance (periodic thoughput), invariants. In Appendix 6.1, we state and
prove an elementary lemma about potentials on graphs which is the alge-
braic core of the properties presented here. In Appendix 6.2, the main re-
sults are proved as mere consequences of this lemma. Some open ends are
pointed out in conclusion.

2. RECURRENT EQUATIONS OF TIMED EVENT GRAPHS
WITH MULTIPLIERS

We begin by recalling the usual definition of Timed Petri Nets and Event
Graphs.

DEFINITION 2.1 (TPNM,TEGM,TEG). A Timed Petri Net with Mul-
tipliers (TPNM) is a valued bipartite graph given by a 5-tuple NV =
(P, Q’ M? m9 T)'

1. The finite set P is called the set of places. A place may contain to-
kenswhich travel from place to place according to a firing process de-
scribed later on.

2. Thefinite set Q is called the set of transitions. When firing, a transi-
tion consumes tokens of the upstream places and produces tokens in
the downstream places.

The set of nodesisR 2 P U Q.

The matrix M € N**® is called incidence matrix. The integer My

(resp. Mgp) denotes the number of edges from transition g to place p

(resp. from place p to transition ). Since the graph is bipartite the

blocks Mpp and Mgg are zero. We denote by r o the set of vertices

(places or transitions) downstream avertex r and r '™ the set of vertices

upstreamr. Formally, rot = {s| Mg # 0}, r'" = {s| M,s # 0}.

5. Thevector m € N” iscalled initial marking. The integer m, denotes
the number of tokens being initially in place p .

6. Thevector r € N” iscaled holding time. The integer t,, gives the

minimal time a token must spend in place p before becoming available

for consumption by downstream transitions'.

> w

twithout loss of modeling power, thefiring of transitionsis supposed to beinstantaneous
(i.e. itinvolves no delay in consuming and producing tokens).
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7. A Timed Event Graph with Multipliers (TEGM) isa TPNM such that
thereisexactly onetransition upstream and one transition downstream
each place.

8. An (ordinary) Timed Event Graph (TEG) isa TEGM with unit multi-
pliers(i.e. M;s € {0, 1}).

The (earliest) functioning of a TEGM is as follows. A transition g fires
as soon as all the places p upstream g contain enough tokens (M;,) having
spent at least 7, units of timein place p (earliest firing rule). When the tran-
sitionq fires, it consumes My, tokensin each upstream place p and produces
M4 tokensin each downstream place p'.

NETE Yo\ Vot
x_/ V N~
=S

FIGURE 1. A timed event graph with multipliers.

DEFINITION 2.2. 1. With each place p (resp. transition q), a counter
variable Z, (resp. Z,) is associated. It denotes the cumulated num-
ber of tokens which have entered place p (resp. number of firings of
transition g) up totime? t € Z.

2. Wecdl u the muItipIier matrix , i.e. the R x R matrix with valuesin
R* andentrles,upq = Mpq,,qud_ Mg, forpe P,q € Q, Mgy # 0,
with py = 0if My, =0, 1,1’ € R.

ASSERTION 2.3. The counter variables of a TEGM? (under the earliest fir-

ing rule) satisfy the following equations:

Zq(t) = Q;'Lﬂulqp(zp(t - Tp) + mp)Ja Zp(t) = Mpp’“zpi”(t) ) (2.1

with [X] =sup{n e Z | n < x}.
Eliminating Z,, we get the transition-to-transition equations:

Zy(t) = mili’rl]va +apZpn(t —1p)] (2.2

with the notation vy = oMy, ap = wpoupippn . Dudly, place-to-place
eguations can be obtained.

2We consider hereonly t € Z but the result could be generalized to t € R.

3We shall only give here the dynamic equations of TEGM. Indeed, the general Petri net
equations exhibit ahigher order of complexity due to the presence of routing decisions; see
[7,2].



TIMED EVENT GRAPHS WITH MULTIPLIERS 5

The behavior of thisdynamic isextremely simpleinthe TEG case. Then,
the multipliers are equal to one, and (2.1) becomes:

Zy(t) = LQL” (Zpt —1p) +Mp),  Zp(t) = Zgn(t) . (2.3)

Note that the integer part has been dropped, since the dynamics (2.3) obvi-
ously preserves integrity. Therefore, fluid TEG need not be distinguished
from conventional TEG. The behavior of TEGsiswell understood [6, 5, 1].
In particular, strongly connected TEG reach a periodic regime after afinite
time, and the corresponding periodic throughput can be easily determined.
Thisleads us to raise the following question, to which the remaining part of
the paper is devoted: when does a TEGM reduce to a TEG by a change of
variables ?

We shall only consider here diagonal changes of variables (change of u-
nits): Z = DZ’ (where D is adiagonal matrix with positive diagonal en-
tries). This restriction can be justified theoretically. We need a change of
variables which preserves the min-plus structure of the equations. Thus, we
need amatrix P such that the changesof variablesZ = PZ’andZ' = P~1Z
are order preserving, which is possible if and only if P isamonomia ma-
trix (product of a diagonal matrix with positive entries and a permutation
matrix). Indeed the inverse of a nonnegative matrix is nonnegative if and
only if itisamonomia matrix ( see[3], Lemma4.3, p.68).

REMARK 2.4. If r, = O for some places, (2.1) becomes an implicit system
and we may have difficulties in proving the existence of a finite solution.
For the subclass of systems (with the potential property) discussed here, the
existencewill follow at oncefrom the existing resultsabout TEG. In general,
it isnot too restrictive to assume that : there are no circuits containing only
places with zero holding times. We will call such graphs explicit. For ex-
plicit FTEGM, (2.1) has a unique solution, which can be shown by adapting
the argument of [1], Lemma 2.65, p.78.

DEFINITION 2.5 (INPUT-OUTPUT PARTITION). We partition the set of
transitions Q@ = U U X U )Y, where U/ is the set of transitions with no pre-
decessors (input transitions), ) is the set of transitions with no successors
(output transitions) and X = Q \ (U U Y) (state transitions). We denote by
u (resp. X, y) the vector of input (resp. state, output) counters Zy, q € U

(resp. X, )).

Throughout the paper, we will study the input-output behavior of the sys-
tem. That is, we will look for the trajectory (x(-), y(-)) corresponding to
the earliest firing rule (which yields the largest possible values of counter-
S), given an input history u(-). This encompasses the autonomous regime
traditionally considered in the Petri net literature, when the system isfrozen
at an initial condition Z4(t) = wq € Rfort < 0 (usualy wq = 0), and
then evolves freely according to the dynamics (2.1) for t > 0. This can be
obtained as a specialization of the input-output case by adjoining an input
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transition g’ (with an associated empty place) upstream each original tran-
sition @, setting ug (t) = wq fort < 0, uy (t) = +oo otherwise.

EXAMPLE 2.6. Letusconsider the TEGM depictedin Fig. 1. In each place
theinitial marking isgiven by the number of tokens (dots), the timing by the
number of bars (time units), and the multipliers by the numbers of arcsin
paralel. The equations read

Xe(t) =min[2+x(t = 1), 1+ 20t —1)], yt)=[1+x(®)] .

Xo(t) = min [(1/2)X1(t — 1), 1+ Xo(t — 3), 1/2+ (3/2)u(t)] ,

3. OPERATORIAL REPRESENTATION OF FTEGM

Fluid Timed Event Graphs with Multipliers (FTEGM) are defined as in
Def. 2.1, but the marking m and the multipliers M take real values, that is
mp € R U {+00}, My, € R*. Counter functions are subsequently real val-
ued, and the integer parts vanish, that is

Zq(t) = min (vp + apZpn(t — 7p)) . (31)
qum

We next introduce the algebraic tools needed to easily handle such dynam-
ics.

1. A semiringisaset, equipped with an addition &, and aproduct ®, such
that: @ isassociative, commutative, has a zero (denoted ¢); ® is asso-
ciative, has aunit (denoted e); ® distributes over @; zero is absorbing
(e ®a = ¢). Anidempotent semiring (suchthata®a = a) iscaled a
dioid. A semifield isasemiring whose nonzero elementsareinvertible.
E.g. (RT, 4+, x) and (RTU{+00}, max, x) areidempotent semifields.

2. Theidempotent semifield R, isthe set RU {400}, equipped with min
as addition and the usual sum asmultiplication, i.e. adb = min(a, b),
a®b=a+bwithe =+4+ococande=0.

3. Asignalisamapu : Z — R U {+o00}. We denote by S the set of
signals, which hasastructure of min-plus semimodule (the anal ogue of
amodule but with scalarsbel onging to asemiring, here R, ). Counter
functions are instances of nondecreasing signals.

4. AnoperatorisamapH : S — S. Itislinear if it preserves the min-
plus semimodul e structure of signals, that is,

Hudv) = HueH®W) , (3.2a)
HO®U) = A®HU) , (3.2b)

for al signals u, v and constants A (we denote by A ® u the signal
t — A+ u(t)). Anoperator isadditiveif it only satisfies the relation



TIMED EVENT GRAPHS WITH MULTIPLIERS 7

(3.28). Thefollowing three families of operators are central in model -

ing FTEGM.
v’ pyUX(t) o X(t) + v (shiftin counting) (3.39)
570 §X(t) ¥ x(t— 1) (shiftindating) (3.3b)
nooux® € x x) (scaing), (3.30)

wherev € RU {+o00},7 € N, u € R*. We note that y and § are
linear, while the operators « # 1 are only additive. They satisfy

yiet=48"y", wd =8u, wy'=y“u, (34)
,}/v oy yv’ — ymin(v,v’) ’
yvyv’ — yv—i-v/, 8181’ — SH_T/, //L/L/ =1 x /L/ )

5. Wedenote by Anmin the (noncommutative) dioid of finite sums of opera-
tors uy" (equipped with pointwise min and composition). Thus, an el-
ement of Aninisamap p = @i, y" i, POX) = MiNy<i (v +4X)
withe = y** ande = y°.

6. We denote by Amin[[8]] (resp. Amin[8]) the dioid of power series (resp.
polynomials) with coefficientsin Ayin, with the zero element ¢ +>° and
the identity element y°5°.

7. The subset of Ain[[8]], where all multipliers appearing in apower se-
riessatisfy u = 1, isadioid called Rpn[[8]]. The subdioid of polyno-
mials Ryin[[8]] N Amin[6] is denoted Rpyin[4].

8. We extend the min-plus matrix product notation to denote the action
of matrices of operators on vectors of signals. Given amatrix A with
entriesin Apin[[6]] and a vector of signals u (with compatible dimen-
sions), we set (Au); o D, Aij (uj). The zero (matrix whose entries
areidentically ¢) and identity element (diagonal matrix with e entries
on the diagonal and ¢ elsewhere) are still denoted ¢ and e.

We next rephrase the dynamic equations of FTEGM algebraically.
ASSERTION 3.1. The dynamics of a FTEGM can be written

X=AX®Bu, y=Cx®Du, (3.5

where A, B, C, D are matrices with entries in Anin[5§]. We say that
(A, B, C, D) isarepresentation of the system. Moreover, in the TEG case,
theentriesof A, B, C, D belong to Ry,in[5].

Asanimmediate corollary of the representation (3.5), one obtainsthefol-
lowing input-output representation result, taken from [7].
ASSERTION 3.2 (TRANSFER REPRESENTATION). For an explicit* FTE-
GM with representation A, B, C, D, we have

y=Hu, where H=D®CAB, AA=ed A A’®--- (3.6

4See Remark 2.4. Without this condition, the infinite sum A* need not converge in
Amin[[‘s]]-
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The Y x U matrix H with entriesin Ann[[8]] (in Ryyin[[8]] inthe TEG case)
is called transfer matrix.

In other words, the input-output behavior of the system is summarized by
amatrix of power series. The series obtained as entries of transfer matrices
of systems of type (3.5) form the strict subclass of rational series. See[7]
for more details.

Let usrecall the classical characterization of these (rational) transfer se-
riesin terms of paths. The weight of a path r, denoted ||, is equal to the
product of the operators of typesy, 8, u (associated with arcs), taken along
the path. We notethat || € Anmin[68] isindeed amonomial, and we write

7| =y"™é6™|n|, , (3.7)

where ||, € R* isthe multiplicative weight of the path (i.e. the product of
the multipliersaong the arcs), 7, € N isthe sum of the holding times of the
places of the path, and the “discounted marking” v, € R is obtained, from
the original marking, by applying several timesthe commutation rules. The
set of pathsfromi to j isdenoted p;; . Thefollowing elementary fact needs
no formal proof.

ASSERTION 3.3. For all input and output transitionsi € U, j € ), the
transfer series H;; fromi to j isequal to the sum of the weights of the paths

gji fromi to j:
Hji = GB 7| = EB YT, - (3.8)

TEP]i TER]i

EXAMPLE 3.4. The TEGM depicted in Fig. 1 admits the following repre-
sentation.

_( v vy _ € _ B
A_((1/2)5 y53)’ B_((l/Z)yS)’C_(V e). D=(¢).

The transfer will be explicitly computed in Ex. 4.7 below.

REMARK 3.5 (DYNAMIC PROGRAMMING INTERPRETATION). We note
that (3.1) can be interpreted as the dynamic programming equation of a
deterministic Markov decision process with control dependent discount
rate « and cost v. The transitions of the event graph are the states. The
control chooses between the upwards arcs of the transitions. Then, Z isthe
Bellman function of the corresponding dynamic programming equation. In
particular, the results given below characterize the subclass of discounted
decision problems which reduce to the undiscounted case after a diagonal
change of variables. This dynamic programming interpretation is detailed

in[7].
4. LINEARIZABILITY AND EXISTENCE OF POTENTIAL

We next introduce some elementary notions, needed to state the main re-
sult.
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DEFINITION 4.1. Let Adenoteann x n matrix, with entriesin asemifield®
K.

1

We call transition graph of A, the (directed) graph G(A) with nodes
{1,...,n},andarcs j — i whenever A;; # ¢. A path from j toi in

thetransition graph G(A) isdenoted rj; . [tsweight isdenoted |7 | a o
A AL A ifm = (e, g ).

The matrix Aisconservativeif the multiplicative weight of a path de-
pends only on the initial and final nodes of the pathi.e. if for al paths
mij from j toi (with1 <i, j <n), |mjj|A dependsonly oni and j.
The matrix A admitsapotential if there existsavector v € K" (called
potential), such that for al 1 < i, j < nand for al paths mry, from |
toi, |7Tij A = Uin_l.

A FTEGM isconservative (resp. admitsthe potential v) if its multipli-
er matrix u is conservative (resp. admits the potential v).

A FTEGM islinearizableif there existsadiagonal change of variables
Z4(t) = vgx Z,(t), withvg € RF = R*\{0}, suchthat Z,, satisfy min-
plus linear recurrent equations; or equivalently and more formally, if
three diagonal matrices Vy = diag(vq, q € X) and similarly V,, Vy,
are such that the entries of C’' = (V)" 1CV,, A’ = V1AV, B’ =
V1BV, D' = (Vy)"1DV, belong to Rpyn[4].

A FTEGM with transfer H is homogeneous if there exist two vectors®
v, € (RHY, vy € (RF)Y such that

V)\‘ € Rmin, H()\.Uu + U) - )\.Uy + H(U) 5 (4.1)

where Lv + u denotes the vector signal t — Av + u(t).

A FTEGM istrimif each transition is structurally controllable and ob-
servable, i.e. if for each transition, there exists a path coming from at
least one input, and there exists a path going to at least one output.

REMARK 4.2. 1. Clearly not all matrices admit a potential.

2.

3.

A FTEGM islinearizableif it reducesto an ordinary FTEG by achange
of counting units.

The homogeneity property (4.1) extends the usual linearity relation
(3.2b) which isthe specialization of (4.1) to vectors v, vy with all en-
triesequal to 1.

4. Theadditivity axiom (3.2a) isautomatically satisfied for FTEGM, sin-

ce the equations (3.5) involve only the shifts and scaling operators
(3.3), which are additive.

The main result of this paper is the following characterization, which is
proved in Appendix 6.2 as a consequence of a more general lemma on po-
tentials of matrices.

SWe mostly use the semifield (R*, max, x). However, it is instructive to note that the

heart of the results (Lemma 6.1 below) holds in general semifields.
6_ater on, we shall see that v, and vy are components of a potential v.



10 G. COHEN, S. GAUBERT, J.P. QUADRAT

THEOREM 4.3. Let £ denote a FTEGM. The two following assertions are
equivalent.

1. £islinearizable;
2. £ hasapotential.

Moreover, the above assertions imply that

3. £ ishomogeneous,
4. £ isconservative.

Conversely, if £ ishomogeneous, trimand explicit, thenitislinearizable. If
£ is conservative and strongly connected, then it islinearizable.

From this theorem, the following result is clear.

COROLLARY 4.4. AFTEGM reducesto a TEG by a change of counting u-
nitsiff it has a potential.

Asitiswell known[1, 5], autonomous TEGsreach a periodic regime after
afinitetime. This property being preserved by a change of counting units,
we obtain as an immediate corollary of [1, Th. 3.28] and Theorem 4.3 a pe-
riodicity theorem for linearizable FTEGM.

COROLLARY 4.5 (CycLIcITY). The counter functions of an autonomous
linearizable FTEGM satisfy the following periodicity property:

ATo,c>1, Vie QUP, A, Vt>Ty Zit+c)=Arc+Z(t) .
Moreover, for a strongly connected graph’, the periodic throughput 2; at no-
dei isgiven by the expression
> pec Uﬁlmp

Zpec Tp ’
for any potential v that fitsthis linearizable FTEGM, where the minimumis

taken over all the circuitsC of the graph, and the sums are taken over all the
places of the circuit C. J

It isimportant to note that the terms at the right-hand side of (4.2) arein-
variants of the net. Equivalently, for all circuitsC, the vector indexed by P,
with entries v * for p € C, and v, = 0 otherwise, is a P-semiflow [17].
PROPOSITION 4.6 (INVARIANTS). Let v denotea potential and C a circuit
of aFTEGM. For all markings m’ reachable fromthe initial marking m, we

have
Z v;lmp = Z v;lm’p :

peC peC

vt = mcin (4.2)

Proof. Let g denote atransitionof C. Letq~ = g"NC, gt = q™ NC de
note respectively the places of the circuit upstream and downstream q. 1g-
noring the trivial case where C is aloop, we assume that g+ # gq~. Af-
ter firing transition g, we obtain the new marking Mg, = Mg+ + g+,
ma_ = Mg — ,u;;_, the markings of the other places of C being unaltered.

"The extension to the non strongly-connected case is straightforward.
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Thus, thesum 3 . v *m increases by vgjuqrq — v 14qq- Whichis zero
precisely because v is a potential. O

The algorithm below allows us to compute a potential. It uses the undi-
rected transition graph of A, G'(A) = (Va, Ea), with set of vertices Vp =
{1,...,n},andset of edges® Ep = {{i, j} | Aj # e or Aji # ¢}. Thea-
gorithm runsintime O(n+ m), where misthe number of arcsof G(A). Itis
based on the observation that the value of v at an arbitrary node j determines
the value of v at al the successors and predecessors of |, using the relations
Vi = Aij Vj and v = Aﬂlvj,when Aij #*¢€ and Aji #+ g, respectively. Each
iteration of the repeat loop explores a connected component of G'(A), and
determines the value of v on it. The correctness of the algorithm follows
readily from Lemma 6.1 and Remark 6.2 below. Practically, aclassical con-
venient way to implement the graph exploration (whileloop) isadepth first
search (see [16, 2] and [12, Ch. 1]). It is easy to prove that the number of
compatibility conditionsto check isequal to the* cyclomatic number” of the
undirected multigraph obtained from G(A) by disregarding the orientation
of arcs.

Algorithm 1 Computing a Potential

INPUT: an x n-matrix A, with entriesin asemifield K.
OuTpPUT: the potential of Ain IC" if it exists, false otherwise.
All the nodes areinitially non visited.
repeat
mark an arbitrary non visited noder asvisited, and assign an arbitrary
vaueto v, ;
while thereisan edge {i, j} of G’'(A), with visited j, and unvisited i,
do
mark nodei asvisited,
if Aij #* e then
Vj <— Aij Vj,
mark arc (i, J);
ese
Vi < Aﬂlvj,
mark arc (j, 1);
end if
end while
for all unmarked arcs (i, j), with visited ends do
check the compatibility condition v; = Ajjvj,
answer falseif it is not satisfied,
mark arc (i, j);
end for
until all the nodes are visited.

8\We denote edges of undirected graphs by unordered pairs {i, j}, as opposed to arcs of
directed graphs denoted by ordered pairs (i, j).
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EXAMPLE 4.7. We come back to the FTEGM depicted in Fig. 1. The mul-
tiplier matrix has the block partition

X1 X2 U 'y

pr/- - 3
P2 . 1 - .
_( O nop o P - 2 - -
M_(MPQ 0 )’MPQ_ paf 1 - - )
ps| 1
P \ 1
Pr P2 Pz Ps Ps Pe
X1 . . 1 . 1 .
def X2 /2 1 - 1/2 -
P = u . . . . . .

(the zero entries are represented by dots).
Setting v, = 1/3, and visiting the nodesin the order u, ps1, X2, P2, Ps, X1,
p4, p5’ p6! yAIgorIthm 1 glves

X1 X U Yy P P2 P Ps Ps Pe
v'=(1 12 1/3 1 1 1/2 1 1 1 1).

Thethree unmarked arcs (X,, pa), (X2, P2), (X1, Ps) givethethreefollowing
(satisfied) compatibility conditions: vy, = (1/2)vy,, Vx, = Vp,s Uxy = Vp.
Thus, v isapotential.

With the new variables x; = X1, X, = 2xp, U’ = 3u, Yy =y, the system
admits the following representation

2
/ y 8 V(S / & /
The corresponding linearized TEG is shown in Fig. 2. It is not difficult® to

U —

6

T motomYa
@UJ_\&/\;}_\»@
O~

FIGURE 2. TEG obtained after the change of variables
compute the transfer seriesin the new system of coordinates:
H' € C(A)B = y%(y8)" .

9See 9, 1] for more details on the rational identities used to obtain reduced expressions
of theform (4.4).
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In the original system of coordinates:

H=H3=y%(ys)3=y*"s"3 . (4.4)

neN

From (4.4), we get the explicit input-output relation
yt) =[Hu]l®t) = inff B+ n+3u(t—1-—2n)) .
neN

Finally, the application of the minimal mean-weight formula (4.2) givesthe
following expression of the periodic throughput, e.g. for transition x,,

2k, =Min(2,2/3,1/2) =1/2 , (4.5)
which means that transition x; is asymptotically fired once every four time

units in the autonomous regime.

We conclude by mentioning a case where there is no loss in considering
the fluid approximation of a, originally discrete, TEGM.

PROPOSITION 4.8. If the minimal integer valued'® potential u of a TEGM,
admitting a potential, and the normalized initial marking v satisfy

vqge Q,¥peq", v,eugN , (4.6)

then the earliest autonomous behavior of the TEGM coincides with that of
itsfluid version.

Proof. Performing the change of variables Z/ = u;'Z; in (2.2), we obtain

Z,(t) = ug"* min Luq (uglvp + Z(t — rp))J . (4.7)
Assuming by inductionthat Z/,(t — 7p) tekesinteger values, for al p q",
the assumption that u;lvp € N alows usto cancel the integer round-up at
the right-hand side of (4.7), yielding

’ H -1 /
Zy() = min (Ug™vp + Zp(t = 7)) (4.8)
which showsthat Z;(t) isalso integer. This shows by induction that Z’ fol-
lows the fluid dynamics. ]

Apart from these exceptional cases, it is not yet clear whether the more gen-
eral expansion procedure developed by Munier admits a simple operatorial
transcription, in the spirit of the Anin[[6]] formalism presented here.

10A|1 the potentials of aconnected FTEGM are proportional. Moreover, the ratios v; /v
are rational. Hence, the existence of areal valued potential guarantees the existence of a
minimal integer valued potential .
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5. CONCLUSION

To conclude, wewould liketo indicate the limitations of the approach pre-
sented here, and point out a few open questions. Theorem 4.3 provides a
convenient way to reduce fluid TEGM admitting a potential to fluid TEG.
One may therefore ask how coarse the fluid approximation can be. Since
the dynamics of a(discrete) TEGM is obtained from its fluid approximation
by taking down roundings, it is plain that the counter functions of the asso-
ciated FTEGM dominate that of the original (discrete) TEGM. The equality
case (Proposition 4.8) isexceptional. The discrete behavior may be arbitrar-
ily far from the fluid one. Indeed a FTEGM with positive throughputs may
have adeadlocked discrete version. For instance, the TEGM showninFig. 1
reachesadeadlock after transition x; isfired (sincetwo tokenswould be nec-
essary in place p, to fire x,) while the fluid version is live. Of course, the
quality of the approximation increases when the values of theinitial marking
becomes large.

The results given here for event graphs have been (partly) extended to
general Petri nets (see [8]). In thisreference, one can see numerical experi-
ments showing the quality of the fluid approximation.

Another open direction would be to treat general FTEGM, with no po-
tentials. It is standard Bellman theory that general FTEGM recursions (see
Eg. (3.1)) admit geometric growths or convergences. However, one cannot
easily characterize the corresponding rational (transfer) serieswith the same
degree of precision astransfer series of TEG are characterized [1].

Last, the presentation given here is not symmetric in counting and dating.
A dual theory obviously exists, if one considers timing transformations of
the form Zy(t) = Zg(vg x 1), rather than counting transformations Z,(t) =
vgZq(t). A more symmetric discussion, along the lines of [1, Chapter 5] in
the TEG case, will be considered in aforthcoming study.

6. APPENDIX

In thisappendix, wefirst give alemma of general interest about matrices,
and then we use it to prove Theorem 4.3.

6.1. POTENTIAL PROPERTIES OF MATRICES

We recall that the classes of a matrix A are, by definition, the strongly
connected components of the transition graph of A, that aclassisinitial if
there existsno other classupstream, and that it isfinal if there exists no other
class downstream. A matrix with asingle classisirreducible.

Withan x n matrix Awith entriesin asemifield I, we associate the sym-
metrized matrix:

Aj I A #e,
A if Aj =cand Aj # ¢, (6.1)
3 otherwise.

(AY™); =
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LEMMA 6.1. Let K denote a semifield. Let A € K™". The following con-
ditions are equivalent:

1. AY™ hasa potential;

2. A hasa potential;

3. there exists a vector v with non ¢ entriessuch that Aj; # ¢ = v =
Aijvj;

4. there existsa vector v defined only on theinitial and final classes such
that for all paths rr,, froma vertex: in aninitial classto a vertex ¢ in
afinal class, |7, |a = v,(v) ™%

5. there exist an (invertible) diagonal matrix V- € K"™" and a Boolean
matrix B (€ {e, e}"™" ) suchthat A= VBV~

Moreover, if A isirreducible, the above conditions are equivalent to any of
the following statements:

6. for all circuitsc, [c|a = €

7. Alisconservative;

8. there exists a collection of paths 7, (fromltok = 2,...,n) such
that

Vi, j, Aj #e= AjlTjla = ITidla ; (6.2)
9. property (6.2) holds independently of the choice of the paths 7ry;.

In the irreducible case, these facts are essentially classical. See[11].

REMARK 6.2. Theequivalencel< 2 allowsusto consider AY™ rather than
A. Thisis a useful trick, since we may aways assume that AY™ is irre-
ducible, and use the simpler characterizations of the second part of the lem-
ma. Indeed, in general, A¥™ is block-diagonal, with irreducible diagonal
blocks. Thus, we have to find a potential for each irreducible block, sepa-
rately. The more technical points 8 and 9, together with 1&-2, justify Al-
gorithm 1. Point 8 shows that it is enough to visit the graph in an arbitrary
way starting from an arbitrary node (say 1): if the corresponding paths 7y,
satisfy (6.2), we obtain a potential. Conversely, if this procedure fails for a
specia choice of paths, (9) implies that a potential does not exist.

REMARK 6.3. When the semifield is idempotent, the potential v is an
eigenvector of the matrix AY™ associated with the eigenvalue e.
Proof of Lemma 6.1. The following implications are obvious

1 =7™'9- 8

¢ U
4&< 2 — 3

the implication 7=9 holding only in the irreducible case.

3=5. We choose the diagona matrix Vi = vi. Then (V7 *AV); =
v tAjvj = eor g, hence, B = V-TAV isBoolean.
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5=2. For all paths 7, |7ij [vev-1 = vivj ™.
7=6. Leti betheinitial point of c. Since both ¢ and ¢? are paths from i

toi, |c|a = |c[, thus|c|a = €.

6=7 (when A isirreducible). Let &, 7’ denote two paths from j to
i. Since A isirreducible, there is a path 7” fromi to j. Since nx” and
a'n” arecircuits, |r”|a = |T|alt|a = |77\ A = |7 |al7T”| A, hence,
I7T|a = |7T'| A

4=2. For each vertex i, we choose an arbitrary vertex ¢(i) in an ini-

tial class upstream i and we choose an arbitrary path 7/, ;,. We set u; =

|7/, | avu)- L€t 7 denote a path from i to avertex ¢(i) inafinal class.
The potential property of v restricted to theinitial and final classesyields
Vo) = |1Tai i T, lavi) = Imgqyilalmmijlau;
Vo) = 1T | aVi) = [T [aUi
hence, cancelling |7, |a, We get |mjj [ali = uj. That is, u isaglobal po-
tential. N
6.2. PROOF OF THEOREM 4.3

i) Potential equivalent to linearizable. Let v denote a potential of the
graph. Then, the fluid version of (2.1) becomes

Zqt) = Fr)ngirlqu;l(zp(t—rp)+mp) (6.3)
Zpt) = vpugaZpn(t) | (6.4)

hence the system becomes min-pluslinear after the change of variables Z{ =
v Z;. The converseimplication is obtained along the same lines.

i) Linearizable implies homogeneous. Transforming the linearity prop-
erty of TEGs (3.2b) by adiagonal change of variables, we obtain the homo-
geneity property (4.1).

iii ) Potential implies conservative. Thisistheimplication 2= 7 of Lem-
ma6.1.

I v) Homogeneous, trim and explicit implies the potential property. We
only consider the single input single output case (the general case being sim-
ilar). Then, the transfer series defined by (3.6) isscaar, i.e. H € Anmin[[8]].
Consider the expansion

H=EPHs" H e Ampn . (6.5)
TEN
First, we note that if the systemu — y = Hu is (v, vy)-homogeneous,
then each map H; : R — Ris (vy, vy)-homogeneous. This can be seen by
introducing the “ Dirac function”, e(t) “eift = 0, ¢ otherwise, and noting
that for all ze R, H(ze(r) = H,(2).
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Next, we note that the (v,, vy)-homogeneity of themap H, : R — R
readily implies that

VZeR, H.(2) =v, + (v)(v) 'z, (6.6)

with v, = H,(0).

Last, the path interpretation of the transfer (3.8) gives H, =
@D, yIxl,. , where the sum is taken over al the paths = from the
input to the output, with sum of the holding times ¢. Note that the sum is
indeed finite, since we assume that there are no circuits with zero holding
times. More explicitly,

VZzeR, H.(2)=min(v; +|7],2). (6.7)

A necessary condition for (6.6) and (6.7) to coincide is obviously that,
Vr, ||, = vy(vy)~*. Sincethegraphistrim, theinput transition isthe only
initial class and the output transition is the only final class. The conclusion

follows from Lemma6.1, part 4=2.
v) Conservative and strongly connected imply linearizable. Thisis the
implication 7=2 of Lemma 6.1. This concludes the proof of Theorem 4.3.
O
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