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TIMED EVENT GRAPHS WITH MULTIPLIERS AND
HOMOGENEOUS MIN-PLUS SYSTEMS

G. COHEN, S. GAUBERT, J.P. QUADRAT

ABSTRACT. We study fluid analogues of a subclass of Petri nets, called
Fluid Timed Event Graphs with Multipliers, which are a timed extension
of weighted T-Systems studied in the Petri Net literature. These event
graphs can be studied naturally, with a new algebra, analogous to the min-
plus algebra, but defined on piecewise linear concave increasing func-
tions, endowed with the pointwise minimum as addition, and the com-
position of functions as multiplication. A subclass of dynamical systems
in this algebra, which have a property of homogeneity, can be reduced
to standard min-plus linear systems after a change of counting units. We
give a necessary and sufficient condition under which a fluid timed event
graph with multipliers can be reduced to a fluid timed event graph with-
out multipliers. In the fluid case, this class corresponds to the so-called
expansible timed event graphs with multipliers of A. Munier, or to con-
servative weigthed T-systems. The change of variable is called here a
potential. Its restriction to the transitions nodes of the event graph is a
T-semiflow.

Key words. Timed Petri Nets, Timed Event Graphs, Dynamic Program-
ming, Discrete Event Systems, Max-Plus Algebra, Potentials, Weighted
T-Systems.

1. INTRODUCTION

An event graph is a Petri net such that each place has only one input arc
and one output arc. If the tokens have to stay a minimum amount of time
in the places, we speak of Timed Event Graph (TEG). These TEGs are well
adapted for modeling synchronizations. In many systems, synchronization
is essential. In manufacturing, in order to start a task, a machine and a part
must be both ready. In computer science, in order to achieve a computation,
we need a processor and an information.

Several units of the same resource may be required to achieve a specif-
ic task. Then, the corresponding event graph consumes or produces more
than one token in adjacent places, at each transition firing. The correspon-
ding event graph is called a Timed Event Graph with Multipliers (TEGM).
To assemble a bicycle, two wheels, a frame and a certain amount of man-
power are needed. In a chemical process, a reaction producing a molecule
consumes in general more than one atom of a given sort.
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Synchronization is not specific to discrete systems, and we will consider
here Fluid analogues of Timed Event Graphs with Multipliers (FTEGM) in
which fluids circulate instead of tokens. For instance, in chemical processes,
synchronization (stoichiometry here) is essential and the products used in a
chemical reaction may be fluids.

We give some mathematical tools well suited to manipulate FTEGM. In
particular, very briefly, we introduce a new kind of power series, extending
that considered in [1], which allow us to express the input-output relations
of FETGM (in [7], a systematic classification of all the kinds of power series
that may pop up in Petri net modeling is presented). These power series are
elements of a new noncommutative min-plus algebra: the set of piecewise
linear concave functions, endowed with the pointwise minimum as addition,
and the composition of functions as multiplication. This is the mathematical
cost to pay for dealing with multipliers. This is a somewhat expensive cost
and it is natural to try to find particular cases for which this can be avoided.

In [14], A. Munier introduced and studied an important subclass of
TEGM, that we will call conservative, in which the product of multipliers
along any circuit is equal to one. The main result of [14] reduces such a
TEGM to a conventional TEG after a duplication of transitions. In the con-
text of Petri nets where only the logical aspect is considered, this subclass is
known as conservative weihted T-systems [17, 13].

When the multipliers derive from a potential (a vector indexed by both
places and transitions), the dynamic of a FTEGM can be reduced to clas-
sical min-plus linear recurrent equations by a diagonal change of variables,
given by the potential. The existence of a potential is equivalent to the prop-
erty pointed out by A. Munier. The restriction of a potential to transitions is
called a semiflow in the Petri net literature [17]. In the example of the bicy-
cle, counting pairs of wheels instead of wheels is quite natural. It is impor-
tant to remark that this change of variables, called linearization, is a min-plus
algebra nonlinear operation. However with this way of counting the dynam-
ic becomes linear.

As a by-product of the linearization, the existence of an eventual periodic
regime is readily obtained, the performance being characterized in terms of
invariants of the original net. We also show that linearizable FTEGM are
characterized by an input-output homogeneity property, which is essentially
a conservation law between input and output quantities.

The fluid case, considered here, is much simpler than the discrete case
considered by Munier. The linearization procedure does not increase the
number of transitions of the system, while the expansion procedure of [14]
results in a blow up of the number of transitions.

The fact that a fluid approximation is considered in the case of discrete
systems may have an impact on the liveness of the Petri net. For instance, if
a single wheel is available, in reality, the production is blocked, but the fluid
model gives a production of one half of bicycle. This liveness issue is solved
by Munier [14] (see also [4] for nets with a single circuit). In this paper, we
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show that the discrete and fluid behaviors coincide when the integer marking
is a multiple of a certain minimal marking. Finding good units for counting
has nothing to do with liveness but with flows. Fluid analogues are suited to
find these units but not to study liveness problems.

The paper is organized as follows. In section 2, we recall classical defini-
tions about Petri nets and introduce the subclass of TEGs with Multipliers.
In section 3, we introduce an algebra of operators which yields a simple rep-
resentation of FTEGM. In section 4, we state the main results of the paper,
namely, the characterization of linearizable FTEGM, periodic regime, per-
formance (periodic thoughput), invariants. In Appendix 6.1, we state and
prove an elementary lemma about potentials on graphs which is the alge-
braic core of the properties presented here. In Appendix 6.2, the main re-
sults are proved as mere consequences of this lemma. Some open ends are
pointed out in conclusion.

2. RECURRENT EQUATIONS OF TIMED EVENT GRAPHS

WITH MULTIPLIERS

We begin by recalling the usual definition of Timed Petri Nets and Event
Graphs.

DEFINITION 2.1 (TPNM,TEGM,TEG). A Timed Petri Net with Mul-
tipliers (TPNM) is a valued bipartite graph given by a 5-tuple N =
(P,Q, M, m, τ ).

1. The finite set P is called the set of places. A place may contain to-
kens which travel from place to place according to a firing process de-
scribed later on.

2. The finite set Q is called the set of transitions. When firing, a transi-
tion consumes tokens of the upstream places and produces tokens in
the downstream places.

3. The set of nodes isR def= P ∪Q.
4. The matrix M ∈ NR×R is called incidence matrix. The integer Mpq

(resp. Mqp) denotes the number of edges from transition q to place p
(resp. from place p to transition q). Since the graph is bipartite the
blocks MPP and MQQ are zero. We denote by r out the set of vertices
(places or transitions) downstream a vertex r and r in the set of vertices
upstream r . Formally, r out = {s | Msr 6= 0}, r in = {s | Mrs 6= 0}.

5. The vector m ∈ NP is called initial marking. The integer mp denotes
the number of tokens being initially in place p .

6. The vector τ ∈ NP is called holding time. The integer τp gives the
minimal time a token must spend in place p before becoming available
for consumption by downstream transitions1.

1Without loss of modeling power, the firing of transitions is supposed to be instantaneous
(i.e. it involves no delay in consuming and producing tokens).
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7. A Timed Event Graph with Multipliers (TEGM) is a TPNM such that
there is exactly one transition upstream and one transition downstream
each place.

8. An (ordinary) Timed Event Graph (TEG) is a TEGM with unit multi-
pliers (i.e. Mrs ∈ {0, 1}).

The (earliest) functioning of a TEGM is as follows. A transition q fires
as soon as all the places p upstream q contain enough tokens (Mqp) having
spent at least τp units of time in place p (earliest firing rule). When the tran-
sition q fires, it consumes Mqp tokens in each upstream place p and produces
Mp′q tokens in each downstream place p′.
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FIGURE 1. A timed event graph with multipliers.

DEFINITION 2.2. 1. With each place p (resp. transition q), a counter
variable Zp (resp. Zq) is associated. It denotes the cumulated num-
ber of tokens which have entered place p (resp. number of firings of
transition q) up to time2 t ∈ Z.

2. We call µ the multiplier matrix , i.e. theR×R matrix with values in

R+ and entries µpq
def= Mpq, µqp

def= M−1
qp for p ∈ P, q ∈ Q, Mqp 6= 0,

with µrr ′ = 0 if Mrr ′ = 0, r, r ′ ∈ R.

ASSERTION 2.3. The counter variables of a TEGM3 (under the earliest fir-
ing rule) satisfy the following equations:

Zq(t) = min
p∈qin

bµqp(Zp(t − τp) + mp)c, Zp(t) = µppin Zpin(t) , (2.1)

with bxc = sup{n ∈ Z | n ≤ x}.
Eliminating Zp, we get the transition-to-transition equations:

Zq(t) = min
p∈qin

bνp + αpZpin(t − τp)c , (2.2)

with the notation νp = µpout pmp, αp = µpout pµppin . Dually, place-to-place
equations can be obtained.

2We consider here only t ∈ Z but the result could be generalized to t ∈ R.
3We shall only give here the dynamic equations of TEGM. Indeed, the general Petri net

equations exhibit a higher order of complexity due to the presence of routing decisions; see
[7, 2].
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The behavior of this dynamic is extremely simple in the TEG case. Then,
the multipliers are equal to one, and (2.1) becomes:

Zq(t) = min
p∈qin

(
Zp(t − τp) + mp

)
, Zp(t) = Zpin(t) . (2.3)

Note that the integer part has been dropped, since the dynamics (2.3) obvi-
ously preserves integrity. Therefore, fluid TEG need not be distinguished
from conventional TEG. The behavior of TEGs is well understood [6, 5, 1].
In particular, strongly connected TEG reach a periodic regime after a finite
time, and the corresponding periodic throughput can be easily determined.
This leads us to raise the following question, to which the remaining part of
the paper is devoted: when does a TEGM reduce to a TEG by a change of
variables ?

We shall only consider here diagonal changes of variables (change of u-
nits): Z = DZ′ (where D is a diagonal matrix with positive diagonal en-
tries). This restriction can be justified theoretically. We need a change of
variables which preserves the min-plus structure of the equations. Thus, we
need a matrix P such that the changes of variables Z = P Z′ and Z′ = P−1 Z
are order preserving, which is possible if and only if P is a monomial ma-
trix (product of a diagonal matrix with positive entries and a permutation
matrix). Indeed the inverse of a nonnegative matrix is nonnegative if and
only if it is a monomial matrix ( see [3], Lemma 4.3, p.68).

REMARK 2.4. If τp = 0 for some places, (2.1) becomes an implicit system
and we may have difficulties in proving the existence of a finite solution.
For the subclass of systems (with the potential property) discussed here, the
existence will follow at once from the existing results about TEG. In general,
it is not too restrictive to assume that : there are no circuits containing only
places with zero holding times. We will call such graphs explicit. For ex-
plicit FTEGM, (2.1) has a unique solution, which can be shown by adapting
the argument of [1], Lemma 2.65, p.78.

DEFINITION 2.5 (INPUT-OUTPUT PARTITION). We partition the set of
transitions Q = U ∪ X ∪ Y , where U is the set of transitions with no pre-
decessors (input transitions), Y is the set of transitions with no successors
(output transitions) and X = Q \ (U ∪ Y) (state transitions). We denote by
u (resp. x, y) the vector of input (resp. state, output) counters Zq, q ∈ U
(resp. X , Y).

Throughout the paper, we will study the input-output behavior of the sys-
tem. That is, we will look for the trajectory (x(·), y(·)) corresponding to
the earliest firing rule (which yields the largest possible values of counter-
s), given an input history u(·). This encompasses the autonomous regime
traditionally considered in the Petri net literature, when the system is frozen
at an initial condition Zq(t) = wq ∈ R for t < 0 (usually wq = 0), and
then evolves freely according to the dynamics (2.1) for t ≥ 0. This can be
obtained as a specialization of the input-output case by adjoining an input
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transition q′ (with an associated empty place) upstream each original tran-
sition q, setting uq′(t) = wq for t < 0, uq′(t) = +∞ otherwise.

EXAMPLE 2.6. Let us consider the TEGM depicted in Fig. 1. In each place
the initial marking is given by the number of tokens (dots), the timing by the
number of bars (time units), and the multipliers by the numbers of arcs in
parallel. The equations read

x1(t) = min b2 + x1(t − 1), 1 + 2x2(t − 1)c , y(t) = b1 + x1(t)c .

x2(t) = min b(1/2)x1(t − 1), 1 + x2(t − 3), 1/2 + (3/2)u(t)c ,

3. OPERATORIAL REPRESENTATION OF FTEGM

Fluid Timed Event Graphs with Multipliers (FTEGM) are defined as in
Def. 2.1, but the marking m and the multipliers M take real values, that is
mp ∈ R ∪ {+∞}, Mxy ∈ R+. Counter functions are subsequently real val-
ued, and the integer parts vanish, that is

Zq(t) = min
p∈qin

(
νp + αpZpin(t − τp)

)
. (3.1)

We next introduce the algebraic tools needed to easily handle such dynam-
ics.

1. A semiring is a set, equipped with an addition ⊕, and a product ⊗, such
that: ⊕ is associative, commutative, has a zero (denoted ε); ⊗ is asso-
ciative, has a unit (denoted e); ⊗ distributes over ⊕; zero is absorbing
(ε ⊗ a = ε). An idempotent semiring (such that a⊕ a = a) is called a
dioid. A semifield is a semiring whose nonzero elements are invertible.
E.g. (R+, +, ×) and (R+∪{+∞}, max, ×) are idempotent semifields.

2. The idempotent semifield Rmin is the set R∪{+∞}, equipped with min
as addition and the usual sum as multiplication, i.e. a⊕b = min(a, b),
a ⊗ b = a + b with ε = +∞ and e = 0.

3. A signal is a map u : Z → R ∪ {+∞}. We denote by S the set of
signals, which has a structure of min-plus semimodule (the analogue of
a module but with scalars belonging to a semiring, here Rmin ). Counter
functions are instances of nondecreasing signals.

4. An operator is a map H : S → S . It is linear if it preserves the min-
plus semimodule structure of signals, that is,

H(u ⊕ v) = H(u) ⊕H(v) , (3.2a)

H(λ ⊗ u) = λ ⊗H(u) , (3.2b)

for all signals u, v and constants λ (we denote by λ ⊗ u the signal
t 7→ λ + u(t)). An operator is additive if it only satisfies the relation
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(3.2a). The following three families of operators are central in model-
ing FTEGM.

γ ν : γ νx(t)
def= x(t) + ν (shift in counting) (3.3a)

δτ : δτ x(t)
def= x(t − τ) (shift in dating) (3.3b)

µ : µx(t)
def= µ × x(t) (scaling), (3.3c)

where ν ∈ R ∪ {+∞}, τ ∈ N, µ ∈ R+. We note that γ and δ are
linear, while the operators µ 6= 1 are only additive. They satisfy

γ νδτ = δτγ ν , µδτ = δτµ , µγ ν = γ µνµ , (3.4)

γ ν ⊕ γ ν′ = γ min(ν,ν′) ,

γ νγ ν′ = γ ν+ν′
, δτ δτ ′ = δτ+τ ′

, µµ′ = µ × µ′ .

5. We denote byAmin the (noncommutative) dioid of finite sums of opera-
tors µγ n (equipped with pointwise min and composition). Thus, an el-
ement ofAmin is a map p = ⊕k

i =1 γ νi µi , p(x) = min1≤i ≤k(νi +µi x) ,

with ε = γ +∞ and e = γ 0.
6. We denote byAmin[[δ]] (resp. Amin[δ]) the dioid of power series (resp.

polynomials) with coefficients inAmin, with the zero element γ +∞ and
the identity element γ 0δ0.

7. The subset ofAmin[[δ]], where all multipliers appearing in a power se-
ries satisfy µ = 1, is a dioid called Rmin[[δ]]. The subdioid of polyno-
mials Rmin[[δ]] ∩Amin[δ] is denoted Rmin[δ].

8. We extend the min-plus matrix product notation to denote the action
of matrices of operators on vectors of signals. Given a matrix A with
entries in Amin[[δ]] and a vector of signals u (with compatible dimen-

sions), we set (Au)i
def= ⊕

j Ai j (u j ). The zero (matrix whose entries
are identically ε) and identity element (diagonal matrix with e entries
on the diagonal and ε elsewhere) are still denoted ε and e.

We next rephrase the dynamic equations of FTEGM algebraically.

ASSERTION 3.1. The dynamics of a FTEGM can be written

x = Ax ⊕ Bu, y = Cx ⊕ Du , (3.5)

where A, B, C, D are matrices with entries in Amin[δ]. We say that
(A, B, C, D) is a representation of the system. Moreover, in the TEG case,
the entries of A, B, C, D belong to Rmin[δ].

As an immediate corollary of the representation (3.5), one obtains the fol-
lowing input-output representation result, taken from [7].

ASSERTION 3.2 (TRANSFER REPRESENTATION). For an explicit4 FTE-
GM with representation A, B, C, D, we have

y = Hu, where H = D ⊕ C A∗B , A∗ = e⊕ A ⊕ A2 ⊕ · · · (3.6)

4See Remark 2.4. Without this condition, the infinite sum A∗ need not converge in
Amin[[δ]].
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The Y×U matrix H with entries inAmin[[δ]] (in Rmin[[δ]] in the TEG case)
is called transfer matrix.

In other words, the input-output behavior of the system is summarized by
a matrix of power series. The series obtained as entries of transfer matrices
of systems of type (3.5) form the strict subclass of rational series. See [7]
for more details.

Let us recall the classical characterization of these (rational) transfer se-
ries in terms of paths. The weight of a path π , denoted |π |, is equal to the
product of the operators of types γ, δ, µ (associated with arcs), taken along
the path. We note that |π | ∈ Amin[δ] is indeed a monomial, and we write

|π | = γ νπ δτπ |π |µ , (3.7)

where |π |µ ∈ R+ is the multiplicative weight of the path (i.e. the product of
the multipliers along the arcs), τπ ∈ N is the sum of the holding times of the
places of the path, and the “discounted marking” νπ ∈ R is obtained, from
the original marking, by applying several times the commutation rules. The
set of paths from i to j is denoted ℘ j i . The following elementary fact needs
no formal proof.

ASSERTION 3.3. For all input and output transitions i ∈ U , j ∈ Y , the
transfer series Hji from i to j is equal to the sum of the weights of the paths
℘ j i from i to j :

Hj i =
⊕
π∈℘ j i

|π | =
⊕
π∈℘ j i

γ νπ δτπ |π |µ . (3.8)

EXAMPLE 3.4. The TEGM depicted in Fig. 1 admits the following repre-
sentation.

A =
(

γ 2δ γ δ2
(1/2)δ γ δ3

)
, B =

(
ε

(1/2)γ 3

)
, C = (

γ ε
)
, D = (

ε
)
.

The transfer will be explicitly computed in Ex. 4.7 below.

REMARK 3.5 (DYNAMIC PROGRAMMING INTERPRETATION). We note
that (3.1) can be interpreted as the dynamic programming equation of a
deterministic Markov decision process with control dependent discount
rate α and cost ν. The transitions of the event graph are the states. The
control chooses between the upwards arcs of the transitions. Then, Z is the
Bellman function of the corresponding dynamic programming equation. In
particular, the results given below characterize the subclass of discounted
decision problems which reduce to the undiscounted case after a diagonal
change of variables. This dynamic programming interpretation is detailed
in [7].

4. LINEARIZABILITY AND EXISTENCE OF POTENTIAL

We next introduce some elementary notions, needed to state the main re-
sult.
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DEFINITION 4.1. Let A denote an n×n matrix, with entries in a semifield5

K.

1. We call transition graph of A, the (directed) graph G(A) with nodes
{1, . . . , n}, and arcs j 7→ i whenever Ai j 6= ε. A path from j to i in

the transition graph G(A) is denoted πi j . Its weight is denoted |πi j |A
def=

Ail n Alnln−1 · · · Al1 j , if πi j = ( j, l1, l2, . . . , ln, i ).
2. The matrix A is conservative if the multiplicative weight of a path de-

pends only on the initial and final nodes of the path i.e. if for all paths
πi j from j to i (with 1 ≤ i, j ≤ n), |πi j |A depends only on i and j .

3. The matrix A admits a potential if there exists a vector v ∈ Kn (called
potential), such that for all 1 ≤ i, j ≤ n and for all paths πxy from j
to i , |πi j |A = vi v

−1
j .

4. A FTEGM is conservative (resp. admits the potential v) if its multipli-
er matrix µ is conservative (resp. admits the potential v).

5. A FTEGM is linearizable if there exists a diagonal change of variables

Zq(t) = vq×Z′
q(t), with vq ∈ R+

∗
def= R+\{0}, such that Z′

q satisfy min-
plus linear recurrent equations; or equivalently and more formally, if
three diagonal matrices Vx = diag(vq, q ∈ X ) and similarly Vu, Vy,
are such that the entries of C′ = (Vy)

−1CVx, A′ = V−1
x AVx, B′ =

V−1
x BVu, D′ = (Vy)

−1 DVu belong to Rmin[δ].
6. A FTEGM with transferH is homogeneous if there exist two vectors6

vu ∈ (R+
∗ )U , vy ∈ (R+

∗ )Y such that

∀λ ∈ Rmin, H(λvu + u) = λvy +H(u) , (4.1)

where λv + u denotes the vector signal t 7→ λv + u(t).
7. A FTEGM is trim if each transition is structurally controllable and ob-

servable, i.e. if for each transition, there exists a path coming from at
least one input, and there exists a path going to at least one output.

REMARK 4.2. 1. Clearly not all matrices admit a potential.
2. A FTEGM is linearizable if it reduces to an ordinary FTEG by a change

of counting units.
3. The homogeneity property (4.1) extends the usual linearity relation

(3.2b) which is the specialization of (4.1) to vectors vu, vy with all en-
tries equal to 1.

4. The additivity axiom (3.2a) is automatically satisfied for FTEGM, sin-
ce the equations (3.5) involve only the shifts and scaling operators
(3.3), which are additive.

The main result of this paper is the following characterization, which is
proved in Appendix 6.2 as a consequence of a more general lemma on po-
tentials of matrices.

5We mostly use the semifield (R+, max, ×). However, it is instructive to note that the
heart of the results (Lemma 6.1 below) holds in general semifields.

6Later on, we shall see that vu and vy are components of a potential v.
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THEOREM 4.3. Let E denote a FTEGM. The two following assertions are
equivalent.

1. E is linearizable;
2. E has a potential.

Moreover, the above assertions imply that

3. E is homogeneous;
4. E is conservative.

Conversely, if E is homogeneous, trim and explicit, then it is linearizable. If
E is conservative and strongly connected, then it is linearizable.

From this theorem, the following result is clear.

COROLLARY 4.4. A FTEGM reduces to a TEG by a change of counting u-
nits iff it has a potential.

As it is well known [1, 5], autonomous TEGs reach a periodic regime after
a finite time. This property being preserved by a change of counting units,
we obtain as an immediate corollary of [1, Th. 3.28] and Theorem 4.3 a pe-
riodicity theorem for linearizable FTEGM.

COROLLARY 4.5 (CYCLICITY). The counter functions of an autonomous
linearizable FTEGM satisfy the following periodicity property:

∃T0, c ≥ 1, ∀i ∈ Q ∪ P, ∃λi , ∀t ≥ T0, Zi (t + c) = λi c + Zi (t) .

Moreover, for a strongly connected graph7, the periodic throughput λi at no-
de i is given by the expression

v−1
i λi = min

C

∑
p∈C v−1

p mp∑
p∈C τp

, (4.2)

for any potential v that fits this linearizable FTEGM, where the minimum is
taken over all the circuits C of the graph, and the sums are taken over all the
places of the circuit C.

It is important to note that the terms at the right-hand side of (4.2) are in-
variants of the net. Equivalently, for all circuits C, the vector indexed by P ,
with entries v−1

p for p ∈ C, and vp = 0 otherwise, is a P-semiflow [17].

PROPOSITION 4.6 (INVARIANTS). Let v denote a potential and C a circuit
of a FTEGM. For all markings m′ reachable from the initial marking m, we
have ∑

p∈C
v−1

p mp =
∑
p∈C

v−1
p m′

p .

Proof. Let q denote a transition of C. Let q− = qin ∩ C, q+ = qout ∩ C de-
note respectively the places of the circuit upstream and downstream q. Ig-
noring the trivial case where C is a loop, we assume that q+ 6= q−. Af-
ter firing transition q, we obtain the new marking m′

q+ = mq+ + µq+q,

m′
q− = mq− − µ−1

qq−, the markings of the other places of C being unaltered.

7The extension to the non strongly-connected case is straightforward.
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Thus, the sum
∑

p∈C v−1
p mp increases by v−1

q+ µq+q − v−1
q− µ−1

qq− which is zero
precisely because v is a potential.

The algorithm below allows us to compute a potential. It uses the undi-
rected transition graph of A, G ′(A) = (VA, EA), with set of vertices VA =
{1, . . . , n}, and set of edges8 EA = {{i, j } | Ai j 6= ε or Aji 6= ε}. The al-
gorithm runs in time O(n+m), where m is the number of arcs of G(A). It is
based on the observation that the value of v at an arbitrary node j determines
the value of v at all the successors and predecessors of j , using the relations
vi = Ai j v j and vi = A−1

j i v j , when Ai j 6= ε and Aji 6= ε, respectively. Each
iteration of the repeat loop explores a connected component of G ′(A), and
determines the value of v on it. The correctness of the algorithm follows
readily from Lemma 6.1 and Remark 6.2 below. Practically, a classical con-
venient way to implement the graph exploration (while loop) is a depth first
search (see [16, 2] and [12, Ch. 1]). It is easy to prove that the number of
compatibility conditions to check is equal to the “cyclomatic number” of the
undirected multigraph obtained from G(A) by disregarding the orientation
of arcs.

Algorithm 1 Computing a Potential

INPUT: a n × n-matrix A, with entries in a semifield K.
OUTPUT: the potential of A in Kn if it exists, false otherwise.
All the nodes are initially non visited.
repeat

mark an arbitrary non visited node r as visited, and assign an arbitrary
value to vr ;
while there is an edge {i, j } of G ′(A), with visited j , and unvisited i ,
do

mark node i as visited,
if Ai j 6= ε then

vi ← Ai j v j ,
mark arc (i, j );

else
vi ← A−1

j i v j ,
mark arc ( j, i );

end if
end while
for all unmarked arcs (i, j ), with visited ends do

check the compatibility condition vi = Ai j v j ,
answer false if it is not satisfied,
mark arc (i, j );

end for
until all the nodes are visited.

8We denote edges of undirected graphs by unordered pairs {i, j }, as opposed to arcs of
directed graphs denoted by ordered pairs (i, j ).
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EXAMPLE 4.7. We come back to the FTEGM depicted in Fig. 1. The mul-
tiplier matrix has the block partition

µ =
(

0 µQP
µPQ 0

)
, µPQ

def=



x1 x2 u y
p1 · · 3 ·
p2 · 1 · ·
p3 · 2 · ·
p4 1 · · ·
p5 1 · · ·
p6 1 · · ·

,

µQP
def=


p1 p2 p3 p4 p5 p6

x1 · · 1 · 1 ·
x2 1/2 1 · 1/2 · ·
u · · · · · ·
y · · · · · 1

.

(the zero entries are represented by dots).
Setting vu = 1/3, and visiting the nodes in the order u, p1, x2, p2, p3, x1,

p4, p5, p6, y Algorithm 1 gives

vT = ( x1 x2 u y p1 p2 p3 p4 p5 p6

1 1/2 1/3 1 1 1/2 1 1 1 1
)

.

The three unmarked arcs (x2, p4), (x2, p2), (x1, p5) give the three following
(satisfied) compatibility conditions: vx2 = (1/2)vp4 , vx2 = vp2 , vx1 = vp5 .
Thus, v is a potential.

With the new variables x′
1 = x1, x′

2 = 2x2, u′ = 3u, y′ = y, the system
admits the following representation

A′ =
(

γ 2δ γ δ

δ γ 2δ3

)
, B′ =

(
ε

γ

)
, C′ = (

γ ε
)

. (4.3)

The corresponding linearized TEG is shown in Fig. 2. It is not difficult9 to

x1 x2

u

y

FIGURE 2. TEG obtained after the change of variables

compute the transfer series in the new system of coordinates:

H ′ def= C′(A′)∗B′ = γ 3δ(γ δ2)∗ .

9See [9, 1] for more details on the rational identities used to obtain reduced expressions
of the form (4.4).
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In the original system of coordinates:

H = H ′3 = γ 3δ(γ δ2)∗3 =
⊕
n∈N

γ 3+nδ1+2n3 . (4.4)

From (4.4), we get the explicit input-output relation

y(t) = [Hu](t) = inf
n∈N

(3 + n + 3u(t − 1 − 2n)) .

Finally, the application of the minimal mean-weight formula (4.2) gives the
following expression of the periodic throughput, e.g. for transition x2,

2λx2 = min (2, 2/3, 1/2) = 1/2 , (4.5)

which means that transition x2 is asymptotically fired once every four time
units in the autonomous regime.

We conclude by mentioning a case where there is no loss in considering
the fluid approximation of a, originally discrete, TEGM.

PROPOSITION 4.8. If the minimal integer valued10 potential u of a TEGM,
admitting a potential, and the normalized initial marking ν satisfy

∀q ∈ Q, ∀p ∈ qin, νp ∈ uqN , (4.6)

then the earliest autonomous behavior of the TEGM coincides with that of
its fluid version.

Proof. Performing the change of variables Z′
i = u−1

i Zi in (2.2), we obtain

Z′
q(t) = u−1

q min
p∈qin

⌊
uq

(
u−1

q νp + Z′
pin(t − τp)

)⌋
. (4.7)

Assuming by induction that Z′
pin(t −τp) takes integer values, for all p ∈ qin,

the assumption that u−1
q νp ∈ N allows us to cancel the integer round-up at

the right-hand side of (4.7), yielding

Z′
q(t) = min

p∈qin

(
u−1

q νp + Z′
pin(t − τp)

)
, (4.8)

which shows that Z′
q(t) is also integer. This shows by induction that Z′ fol-

lows the fluid dynamics.

Apart from these exceptional cases, it is not yet clear whether the more gen-
eral expansion procedure developed by Munier admits a simple operatorial
transcription, in the spirit of the Amin[[δ]] formalism presented here.

10All the potentials of a connected FTEGM are proportional. Moreover, the ratios vi /v j

are rational. Hence, the existence of a real valued potential guarantees the existence of a
minimal integer valued potential.
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5. CONCLUSION

To conclude, we would like to indicate the limitations of the approach pre-
sented here, and point out a few open questions. Theorem 4.3 provides a
convenient way to reduce fluid TEGM admitting a potential to fluid TEG.
One may therefore ask how coarse the fluid approximation can be. Since
the dynamics of a (discrete) TEGM is obtained from its fluid approximation
by taking down roundings, it is plain that the counter functions of the asso-
ciated FTEGM dominate that of the original (discrete) TEGM. The equality
case (Proposition 4.8) is exceptional. The discrete behavior may be arbitrar-
ily far from the fluid one. Indeed a FTEGM with positive throughputs may
have a deadlocked discrete version. For instance, the TEGM shown in Fig. 1
reaches a deadlock after transition x1 is fired (since two tokens would be nec-
essary in place p4 to fire x2) while the fluid version is live. Of course, the
quality of the approximation increases when the values of the initial marking
becomes large.

The results given here for event graphs have been (partly) extended to
general Petri nets (see [8]). In this reference, one can see numerical experi-
ments showing the quality of the fluid approximation.

Another open direction would be to treat general FTEGM, with no po-
tentials. It is standard Bellman theory that general FTEGM recursions (see
Eq. (3.1)) admit geometric growths or convergences. However, one cannot
easily characterize the corresponding rational (transfer) series with the same
degree of precision as transfer series of TEG are characterized [1].

Last, the presentation given here is not symmetric in counting and dating.
A dual theory obviously exists, if one considers timing transformations of
the form Z′

q(t) = Zq(vq × t), rather than counting transformations Z′
q(t) =

vq Zq(t). A more symmetric discussion, along the lines of [1, Chapter 5] in
the TEG case, will be considered in a forthcoming study.

6. APPENDIX

In this appendix, we first give a lemma of general interest about matrices,
and then we use it to prove Theorem 4.3.

6.1. POTENTIAL PROPERTIES OF MATRICES

We recall that the classes of a matrix A are, by definition, the strongly
connected components of the transition graph of A, that a class is initial if
there exists no other class upstream, and that it is final if there exists no other
class downstream. A matrix with a single class is irreducible.

With a n×n matrix A with entries in a semifieldK, we associate the sym-
metrized matrix:

(Asym)i j
def=


Ai j if Ai j 6= ε,

A−1
j i if Ai j = ε and Aji 6= ε,

ε otherwise.

(6.1)
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LEMMA 6.1. Let K denote a semifield. Let A ∈ Kn×n. The following con-
ditions are equivalent:

1. Asym has a potential;
2. A has a potential;
3. there exists a vector v with non ε entries such that Ai j 6= ε ⇒ vi =

Ai j v j ;
4. there exists a vector v defined only on the initial and final classes such

that for all paths πϕι from a vertex ι in an initial class to a vertex ϕ in
a final class, |πϕι|A = vϕ(vι)

−1;
5. there exist an (invertible) diagonal matrix V ∈ Kn×n and a Boolean

matrix B (∈ {ε, e}n×n ) such that A = V BV−1.

Moreover, if A is irreducible, the above conditions are equivalent to any of
the following statements:

6. for all circuits c, |c|A = e;
7. A is conservative;
8. there exists a collection of paths π k1 (from 1 to k = 2, . . . , n) such

that

∀i, j, Ai j 6= ε ⇒ Ai j |π j 1|A = |π i 1|A ; (6.2)

9. property (6.2) holds independently of the choice of the paths πk1.

In the irreducible case, these facts are essentially classical. See [11].

REMARK 6.2. The equivalence 1⇔2 allows us to consider Asym rather than
A. This is a useful trick, since we may always assume that Asym is irre-
ducible, and use the simpler characterizations of the second part of the lem-
ma. Indeed, in general, Asym is block-diagonal, with irreducible diagonal
blocks. Thus, we have to find a potential for each irreducible block, sepa-
rately. The more technical points 8 and 9, together with 1⇔2, justify Al-
gorithm 1. Point 8 shows that it is enough to visit the graph in an arbitrary
way starting from an arbitrary node (say 1): if the corresponding paths π k1

satisfy (6.2), we obtain a potential. Conversely, if this procedure fails for a
special choice of paths, (9) implies that a potential does not exist.

REMARK 6.3. When the semifield is idempotent, the potential v is an
eigenvector of the matrix Asym associated with the eigenvalue e.

Proof of Lemma 6.1. The following implications are obvious

1 ⇒ 7
irred.⇒ 9 ⇒ 8

m ⇓
4 ⇐ 2 H⇒ 3

the implication 7⇒9 holding only in the irreducible case.

3⇒5. We choose the diagonal matrix Vii = vi . Then (V−1 AV)i j =
v−1

i Ai j v j = e or ε, hence, B = V−1 AV is Boolean.
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5⇒2. For all paths πi j , |πi j |V BV−1 = vi v
−1
j .

7⇒6. Let i be the initial point of c. Since both c and c2 are paths from i
to i , |c|A = |c|2A, thus |c|A = e.

6⇒7 (when A is irreducible). Let π, π ′ denote two paths from j to
i . Since A is irreducible, there is a path π ′′ from i to j . Since ππ ′′ and
π ′π ′′ are circuits, |ππ ′′|A = |π |A|π ′′|A = |π ′π ′′|A = |π ′|A|π ′′|A, hence,
|π |A = |π ′|A.

4⇒2. For each vertex i , we choose an arbitrary vertex ι(i ) in an ini-
tial class upstream i and we choose an arbitrary path π ′

i ι(i ). We set ui =
|π ′

i ι(i )|Avι(i ). Let π ′′
ϕ(i )i denote a path from i to a vertex ϕ(i ) in a final class.

The potential property of v restricted to the initial and final classes yields

vϕ(i ) = |π ′′
ϕ(i )i πi j π

′
j ι( j )|Avι( j ) = |π ′′

ϕ(i )i |A|πi j |Au j ,

vϕ(i ) = |π ′′
ϕ(i )i πi ι(i )|Avι(i ) = |π ′′

ϕ(i )i |Aui ,

hence, cancelling |π ′′
ϕ(i )i |A, we get |πi j |Aui = u j . That is, u is a global po-

tential.

6.2. PROOF OF THEOREM 4.3

i ) Potential equivalent to linearizable. Let v denote a potential of the
graph. Then, the fluid version of (2.1) becomes

Zq(t) = min
p∈qin

vqv
−1
p

(
Zp(t − τp) + mp

)
(6.3)

Zp(t) = vpv
−1
pin Zpin(t) , (6.4)

hence the system becomes min-plus linear after the change of variables Z′
i =

v−1
i Zi . The converse implication is obtained along the same lines.
i i ) Linearizable implies homogeneous. Transforming the linearity prop-

erty of TEGs (3.2b) by a diagonal change of variables, we obtain the homo-
geneity property (4.1).

i i i ) Potential implies conservative. This is the implication 2⇒7 of Lem-
ma 6.1.

i v) Homogeneous, trim and explicit implies the potential property. We
only consider the single input single output case (the general case being sim-
ilar). Then, the transfer series defined by (3.6) is scalar, i.e. H ∈ Amin[[δ]].
Consider the expansion

H =
⊕
τ∈N

Hτ δ
τ , Hτ ∈ Amin . (6.5)

First, we note that if the system u 7→ y = Hu is (vu, vy)-homogeneous,
then each map Hτ : R → R is (vu, vy)-homogeneous. This can be seen by

introducing the “Dirac function”, e(t)
def= e if t = 0, ε otherwise, and noting

that for all z ∈ R, H(ze)(τ ) = Hτ (z).
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Next, we note that the (vu, vy)-homogeneity of the map Hτ : R → R
readily implies that

∀z ∈ R, Hτ (z) = ντ + (vy)(vu)
−1z , (6.6)

with ντ = Hτ (0).

Last, the path interpretation of the transfer (3.8) gives Hτ =⊕
π γ νπ |π |µ , where the sum is taken over all the paths π from the

input to the output, with sum of the holding times τ . Note that the sum is
indeed finite, since we assume that there are no circuits with zero holding
times. More explicitly,

∀z ∈ R, Hτ (z) = min
π

(
νπ + |π |µz

)
. (6.7)

A necessary condition for (6.6) and (6.7) to coincide is obviously that,
∀π, |π |µ = vy(vu)

−1. Since the graph is trim, the input transition is the only
initial class and the output transition is the only final class. The conclusion
follows from Lemma 6.1, part 4⇒2.

v) Conservative and strongly connected imply linearizable. This is the
implication 7⇒2 of Lemma 6.1. This concludes the proof of Theorem 4.3.
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