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Abstract: We describe the specialization to max-plus algebra of Howard’s policy improve-
ment scheme, which yields an algorithm to compute the solutions of spectral problems in the
max-plus semiring. Experimentally, the algorithm shows a remarkable (almost linear) average

execution time.

Résun&: Nous spcialisonsa’I'algébre max-plus I'ération sur les politiques de Howard, qui
fournit un algorithme pour calculer valeurs propres et vecteurs propres dans celfiealee
temps d€xécution de I'algorithme est egpimentalement presque &aire.
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1. INTRODUCTION

The max-plus semirindRmay is the setR U {—oo},
equipped with max, written additivelya(® b =
maxa, b)), and+, written multiplicatively @ @ b =

a + b). The zero element will be denoted by(0 =
—00), the unit element will be denoted ky(1 = 0).
We will adopt the usual algebraic conventions, writing
for instanceab for a ® b, 0 for the zero vector or zero
matrix (the dimension being clear from the context),
etc.

Thespectral problenfor a matrixA € (Rmax)"*" can
be writen as

AX = AX , (D)

wherex € (Rnax)™ \ {0} andi € Rmax, i.e. with the
usual notation

* This work was partially supported by the European Community
Framework IV program through the research network ALAPEDES
(“The Algebraic Approach to Performance Evaluation of Discrete
Event Systems”).

Vie{l,....,n}, max(Aj +Xj))=r+X, (2)
1<j<n

wherex € (R U {—oo})" has at least one finite entry,
andi € R U {—oo}. As usual, we will callx an
eigenvalue, and an associated eigenvector. Whereas
the max-plus spectral theorem, which characterizes
the solutions of (1), is one of the most studied max-
plus results , comparatively little can be found about
the numerical solving of (1). Unlike in usual algebra,
the max-plus spectral problem can be solved exactly
in a finite number of steps. The commonly received
method to solve (1) relies on Karp’s algorithm (1978),
which computes the (unique) eigenvalue of iem-

1 see (Romanovski1967, Vorobyev 1967, Cuninghame-Green
1979, Gondran and Minoux 1976, Gondran and Minoux 1977) for
historical references. Recent presentations can be found in (Baccelli
et al. 1992, §3.2.4§3.7),(Cuninghame-Green 1995),(Gaubert and
Plus 1997§ 3.7). See (Maslov and SambonskB92, Kolokoltsov

and Maslov 1997) for generalizations to the infinite dimension case.



ducible? matrix A in O(n3) time3 (in fact, O(n x A similar proof technique was applied to min-max
E) time, whereE is the number of noi- entries of ~ functions in (Gaubert and Gunawardena 1998).

A am_fl O(n) space. Then, some additional ma- A gmall prototype, written in C, which imple-
nipulations allow one to obtain a generating family qants the max-plus policy iteration algorithm de-
of the eigenspace, to compute other interesting spec.ribed here can be found currently on the web
tral characteristics such as the spectral projector, thepage http://amadeus.inria.frigaubert. The prototype

cyclicity, etc. (see (Baccelét al.1992,§3.7)). Agood  ¢an 4150 be used interactively thanks to an interface
bibliography on the maximal cycle mean problem, and \yith SCILAB S .

a comparison of Karp'’s algorithm with other classical

algorithms, can be found in (Dasdan and Gupta 1997). 5 WHAT THE MAX-PLUS SPECTRAL THEORY
The purpose of this paper is to describe a very dif- CAN DO FOR YOU

ferent algorithm, which seems more efficient, in prac-
tice. We will show how the specialization to the max-
plus case of Howard’s multichain policy improve-
ment algorithm (see e.g. (Denardo and Fox 1968
or (Puterman 1990) for a survey), which is well known
in stochastic control, runs in tinte Ny O(E) and
spaceO(n), where Ny is the number of iterations

of the algorithm. AlthoughNy, which depends on . L . .
bothn and the numerical values of the entries/f Problem 1. (Maximal Circuit Mean). Given a directed

seems difficult to evaluate, its average value is small graph” G = (V. ), equipped with aaluationmap

(experimental tests on full matrices suggest typically + £ > R, compute thenaximal circuit mean

Ny = O(ogn)). In other words, it seems exper- D ecc W(©)

_ _ ; . . p = max=eee 3
imentally possible to solve in aalmost linear(i.e. ¢ Yecl

almostO(E)) average time a family of combinatorial

problems for which the best standard algorithms run where the max is taken over all the circuitsf G, and
in O(n x E) time. We conjecture that the worst case the sums are taken over all the edges c.

value of the number of iteratior$y is polynomial in

E. Examples show that it is at least of order

In this section, we list several basic problems that
reduce to the spectral problem (1) and to some of its
), extensions. Other applications of the max-plus spec-
tral problem can be found e.g. in (Maslov and Sam-
borski'1992, Gaubert and Plus 1997), and in the ref-
erences therein.

The denominator of (3) is thengthof circuit c. The
The max-plus version of Howard’s algorithm outper- numerator is thealuationor weightof circuit c.
forms other known methods with good average ex- )
ecution time, such as linear programming. The only BY Theorem 3.1 below, whe@ is strongly connected,
other fast method known to us is Cuninghame-Green®” comude/sv\xlvjl\tfh the (unique) eigenvalue of matrix
and Yixun's algorithm (1996), which runs in time A € (Rmax) , defined as follows:
NcyO(E), where the average value of the number w(, j) if (i,]) €&,
of iterationsNcy is experimentallyO(n%8) for full Aij = {@ (= —c0) otherwise. (4)
matrices, according to (Cuninghame-Green and Yixun

1996). Conversely, with any matrix A € (Rmax)™", we

Some parts of the present work were initiated Will associate the grapsa with set of nodesV' =
in (Cochet-Terrasson 1996), and developed in a dif- {1.--..n} and set of edge§ = {(.]) | Aj #
ferent direction in (Cochet-Terrassaet al. 1997, 0} equipped with the valuatiom(i, j) = Ajj. This
Gaubert and Gunawardena 1998). It is remarkable
that _Howard_’s_ policy |m_provement scheme not or_1|y 6 http:/www-roca inria. friscilab

provides efficient a!gonthms, bF‘t also simple e)fls' 7 A (finite, directed) graph can be described by a finite set of nodes
tence proofs. In particular, the existence of generalized zr and a set of (oriented) edgésc A" x A. In the sequel, we will
eigenmodes for max-plus linear dynamical systemsuse the familiar notions of (directed) path, (directed) circuit, etc.,
with several incommensurable delays, which is statedWithout further comments.

in § 3 below, seems new in the max-plus literature 8 Note that according to (4) and throughout the paper, there is
’ an arcfromito j if Ajj # 0. This “direct” convention, which is

standard in combinatorial matrix theory and automata theory, was
o ] ) already used in (Gaubert and Plus 1997). The “inverse” convention
2 Irreducibility is defined ir§3 below. (with Aji # O instead of Ajj # 0) was used in (Baccellet

3 Throughout the paper, “time” and “space” refer to the execution al. 1992). This “inverse” convention is standard and preferable
time (on a sequential machine) and to the memory space requiredfor discrete event system applications, unless one accepts to deal

by the algorithm, respectively. with linear systems of the form(k) = x(k — 1) A, x(k) being a

4 The natural implementation of (Karp 1978) neddé?) space. row vector, instead of the more familiaik) = Ax(k — 1), x(k)
However, it is easy to design a two passes variant of the algorithm, being a column vector. A consequence of the compromise made
which needs a double time, and runs in ofllyn) space. in this paper (choosing the “direct” convention, while considering

5 The family of Howard's algorithms works only for “non-  dynamical systems of the second form) is that the accessibility
degenerate” matrices with at least one fo@ntry per row. For such relation, in Prop. 3.2 and 3.4 below, is the inverse of the one used
matricesh < E, andO(E) = O(n + E). e.g. in (Baccelliet al. 1992, Gunawardena 1994).



bijective correspondence between valued graphs, onwhere the sum is indeed a finite one, sifgds 0 for
the one hand, and max-plus matrices, on the otherall but finitely many values of. WhenA = Ay, (9)

hand, will be used systematically in the sequel.

Problem 2.(Cycle Time). Given a matrixA €
(Rmax)™*" with at least one finite entry per row, com-
pute thecycle time vector

X(A) = lim = x x(K) . (5)
k—oo Kk
where, foralli € {1, ...,n} and forallk € N\ {0},
Xi (K) = 1fl1ja<>§1(Aij +xj(k—= 1)), (6)

and the initial conditiox(0) € R" is arbitrary.

Of course, (6) is nothing but a linear system in the
max-plus semiring:

x(k) = Ax(k — 1) . (7

In other words, the cycle time vectgi A) determines
the linear growth rate of the trajectories of the max-
plus linear dynamical system (7). The fact thatA)
exists, that it is independehtof the initial condition
x(0) € R", and that it can be computed from the

specializes to (1). For this reason, we will call
a generalized eigenvectaf 4 and A a generalized
eigenvalue

The appropriate graphical object to be associated with
a polynomial matrix4A € (Rmax{y})"*" is not a val-
ued directed graph, but the bi-valued directedlti-
graph'® G 4, with set of nodes\V = {1, ..., n}, set

of edgest = {(i.t, j) e N'x R x N'| (Apjj # 0},
initial node map Iii,t, j) = i, terminal node map
Out(i, t, j) = |, first valuationw : w(,t,j) =
(Av)ij, and second valuation : (i, t, j) = t. Then,

the generalized spectral problem (8) becomes

Xi = max (w(,t, j)—Axz(,t, j)+x%) , (10)
(i,t,))e€

for all i € A. We will see in Theorem 3.3 that
the solutioni of (10) (which is unique under natural
conditions) yields the solutiop’ of the following
problem.

Problem 3. (Maximal Circuit Mear). Given a multi-
graphG = (N, &, In, Ou, equipped with two val-
uationsw : £ — R, t : £ — R, such that

eigenvalues of the submatrices associated with the2_eec 7(€) > 0, for all circuitsc of G, compute the

strongly connected components of the grapApdvill
be detailed in Prop. 3.2 below.

We next describe a useful generalization of the max-
plus spectral problem, which requires the definition
of max-polynomials. A (formal, generalized) max-
polynomial in the indeterminatg is simply a for-
mal sum @, g+ ptyt, where p is a mapRt —
Rmax, t +— pt, such thatp; = 0 for all but finitely
many values of € R™. We denote bRmax{y} the set

of such polynomials.

The generalized spectral problerfor a polynomial
matrix A € (Rmax{y H™" can be written as:

AxHx =x | (8)
wherex € (Rma)" \ {0}, A € R, andAQX™1) €
(Rmax)™" denotes the matrix obtained by replacing
each occurrence of the indeterminatey 1~ (= —2,
with the usual notation) in the formal expression of
A A = @yg+ Ayt with Ar € (Rmax)™", the
spectral problem (8) can be rewritten more explicitly

as
@ AL X =X,
teR+

©)

9 If some entries ok(0) are infinite, the limit in (5) need not exist,
see e.g. (Gaubert 1992, Remark 1.1.10, Chap. VI) and (Gaubert
and Plus 1997, Th. 17). The condition that all the entries @

are finite, and thatA has at least one finite entry per row (which
guarantees thaf sendsR" to R", i.e. that the image by of a

(generalized) maximal circuit mean:
/

e

p = maxw , (11)
C D eccT(®

where the max is taken over all the circuitef G.

As shown in Prop. 3.4 below, the generalized spectral
problem (8) is also useful in the effective computation

of cycle times of some max-plus linear dynamical

systems, that are infinite dimensional (multi-delay)

versions of (7).

We will say thatd = P p+ Ayt € Rmaxdy ™"
is agood polynomial matrii it has at least one nof-
entry per row, and if there are no circuits in the graph

of Ag.

Problem 4. (Cycle Timé). Given a good polynomial
matrix A € (Rmax{y})™", compute thecycle time
vector

1
X(A) = Jim = x() (12)

where the trajectory is now given by the dynamics

X (k) = max (13)

1<j<n

max((Apij + Xj(k—1t)) ,
teR+

10Loosely speaking, a multigraph is a graph in which several edges
can link the same pair of nodes. Formally, a (finite) multigraph can

column vector with finite entries has finite entries) is frequently Dbe defined by a (finite) set of nodes, a (finite) set of edges, and

used since it seems practically relevant for discrete event systemsWO maps In :& — N and Out :£ — N, which give the initial
and makes life simpler. node and terminal node of an edge, respectively.



forallk > 0 ((x(K))o>k=—kK, IS @ given bounded initial
condition, withKg = maxt e R | A; # 0}).
More algebraically, (13) can be rewritten as follows:

x(k) = @ Ax(k—t), Vk=0. (14)
teR+

Remark 2.1.Problems 4 and 2 are in fact two

We say thai has accesso j if there is a path from
i to j in the graph ofA. We say that has access to
a classC if it has access to any € C (this property
is obviously independent of the choice pfe C, by
definition of a class). By “eigenvalue of a cla8s,
we mean the eigenvalue of tliex C submatrix ofA,
which is unique by Theorem 3.1.

The following result appeared in (Gunawardena 1994,

special versions of a more general problem (seeProp. 7), and, in a stochastic context, in (Baccelli

e.g. (Gunawardena and Keane 1995)).Af is a
normed vector space anfl : X — X is a non-
expansive map (i.ef (x) — f(y)ll < Ix — yl)), the
limit x(f) = limc1/k x fk(x), if it exists, is inde-
pendent of the initial poink. Problem 2 deals with
the case whert is equal toR", equipped with the
sup norm, andf (x) = Ax. In Problem 4 X is the set
of bounded functions from{Kg, 0) to R", equipped
with the sup norm, and is the evolution operator
which with the piece of trajectorik (k) } -k ,<k<o (ini-

al. 1992, Th. 7.36).

Proposition 3.2.(Cycle Time Formula). LetA €
(Rmax)™", with at least one finite entry per row. The
i -th entryy; (A) of the cycle time vector is equal to the
maximum of the eigenvalues of the classes to which
has acce$s

The next statement uses the correspondence between
polynomial matrices and multigraphs, describeg i

tial condition), associates the trajectory obtained after above. We will say that a polynomial matrikis irre-

one unit of time:{x(k + 1)}_k,<k<o. The evolution

ducibleif its multigraph is strongly connected. More

operator is obviously well defined since there are no generally, we will naturally extend the notions of ac-

circuits in the graph of\,. It is clearly monotone and

cessibility, classes, etc. to polynomial matrices (these

homogeneous, hence, by a simple result (Crandall anchotions are defined as in the case of ordinary matri-

Tartar 1980), it is non-expansive for the sup-norm.

Thus, the existence of the limit (12) for a particular
bounded function{x(k)}-ky<k<0, implies the exis-
tence ofy (f), which is equal tg¢ (A). Conversely, the
existence ofy (f) clearly implies that the limit (12)
exists, withy (4) = x ().

3. SOME CLASSICAL AND LESS CLASSICAL
ELEMENTS OF MAX-PLUS SPECTRAL THEORY

In all this section, with a matrixA € (Rmnax)™"
we associate the grapBa N, &), equipped
with the valuationw, as defined in the discus-
sion following Eqn 4. The strongly connected com-
ponents of the graph ofA are calledclasses A
matrix is irreducible if its graph is strongly con-

nected, i.e. if it has a single class. The following re-

sult is classical (Romanovski967, Vorobyev 1967,

Cuninghame-Green 1979, Gondran and Minoux 1976,

Gondran and Minoux 1977). See e.g. (Baccelli

ces, but replacing the grapBa by the multigraph
G 4). The following result is taken from (Baccelit
al. 1992, Th. 3.28).

Theorem 3.3(Spectral Theoref An irreducible
polynomial matrix A Bicr+ A¥t €

(Rmax{yH"™", such that the graph of\y has no
circuits?, admits a unique generalized eigenvalie
given by (11).

The following extension of Prop. 3.2 is immediate.

Proposition 3.4.(Cycle Time Formulg. Let A de-
note a good polynomial matrix. Theth entry x; (A)

of the cycle time vector is equal to the maximum of
the generalized eigenvalues of the classes to which
has acce$s O

Since the decomposition of a directed graph or

al. 1992, Cuninghame-Green 1995) for recent presen-multigraph in strongly connected components can be

tations and proofs.

Theorem 3.1(Max-plus spectral theorem). An irre-
ducible matrixA € (Rmax)™*" has a unique eigen-
value, given by (3).

In general, there are several non-proportional eigen-

vectors (see e.g. (Baccehit al. 1992) or (Gaubert
and Plus 1997)). A reducible matr has in general

several distinct eigenvalues, and the maximal circuit

done in linear time using Tarjan’s algorithm (1972),
Prop. 3.2 and Prop. 3.4 reduce in linear time the com-
putation of the cycle time vector to the computation of
the (possibly generalized) eigenvalues of irreducible
(possibly polynomial) matrices. In particular, the tra-
ditional way to compute the cycle time vectprA)

is to compute the eigenvalues of the classesAof
via Karp’s algorithm (Karp 1978), and then to apply
Prop. 3.2. This method does not work for the gener-

mean (3) yields precisely the maximal eigenvalue (see!in (Baccelii et al. 1992, Th. 3.28), it is only required that the
e.g. (Gaubert 1992, Ch.IV), (Gaubert and Plus 1997), circuits of the graph of\g have negative weights. We will not need

(Bapatet al. 1995) for characterizations of the spec-
trum of reducible matrices).

this degree of generality here. In terms of the associated dynamical
systems (13), the condition of the theorem simply means that there
are no circuits involving zero-delay causality relations.



alized dynamics (13), since Karp’s algorithm cannot by looking for an ultimately affine solution of (13),
computegeneralizeceigenvalues. There are two tra- x(k) = D¥x = k x  + x. If such a solution ex-
ditional ways to overcome this difficulty. — Wheky ists, x(A) = Iimk% x X(K) = n. The next lemma
is zero except fointeger valuef t, an elimination  follows readily from this observation, and from the
of the implicit part and a familiar augmentation of fact, mentioned in Remark 2.1 above, that the limit
state reduces the generalized spectral problemdfor Iimk% x X(K) = n is independent of the particular
to an ordinary spectral problem for a larger matrix bounded initial condition.

A/. This method, which is presented in (Baccedi

al. 1992,§ 2.5.3§ 2.5.4), is not so expensive when the Lemma 3.5.1f a good polynomial matrixA has a
number of values of for which A; # 0 is small, par- generalized eigenmode, Xx), thenyx(A4) =»n. O
ticularly if it is implemented with some refinements,
as in (Gaubert and Mairesse 1997), fdr= Ao &
A1y. — The second method relies on the general
techniques presented in (Gondran and Minoux 1979
Appendix V), which allow one to maximize in pseudo-
polynomial time a ratio of the forrv(c)/z (c) for cin

a finite setS, provided that for any value of € R, we
know how to maximize in polynomial time the ratio
w(c) — At (c) for cin the same seb.

In particular, if A is irreducible, Prop. 3.4 implies that

n = x(A) = (x,..., 1), wherex is the generalized
'eigenvalue ofd. Therefore, (15) reduces to the (gen-
eralized) spectral problem (8), ards a (generalized)
eigenvector of4. |.e., for irreducible matrices, finding
generalized eigenmodes is equivalent to finding gen-
eralized eigenvectors.

The existence of generalized eigenmodes was proved
in (Gaubert and Gunawardena 1998) whén= Ay,

as a special case of a more general result for min-
max functions. In the next section, we will show how

We will not discuss in detail these two more or less
classical approaches, but rather show how a different
generalization of the spectral problem allows us to

determine directly an.d'm full gener_ahty cycle t|m¢ the max-plus version of Howard’s policy improvement
vect_ors. All the remaining pa_rt of this pape’r, anq In algorithm allows us to compute generalized eigen-
_parﬂcular, the max_-plus version of Howards_pohcy modes. In particular, the termination of the algorithm
improvement algorithm, will be based on this new i hrove the existence of such eigenmodes, for good
spectral problem. polynomial matrices.

We consider a good polynomial matrik We say that

(n,%x) € (RM?2 is ageneralized eigenmodé if there 4. THE MAX-PLUS POLICY IMPROVEMENT
existsK e R such that ALGORITHM

k —~1ypyk
keR k=K = Dx=AD")D* , (15  |n this section,4 will be a good polynomial matrix.
def We will use systematically the multigrapB 4 =
whereD €' diagns, ..., nn) and DX = diagk x (W, &, In, Out) equipped with the valuations), ,

N1, ..., Kxnn). canonically associated witH in § 2.
WhenA = Ay, (15) becomes It can be checked that the eigenmode equation (15)
Ky _ K—1 which seems deceivingly to involve an infinite number
KeR, kzK = Dx=AD""x. (16) of conditions, is equivalent to the following finite

That is, the action ofA coincides with the action system:

of D on the orbit{Dkx}sz_l. As detailed in foot-

note 12, the eigenmode equation (15) is obtained i =  MaX_ 1; 17)
Xi= max (w(,t, j)—td,t, j) xnj +xj),(18)

(.t,j)e€

12 This spectral notion is obtained wo successivgeneraliza-
tions of ordinary spectral problems. Tfiest generalizatiorconsists where € = {(,t,))e&| n = njt .

in replacing ordinary dynamical systems of the form (7) (with uni-

tary delays) by systems of the form (14) (with multiple delays). The In loose terms, the multichain policy iteration algo-

ordinary spectral problem (1) and its generalization (9) are obtained rithm will solve this system by trying to guess the arcs
by looking for solutions of the form(k) = 2Kx, wheren is a scalar that attain the maximum. A precise statement of this

andx € (Rmax" \ {0}. But the definition of cycle-time vectors . - . K .
requiresx to have finite coordinates. Then, in the general case, a idea needs the definition pbllcy, whichis a map
7: N — &, suchthat liw(i)) =i, Vi e N .

simple affine regimex(k) = AKx =k x Ay nn, A)T + x need not
exist, but a more general affine regimé) = DKx, whereD is a
diagonal matrix, is expected. In other words, we expect the different
entries ofx(k) to have different (linear) growth rates, given by the That is, a policy is just a map which with a node
diagonal entries oD. Hence, thesecond generalizatiogonsists associates an edge starting from this node.

in substitutingx(k) = DKx for k large enough (i.ek > K + Kp)

in (14): then, one obtains precisely the generalized eigenmode equa‘With a policy r, we associate the special polynomial
tion (15). Contrary to the case wh&n= A, D~ need notcommute  matrix A" =P R+ A{[)/t:

with the matricesAt, and thus, the relatiox = .A(D‘l)x = te

Drcr+ ADx need not imply thaD*x = A(D~1)DXx, for (AT _[w(n(i)) if j =Out(())andt =1(x(i))

k > 0. This is why (15) has to be statéat all largek. t 7 o otherwise.



Hence, the matrix4™ has exactly one non-zero entry
per row, which corresponds to the edge selected by
i.e. in the multigraph ofd™, (i) is the unique edge
starting from . It has the same valuationsandr asin
the original multigraph of4. E.g., we have depicted in
Fig. 2 below the multigraph (in fact, the graph).4ft,
wherem is the policy 1— 1,i — 2, fori = 2,3,4
andA = Ay, whereAis displayed in Fig. 1.

We first show how a generalized eigenmdglex) of a
matrix of the formA™ can be computed in tim@(n).

Algorithm 4.1. (Value Determination). Input: a good
polynomial matrix4 and a policyz. Output: a gener-
alized eigenmode ofl™.

(1) Find a circuitc in the multigraph of4™

(2) Set

> ecc W(©)

PeccT(®

(3) Select an arbitrary noden c, setn; = 77 and set
X; to an arbitrary value, say = 0.

(4) Visiting all the nodeg that have access foin
backward topological order, set

n= (19)

nj=n (20)

Xj=w(m(j)) =7 x 1(7w(j)) + Xoutx(j) (21)

(5) If there is a nonempty s& of nodesj that do
not have access fq repeat the algorithm using

the C x C submatrix ofA and the restriction of
7 toC.

The second ingredient of Howard’s algorithm is a
policy improvement routine, which given a poliey
and a generalized eigenmo@g x) of A7, either finds

a new policyr’ such thaty (A™) > 5 (A™), or proves
that(n, x) is a generalized eigenmode . df

Algorithm 4.3. (Policy Improvement). Input: a good
polynomial matrix.4, a policy =, together with a
generalized eigenmode, x) of A”™. Output: a policy
7', such thaty (A™) > x (A™).

(1) Let!3
J={i max n;j -
{i | (i,t,j))e(é‘m > i}
K(i)=argmaxj, fori =1...n,
(i,t,))e€
l={i] max (w® —zt@®n+Xj) > X}
e=(i,t,j)eK()
Li)= argmax (w(e) —t(&nj+Xj) ,
e=(it,j)eK()
fori =1...n.
(2) If I =J3 =0, (n,X) is a generalized eigenmode
of A. Stop.
) (a) IfJ #0, we set:
/v Janyein K@) ifi e J,
”(')—{n(i) ifi ¢ J.
(b) If J =@ butl £ @, we set
s+ Janyee L) ifiel,
”(')—{n(i) ifi gl

The policy improvement rules 3a and 3b simply mean
that one selects for the new policy the edges which
realize the maximum in Eqgns (17), (18). This maxi-
Step 1 is very easy to implement: we can start from mum is taken hierarchically: Eqn (17) has priority on
an arbitrary node, move to nodej = Out(r(i)), Eqgn (18) in a policy improvement step. Only when
then possibly to node Ogt(j)), etc., untilanode that Eqn (17) is satisfied Eqn (18) is used to determine the
is already visited is found. Then, a circuit has been new policy. The other conditions in steps 3a and 3b
found. This requires a linear time. simply mean that the preceding valueswo$hould be
kept inz’, whenever possible. These technical tricks
will guarantee the termination of the policy iteration
algorithm below, even when “degenerate” policy im-
provements in whicly (A7) = x (A™) occur.

The algorithm should be specified as follows.

Eqgn (21) requires visiting the nodes in backward
topological order, starting from, since the value of
Xoutz(j)) Must be already fixed when we visit node
j and setx;j. This complete visit can be done in lin-
ear time, at the price of an a priori tabulation of the The setsK (i) and L(i), which are introduced to
(multi-valued)-inverse of the mapy’ — N, j simplify the statement of the algorithm, need not be
Out(w(j)). Computing the inverse of this map also explicitly tabulated. Clearly, Algorithm 4.3 runs in
requires a linear time. The handling of this inverse is O(|£]) timel4 andO(n) spacée?®.

in fact the only part of the algorithm which requires
more refined data types than simple arrays (in our
implementation, we used linearly chained lists).

We next state the max-plus version of Howard’s policy
iteration algorithm.

Step 5 is formulated in a recursive way only to sim- Algorithm 4.4. (Max-plus Policy Iteration). Input: a
plify the statement of the algorithm, which is essen- good polynomial matrix.4. Output: a generalized
tially non recursive. eigenmode of4.

The above considerations justify the following theo-
rem. 13Recall that by argmax¢ f(e), we mean as usual the set of
elementan € £ such thatf (m) = maxecg f(€).

14 g simply denotes the number of edges of the multigraph.

15 The algorithm needs less internal memo®() space) than the

coding of the input itself, which required(|£]|) space.

Theorem 4.2 Algorithm 4.1 computes a generalized
eigenmode of4™ in time and spac®(n). O



(1) Initialization. Select an arbitrary policyr;. 5. EXAMPLES AND NUMERICAL TESTS
Compute a generalized eigenmodg, x1) of o .
A™, using Algorithm 4.1. Sek = 1. We apply the max-plus policy iteration algorithm to

(2) Policy improvementimprove the policyry, us- determine the eigenvalue of the matrix displayed in
ing Algorithm 4.3 with inputr = mqn = Fig. 1. This corresponds to the case where= Ay,

7K, x = xX. If the stopping condition of Algo- andt = 1. In particular, the multigraph ofl will be
rithm 4.3 is satisfied(n¥, x¥) is a generalized identified with the graph ofA. The following run of

eigenmode ofd. Stop. Otherwise, sef;1 = 7’ 1207 7 . (@

(the output of Algorithm 4.3). 0350 @ \/;/ @\\3
(3) Value determinationFind a generalized eigen- A=loaos 1 2 2 5 (3

mode (nk*t1, xkt1) of A™+1 using Algo- 0280 3</ e

rithm 4.1, taking the special valug™* = xX
in step 3,4.1. Fig. 1. A matrix and its graph

4) Incremenk by one and go to step 2.
@) y g P the algorithm is visualized in Fig. 2. We choose the

initial policy 71: 1 — 1,i — 2,fori = 2,3, 4.
The algorithm builds a sequence of generalized eigen-Applying Algorithm 4.1, we find a first circuit; :
modes(nK, x¥) that is strictly increasing for the lex- 1 — 1, withy = w(cy)/r(c1) = 1. We Sefni =1,
icographic order on(R")?, defined by(x,y) <iex xi = 0. Since 1 is the only node which has access to
(x',y) if x < x"orx =x"andy < y.The 1 we apply Algorithm 4.1 to the subgraph®f; with
fact thatx{"* must be set to¢® in step 3 of Algo-  nodes 23, 4. We find the circuit, : 2 — 2 and set
rithm 4.1 is a conservative trick analogous to the fact 5 — y(cp)/t(c2) = 3, 3 = 3 andx} = 0. Since
that the values of are kept inz” whenever possible, 3,4 have access to 2, we sgt = 3 fori = 3,4
in Algorithm 4.3. This technical condition is essential ;.0 o0 41 application of (21) yield% —4_34
to guarantee the strict monotonicity of the sequence ; ; 1 o
(n, x%), which is needed in the proof that the algo- *2' *4 = 2= 3+ xp. To summarize:
rithm terminates. nl _ [1 33 3]T’ x1 — [O 01 —l]T
The proof of the following result is similar to the proof
of the main theorem of (Denardo and Fox 1968). It re- We improve the policy using Algorithm 4.3. Since
lies essentially on a version of the maximum principle J = {1} # ¢, we have a type 3a improvement. This
for transient Markov chains. A more algebraic version yieldsz, 1 i — 2, fori = 1,2, 3,4. Only the entry 1
of this fact, using germs of affine functions, appears of x* ands* has to be modified, which yields
in (Gaubert and Gunawardena 1998). 2 — (333 3]T 2o [~101 —1]T
Theorem 4.5The max-plus policy iteration algo-
rithm terminates in a number of iterationb_{ which We next tabulate with less details the end of the
is less than the number of policies. One iteration fun of the algorithmAlgorithm 4.3, type 3b policy

required O(|€|) time. The algorithm require®(n) improvementr3 : 1 - 4,2 - 3,3 —» 2,4 — 3.
spacd5. O Algorithm 4.1. Value determinatiogircuit found,c :

32— 3,7= w2 3) +w@,2)/2=09/2.

Indeed, the same policy is never selected twice. 3 [ 999 9]T 3 _ [11 0 1 3]T
Bounding Ny by the number of policies which is “l22272]" I R
finite but exponential is very coarse. On experimental

random examplesNy is very small, as detailed in  Algorithm 4.3, type 3b policy improvemeifitie only
section 5 below. The following result is an immediate change ist4(3) = 4. Algorithm 4.1. Value determina-
consequence of the termination of the policy iteration tion. Circuit found,c: 3 - 4 — 3,7 = (w(3,4) +
algorithm and of Lemma 3.5. w(4,3))/2=11/2.

T
Corollary 4.6. A good polynomial matrixA has a 4 [11 11 11 11]T x4 A 1 02
"=17T T 7T 7 - 2

generalized eigenmode, X). In particular, the cycle 2
time x (A) = npexists. O

Algorithm 4.3. Stop11/2 is an eigenvalue oA, and
Remark 4.7 Howard’s algorithm is not limited to x4 is an eigenvector.
spectral problems. It is possible to design policy itera-

tion algorithms for fixed points equations of the form 6. REFERENCES
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