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1. INTRODUCTION

The max-plus semiringRmax is the setR ∪ {−∞},
equipped with max, written additively (a ⊕ b =
max(a, b)), and+, written multiplicatively (a ⊗ b =
a + b). The zero element will be denoted by0 (0 =
−∞), the unit element will be denoted by1 (1 = 0).
We will adopt the usual algebraic conventions, writing
for instanceab for a ⊗ b, 0 for the zero vector or zero
matrix (the dimension being clear from the context),
etc.

Thespectral problemfor a matrixA ∈ (Rmax)
n×n can

be writen as

Ax = λx , (1)

wherex ∈ (Rmax)
n \ {0} andλ ∈ Rmax, i.e. with the

usual notation

? This work was partially supported by the European Community
Framework IV program through the research network ALAPEDES
(“The Algebraic Approach to Performance Evaluation of Discrete
Event Systems”).

∀i ∈ {1, . . . , n}, max
1≤ j ≤n

(Ai j + xj ) = λ + xi , (2)

wherex ∈ (R ∪ {−∞})n has at least one finite entry,
and λ ∈ R ∪ {−∞}. As usual, we will callλ an
eigenvalue, andx an associated eigenvector. Whereas
the max-plus spectral theorem, which characterizes
the solutions of (1), is one of the most studied max-
plus results1 , comparatively little can be found about
the numerical solving of (1). Unlike in usual algebra,
the max-plus spectral problem can be solved exactly
in a finite number of steps. The commonly received
method to solve (1) relies on Karp’s algorithm (1978),
which computes the (unique) eigenvalue of anirre-

1 See (Romanovskĭı 1967, Vorobyev 1967, Cuninghame-Green
1979, Gondran and Minoux 1976, Gondran and Minoux 1977) for
historical references. Recent presentations can be found in (Baccelli
et al. 1992, §3.2.4,§3.7),(Cuninghame-Green 1995),(Gaubert and
Plus 1997,§ 3.7). See (Maslov and Samborskĭı 1992, Kolokoltsov
and Maslov 1997) for generalizations to the infinite dimension case.



ducible2 matrix A in O(n3) time3 (in fact, O(n ×
E) time, whereE is the number of non-0 entries of
A), and4 O(n) space3. Then, some additional ma-
nipulations allow one to obtain a generating family
of the eigenspace, to compute other interesting spec-
tral characteristics such as the spectral projector, the
cyclicity, etc. (see (Baccelliet al.1992,§3.7)). A good
bibliography on the maximal cycle mean problem, and
a comparison of Karp’s algorithm with other classical
algorithms, can be found in (Dasdan and Gupta 1997).

The purpose of this paper is to describe a very dif-
ferent algorithm, which seems more efficient, in prac-
tice. We will show how the specialization to the max-
plus case of Howard’s multichain policy improve-
ment algorithm (see e.g. (Denardo and Fox 1968),
or (Puterman 1990) for a survey), which is well known
in stochastic control, runs in time5 NH O(E) and
spaceO(n), where NH is the number of iterations
of the algorithm. AlthoughNH , which depends on
both n and the numerical values of the entries ofA,
seems difficult to evaluate, its average value is small
(experimental tests on full matrices suggest typically
NH = O(logn)). In other words, it seems exper-
imentally possible to solve in analmost linear(i.e.
almostO(E)) average time a family of combinatorial
problems for which the best standard algorithms run
in O(n × E) time. We conjecture that the worst case
value of the number of iterationsNH is polynomial in
E. Examples show that it is at least of ordern.

The max-plus version of Howard’s algorithm outper-
forms other known methods with good average ex-
ecution time, such as linear programming. The only
other fast method known to us is Cuninghame-Green
and Yixun’s algorithm (1996), which runs in time
NCYO(E), where the average value of the number
of iterationsNCY is experimentallyO(n0.8) for full
matrices, according to (Cuninghame-Green and Yixun
1996).

Some parts of the present work were initiated
in (Cochet-Terrasson 1996), and developed in a dif-
ferent direction in (Cochet-Terrassonet al. 1997,
Gaubert and Gunawardena 1998). It is remarkable
that Howard’s policy improvement scheme not only
provides efficient algorithms, but also simple exis-
tence proofs. In particular, the existence of generalized
eigenmodes for max-plus linear dynamical systems
with several incommensurable delays, which is stated
in § 3 below, seems new in the max-plus literature.

2 Irreducibility is defined in§3 below.
3 Throughout the paper, “time” and “space” refer to the execution
time (on a sequential machine) and to the memory space required
by the algorithm, respectively.
4 The natural implementation of (Karp 1978) needsO(n2) space.
However, it is easy to design a two passes variant of the algorithm,
which needs a double time, and runs in onlyO(n) space.
5 The family of Howard’s algorithms works only for “non-
degenerate” matrices with at least one non-0 entry per row. For such
matrices,n ≤ E, andO(E) = O(n + E).

A similar proof technique was applied to min-max
functions in (Gaubert and Gunawardena 1998).

A small prototype, written in C, which imple-
ments the max-plus policy iteration algorithm de-
scribed here can be found currently on the web
page http://amadeus.inria.fr/gaubert. The prototype
can also be used interactively thanks to an interface
with SCILAB 6 .

2. WHAT THE MAX-PLUS SPECTRAL THEORY
CAN DO FOR YOU

In this section, we list several basic problems that
reduce to the spectral problem (1) and to some of its
extensions. Other applications of the max-plus spec-
tral problem can be found e.g. in (Maslov and Sam-
borskiı̆ 1992, Gaubert and Plus 1997), and in the ref-
erences therein.

Problem 1. (Maximal Circuit Mean). Given a directed
graph7 G = (N , E), equipped with avaluationmap
w : E → R, compute themaximal circuit mean

ρ = max
c

∑
e∈c w(e)∑

e∈c 1
, (3)

where the max is taken over all the circuitsc of G, and
the sums are taken over all the edgese of c.

The denominator of (3) is thelengthof circuit c. The
numerator is thevaluationor weightof circuit c.

By Theorem 3.1 below, whenG is strongly connected,
ρ coincides with the (unique) eigenvalue of matrix
A ∈ (Rmax)

N×N , defined as follows:

Ai j =
{

w(i , j ) if (i , j ) ∈ E ,
0 (= −∞) otherwise.

(4)

Conversely8 , with any matrix A ∈ (Rmax)
n×n, we

will associate the graphGA with set of nodesN =
{1, . . . , n} and set of edgesE = {(i , j ) | Ai j 6=
0}, equipped with the valuationw(i , j ) = Ai j . This

6 http://www-rocq.inria.fr/scilab
7 A (finite, directed) graph can be described by a finite set of nodes
N and a set of (oriented) edgesE ⊂ N ×N . In the sequel, we will
use the familiar notions of (directed) path, (directed) circuit, etc.,
without further comments.
8 Note that according to (4) and throughout the paper, there is
an arcfrom i to j if Ai j 6= 0. This “direct” convention, which is
standard in combinatorial matrix theory and automata theory, was
already used in (Gaubert and Plus 1997). The “inverse” convention
(with Aj i 6= 0 instead of Ai j 6= 0) was used in (Baccelliet
al. 1992). This “inverse” convention is standard and preferable
for discrete event system applications, unless one accepts to deal
with linear systems of the formx(k) = x(k − 1)A, x(k) being a
row vector, instead of the more familiarx(k) = Ax(k − 1), x(k)

being a column vector. A consequence of the compromise made
in this paper (choosing the “direct” convention, while considering
dynamical systems of the second form) is that the accessibility
relation, in Prop. 3.2 and 3.4 below, is the inverse of the one used
e.g. in (Baccelliet al.1992, Gunawardena 1994).



bijective correspondence between valued graphs, on
the one hand, and max-plus matrices, on the other
hand, will be used systematically in the sequel.

Problem 2. (Cycle Time). Given a matrixA ∈
(Rmax)

n×n with at least one finite entry per row, com-
pute thecycle time vector

χ(A) = lim
k→∞

1

k
× x(k) , (5)

where, for alli ∈ {1, . . . , n} and for allk ∈ N \ {0},
xi (k) = max

1≤ j ≤n
(Ai j + xj (k − 1)), (6)

and the initial conditionx(0) ∈ R
n is arbitrary.

Of course, (6) is nothing but a linear system in the
max-plus semiring:

x(k) = Ax(k − 1) . (7)

In other words, the cycle time vectorχ(A) determines
the linear growth rate of the trajectories of the max-
plus linear dynamical system (7). The fact thatχ(A)

exists, that it is independent9 of the initial condition
x(0) ∈ R

n , and that it can be computed from the
eigenvalues of the submatrices associated with the
strongly connected components of the graph ofA, will
be detailed in Prop. 3.2 below.

We next describe a useful generalization of the max-
plus spectral problem, which requires the definition
of max-polynomials. A (formal, generalized) max-
polynomial in the indeterminateγ is simply a for-
mal sum

⊕
t∈R+ ptγ

t , where p is a mapR+ →
Rmax, t 7→ pt , such thatpt = 0 for all but finitely
many values oft ∈ R

+ . We denote byRmax{γ } the set
of such polynomials.

The generalized spectral problemfor a polynomial
matrixA ∈ (Rmax{γ })n×n can be written as:

A(λ−1)x = x , (8)

where x ∈ (Rmax)
n \ {0}, λ ∈ R, andA(λ−1) ∈

(Rmax)
n×n denotes the matrix obtained by replacing

each occurrence of the indeterminateγ byλ−1 (= −λ,
with the usual notation) in the formal expression of
A. If A = ⊕

t∈R+ Atγ
t , with At ∈ (Rmax)

n×n, the
spectral problem (8) can be rewritten more explicitly
as ⊕

t∈R+
Atλ

−t x = x , (9)

9 If some entries ofx(0) are infinite, the limit in (5) need not exist,
see e.g. (Gaubert 1992, Remark 1.1.10, Chap. VI) and (Gaubert
and Plus 1997, Th. 17). The condition that all the entries ofx(0)

are finite, and thatA has at least one finite entry per row (which
guarantees thatA sendsRn to Rn, i.e. that the image byA of a
column vector with finite entries has finite entries) is frequently
used since it seems practically relevant for discrete event systems
and makes life simpler.

where the sum is indeed a finite one, sinceAt is 0 for
all but finitely many values oft. WhenA = Aγ , (9)
specializes to (1). For this reason, we will callx
a generalized eigenvectorof A andλ a generalized
eigenvalue.

The appropriate graphical object to be associated with
a polynomial matrixA ∈ (Rmax{γ })n×n is not a val-
ued directed graph, but the bi-valued directedmulti-
graph10 GA, with set of nodesN = {1, . . . , n}, set
of edgesE = {(i , t, j ) ∈ N ×R

+ ×N | (At )i j 6= 0},
initial node map In(i , t, j ) = i , terminal node map
Out(i , t, j ) = j , first valuationw : w(i , t, j ) =
(At )i j , and second valuationτ : τ(i , t, j ) = t. Then,
the generalized spectral problem (8) becomes

xi = max
(i,t, j )∈E

(w(i , t, j ) − λ × τ(i , t, j ) + xj ) , (10)

for all i ∈ N . We will see in Theorem 3.3 that
the solutionλ of (10) (which is unique under natural
conditions) yields the solutionρ′ of the following
problem.

Problem 3. (Maximal Circuit Mean′). Given a multi-
graphG = (N , E, In, Out), equipped with two val-
uationsw : E → R, τ : E → R

+ , such that∑
e∈c τ(e) > 0, for all circuitsc of G, compute the

(generalized) maximal circuit mean:

ρ′ = max
c

∑
e∈c w(e)∑
e∈c τ(e)

, (11)

where the max is taken over all the circuitsc of G.

As shown in Prop. 3.4 below, the generalized spectral
problem (8) is also useful in the effective computation
of cycle times of some max-plus linear dynamical
systems, that are infinite dimensional (multi-delay)
versions of (7).

We will say thatA = ⊕
t∈R+ Atγ

t ∈ (Rmax{γ })n×n

is agood polynomial matrixif it has at least one non-0
entry per row, and if there are no circuits in the graph
of A0.

Problem 4. (Cycle Time′). Given a good polynomial
matrix A ∈ (Rmax{γ })n×n, compute thecycle time
vector

χ(A) = lim
k→∞

1

k
× x(k) , (12)

where the trajectoryx is now given by the dynamics

xi (k) = max
1≤ j ≤n

max
t∈R+

((At )i j + xj (k − t)) , (13)

10Loosely speaking, a multigraph is a graph in which several edges
can link the same pair of nodes. Formally, a (finite) multigraph can
be defined by a (finite) set of nodesN , a (finite) set of edgesE , and
two maps In :E → N and Out :E → N , which give the initial
node and terminal node of an edge, respectively.



for all k ≥ 0 ((x(k))0>k≥−K0 is a given bounded initial
condition, withK0 = max{t ∈ R

+ | At 6= 0}).

More algebraically, (13) can be rewritten as follows:

x(k) =
⊕
t∈R+

At x(k − t), ∀k ≥ 0 . (14)

Remark 2.1.Problems 4 and 2 are in fact two
special versions of a more general problem (see
e.g. (Gunawardena and Keane 1995)). IfX is a
normed vector space andf : X → X is a non-
expansive map (i.e.‖ f (x) − f (y)‖ ≤ ‖x − y‖), the
limit χ( f ) = limk 1/k × f k(x), if it exists, is inde-
pendent of the initial pointx. Problem 2 deals with
the case whenX is equal toRn , equipped with the
sup norm, andf (x) = Ax. In Problem 4,X is the set
of bounded functions from [−K0, 0) to Rn , equipped
with the sup norm, andf is the evolution operator
which with the piece of trajectory{x(k)}−K0≤k<0 (ini-
tial condition), associates the trajectory obtained after
one unit of time:{x(k + 1)}−K0≤k<0. The evolution
operator is obviously well defined since there are no
circuits in the graph ofA0. It is clearly monotone and
homogeneous, hence, by a simple result (Crandall and
Tartar 1980), it is non-expansive for the sup-norm.
Thus, the existence of the limit (12) for a particular
bounded function{x(k)}−K0≤k<0, implies the exis-
tence ofχ( f ), which is equal toχ(A). Conversely, the
existence ofχ( f ) clearly implies that the limit (12)
exists, withχ(A) = χ( f ).

3. SOME CLASSICAL AND LESS CLASSICAL
ELEMENTS OF MAX-PLUS SPECTRAL THEORY

In all this section, with a matrixA ∈ (Rmax)
n×n

we associate the graphGA = (N , E), equipped
with the valuation w, as defined in the discus-
sion following Eqn 4. The strongly connected com-
ponents of the graph ofA are calledclasses. A
matrix is irreducible if its graph is strongly con-
nected, i.e. if it has a single class. The following re-
sult is classical (Romanovski˘ı 1967, Vorobyev 1967,
Cuninghame-Green 1979, Gondran and Minoux 1976,
Gondran and Minoux 1977). See e.g. (Baccelliet
al. 1992, Cuninghame-Green 1995) for recent presen-
tations and proofs.

Theorem 3.1.(Max-plus spectral theorem). An irre-
ducible matrixA ∈ (Rmax)

n×n has a unique eigen-
value, given by (3).

In general, there are several non-proportional eigen-
vectors (see e.g. (Baccelliet al. 1992) or (Gaubert
and Plus 1997)). A reducible matrixA has in general
several distinct eigenvalues, and the maximal circuit
mean (3) yields precisely the maximal eigenvalue (see
e.g. (Gaubert 1992, Ch.IV), (Gaubert and Plus 1997),
(Bapatet al. 1995) for characterizations of the spec-
trum of reducible matrices).

We say thati has accessto j if there is a path from
i to j in the graph ofA. We say thati has access to
a classC if it has access to anyj ∈ C (this property
is obviously independent of the choice ofj ∈ C, by
definition of a class). By “eigenvalue of a classC”,
we mean the eigenvalue of theC × C submatrix ofA,
which is unique by Theorem 3.1.

The following result appeared in (Gunawardena 1994,
Prop. 7), and, in a stochastic context, in (Baccelliet
al. 1992, Th. 7.36).

Proposition 3.2.(Cycle Time Formula). LetA ∈
(Rmax)

n×n, with at least one finite entry per row. The
i -th entryχi (A) of the cycle time vector is equal to the
maximum of the eigenvalues of the classes to whichi
has access8.

The next statement uses the correspondence between
polynomial matrices and multigraphs, described in§ 2
above. We will say that a polynomial matrixA is irre-
ducible if its multigraph is strongly connected. More
generally, we will naturally extend the notions of ac-
cessibility, classes, etc. to polynomial matrices (these
notions are defined as in the case of ordinary matri-
ces, but replacing the graphGA by the multigraph
GA). The following result is taken from (Baccelliet
al. 1992, Th. 3.28).

Theorem 3.3.(Spectral Theorem′). An irreducible
polynomial matrix A = ⊕

t∈R+ Atγ
t ∈

(Rmax{γ })n×n, such that the graph ofA0 has no
circuits11 , admits a unique generalized eigenvalueλ,
given by (11).

The following extension of Prop. 3.2 is immediate.

Proposition 3.4.(Cycle Time Formula′). Let A de-
note a good polynomial matrix. Thei -th entryχi (A)

of the cycle time vector is equal to the maximum of
the generalized eigenvalues of the classes to whichi
has access8. 2

Since the decomposition of a directed graph or
multigraph in strongly connected components can be
done in linear time using Tarjan’s algorithm (1972),
Prop. 3.2 and Prop. 3.4 reduce in linear time the com-
putation of the cycle time vector to the computation of
the (possibly generalized) eigenvalues of irreducible
(possibly polynomial) matrices. In particular, the tra-
ditional way to compute the cycle time vectorχ(A)

is to compute the eigenvalues of the classes ofA
via Karp’s algorithm (Karp 1978), and then to apply
Prop. 3.2. This method does not work for the gener-

11In (Baccelli et al. 1992, Th. 3.28), it is only required that the
circuits of the graph ofA0 have negative weights. We will not need
this degree of generality here. In terms of the associated dynamical
systems (13), the condition of the theorem simply means that there
are no circuits involving zero-delay causality relations.



alized dynamics (13), since Karp’s algorithm cannot
computegeneralizedeigenvalues. There are two tra-
ditional ways to overcome this difficulty. — WhenAt

is zero except forinteger valuesof t, an elimination
of the implicit part and a familiar augmentation of
state reduces the generalized spectral problem forA

to an ordinary spectral problem for a larger matrix
A′. This method, which is presented in (Baccelliet
al. 1992,§ 2.5.3,§ 2.5.4), is not so expensive when the
number of values oft for which At 6= 0 is small, par-
ticularly if it is implemented with some refinements,
as in (Gaubert and Mairesse 1997), forA = A0 ⊕
A1γ . — The second method relies on the general
techniques presented in (Gondran and Minoux 1979,
Appendix V), which allow one to maximize in pseudo-
polynomial time a ratio of the formw(c)/τ(c) for c in
a finite setS, provided that for any value ofλ ∈ R, we
know how to maximize in polynomial time the ratio
w(c) − λτ(c) for c in the same setS.

We will not discuss in detail these two more or less
classical approaches, but rather show how a different
generalization of the spectral problem allows us to
determine directly and in full generality cycle time
vectors. All the remaining part of this paper, and in
particular, the max-plus version of Howard’s policy
improvement algorithm, will be based on this new
spectral problem.

We consider a good polynomial matrixA. We say that
(η, x) ∈ (Rn)2 is ageneralized eigenmode12 if there
existsK ∈ R such that

k ∈ R, k ≥ K ⇒ Dkx = A(D−1)Dkx , (15)

where D
def= diag(η1, . . . , ηn) and Dk = diag(k ×

η1, . . . , k × ηn).

WhenA = Aγ , (15) becomes

k ∈ R, k ≥ K ⇒ Dkx = ADk−1x . (16)

That is, the action ofA coincides with the action
of D on the orbit{Dkx}k≥K−1. As detailed in foot-
note 12, the eigenmode equation (15) is obtained

12 This spectral notion is obtained bytwo successivegeneraliza-
tions of ordinary spectral problems. Thefirst generalizationconsists
in replacing ordinary dynamical systems of the form (7) (with uni-
tary delays) by systems of the form (14) (with multiple delays). The
ordinary spectral problem (1) and its generalization (9) are obtained
by looking for solutions of the formx(k) = λkx, whereλ is a scalar
and x ∈ (Rmax)

n \ {0}. But the definition of cycle-time vectors
requiresx to have finite coordinates. Then, in the general case, a
simple affine regimex(k) = λkx = k × (λ, . . . , λ)T + x need not
exist, but a more general affine regimex(k) = Dkx, whereD is a
diagonal matrix, is expected. In other words, we expect the different
entries ofx(k) to have different (linear) growth rates, given by the
diagonal entries ofD. Hence, thesecond generalizationconsists
in substitutingx(k) = Dkx for k large enough (i.e.k ≥ K + K0)
in (14): then, one obtains precisely the generalized eigenmode equa-
tion (15). Contrary to the case whenD = λ, D−1 need not commute
with the matricesAt , and thus, the relationx = A(D−1)x =⊕

t∈R+ At D−t x need not imply thatDkx = A(D−1)Dkx, for
k ≥ 0. This is why (15) has to be statedfor all largek.

by looking for an ultimately affine solution of (13),
x(k) = Dkx = k × η + x. If such a solution ex-
ists, χ(A) = limk

1
k × x(k) = η. The next lemma

follows readily from this observation, and from the
fact, mentioned in Remark 2.1 above, that the limit
limk

1
k × x(k) = η is independent of the particular

bounded initial condition.

Lemma 3.5.If a good polynomial matrixA has a
generalized eigenmode(η, x), thenχ(A) = η. 2

In particular, ifA is irreducible, Prop. 3.4 implies that
η = χ(A) = (λ, . . . , λ), whereλ is the generalized
eigenvalue ofA. Therefore, (15) reduces to the (gen-
eralized) spectral problem (8), andx is a (generalized)
eigenvector ofA. I.e., for irreducible matrices, finding
generalized eigenmodes is equivalent to finding gen-
eralized eigenvectors.

The existence of generalized eigenmodes was proved
in (Gaubert and Gunawardena 1998) whenA = Aγ ,
as a special case of a more general result for min-
max functions. In the next section, we will show how
the max-plus version of Howard’s policy improvement
algorithm allows us to compute generalized eigen-
modes. In particular, the termination of the algorithm
will prove the existence of such eigenmodes, for good
polynomial matrices.

4. THE MAX-PLUS POLICY IMPROVEMENT
ALGORITHM

In this section,A will be a good polynomial matrix.
We will use systematically the multigraphGA =
(N , E, In, Out) equipped with the valuationsw, τ ,
canonically associated withA in § 2.

It can be checked that the eigenmode equation (15)
which seems deceivingly to involve an infinite number
of conditions, is equivalent to the following finite
system:

ηi = max
(i,t, j )∈E

η j (17)

xi = max
(i,t, j )∈E

(w(i , t, j ) − τ(i , t, j ) × η j + xj ), (18)

where E = {(i , t, j ) ∈ E | ηi = η j } .

In loose terms, the multichain policy iteration algo-
rithm will solve this system by trying to guess the arcs
that attain the maximum. A precise statement of this
idea needs the definition ofpolicy, which is a map

π : N → E, such that In(π(i )) = i , ∀i ∈ N .

That is, a policy is just a map which with a node
associates an edge starting from this node.

With a policyπ , we associate the special polynomial
matrixAπ = ⊕

t∈R+ Aπ
t γ t :

(Aπ
t )i j =

{
w(π(i )) if j = Out(π(i )) andt = τ(π(i ))
0 otherwise.



Hence, the matrixAπ has exactly one non-zero entry
per row, which corresponds to the edge selected byπ ,
i.e. in the multigraph ofAπ , π(i ) is the unique edge
starting fromi . It has the same valuationsw andτ as in
the original multigraph ofA. E.g., we have depicted in
Fig. 2 below the multigraph (in fact, the graph) ofAπ1,
whereπ1 is the policy 1→ 1, i → 2, for i = 2, 3, 4
andA = Aγ , whereA is displayed in Fig. 1.

We first show how a generalized eigenmode(η, x) of a
matrix of the formAπ can be computed in timeO(n).

Algorithm 4.1. (Value Determination). Input: a good
polynomial matrixA and a policyπ . Output: a gener-
alized eigenmode ofAπ .

(1) Find a circuitc in the multigraph ofAπ

(2) Set

η =
∑

e∈c w(e)∑
e∈c τ(e)

. (19)

(3) Select an arbitrary nodei in c, setηi = η and set
xi to an arbitrary value, sayxi = 0.

(4) Visiting all the nodesj that have access toi in
backward topological order, set

η j = η (20)

xj = w(π( j )) − η × τ(π( j )) + xOut(π( j )) (21)

(5) If there is a nonempty setC of nodes j that do
not have access toi , repeat the algorithm using
theC × C submatrix ofA and the restriction of
π to C.

The algorithm should be specified as follows.

Step 1 is very easy to implement: we can start from
an arbitrary nodei , move to nodej = Out(π(i )),
then possibly to node Out(π( j )), etc., until a node that
is already visited is found. Then, a circuit has been
found. This requires a linear time.

Eqn (21) requires visiting the nodes in backward
topological order, starting fromi , since the value of
xOut(π( j )) must be already fixed when we visit node
j and setxj . This complete visit can be done in lin-
ear time, at the price of an a priori tabulation of the
(multi-valued)-inverse of the mapN → N , j 7→
Out(π( j )). Computing the inverse of this map also
requires a linear time. The handling of this inverse is
in fact the only part of the algorithm which requires
more refined data types than simple arrays (in our
implementation, we used linearly chained lists).

Step 5 is formulated in a recursive way only to sim-
plify the statement of the algorithm, which is essen-
tially non recursive.

The above considerations justify the following theo-
rem.

Theorem 4.2.Algorithm 4.1 computes a generalized
eigenmode ofAπ in time and spaceO(n). 2

The second ingredient of Howard’s algorithm is a
policy improvement routine, which given a policyπ
and a generalized eigenmode(η, x) ofAπ , either finds
a new policyπ ′ such thatχ(Aπ ′

) ≥ χ(Aπ ), or proves
that(η, x) is a generalized eigenmode ofA.

Algorithm 4.3. (Policy Improvement). Input: a good
polynomial matrixA, a policy π , together with a
generalized eigenmode(η, x) of Aπ . Output: a policy
π ′, such thatχ(Aπ ′

) ≥ χ(Aπ ).

(1) Let13

J = {i | max
(i,t, j )∈E

η j > ηi }
K (i ) = arg max

(i,t, j )∈E
η j , for i = 1 . . .n,

I = {i | max
e=(i,t, j )∈K (i )

(w(e) − τ(e)η j + xj ) > xi }
L(i ) = arg max

e=(i,t, j )∈K (i )
(w(e) − τ(e)η j + xj ) ,

for i = 1 . . .n.

(2) If I = J = ∅, (η, x) is a generalized eigenmode
of A. Stop.

(3) (a) If J 6= ∅, we set:

π ′(i ) =
{

anye in K (i ) if i ∈ J,
π(i ) if i 6∈ J.

(b) If J = ∅ but I 6= ∅, we set

π ′(i ) =
{

anye ∈ L(i ) if i ∈ I ,
π(i ) if i 6∈ I .

The policy improvement rules 3a and 3b simply mean
that one selects for the new policy the edges which
realize the maximum in Eqns (17), (18). This maxi-
mum is taken hierarchically: Eqn (17) has priority on
Eqn (18) in a policy improvement step. Only when
Eqn (17) is satisfied Eqn (18) is used to determine the
new policy. The other conditions in steps 3a and 3b
simply mean that the preceding values ofπ should be
kept inπ ′, whenever possible. These technical tricks
will guarantee the termination of the policy iteration
algorithm below, even when “degenerate” policy im-
provements in whichχ(Aπ ′

) = χ(Aπ) occur.

The setsK (i ) and L(i ), which are introduced to
simplify the statement of the algorithm, need not be
explicitly tabulated. Clearly, Algorithm 4.3 runs in
O(|E|) time14 andO(n) space15 .

We next state the max-plus version of Howard’s policy
iteration algorithm.

Algorithm 4.4. (Max-plus Policy Iteration). Input: a
good polynomial matrixA. Output: a generalized
eigenmode ofA.

13Recall that by arg maxe∈E f (e), we mean as usual the set of
elementsm ∈ E such thatf (m) = maxe∈E f (e).
14 |E | simply denotes the number of edges of the multigraph.
15 The algorithm needs less internal memory (O(n) space) than the
coding of the input itself, which requiresO(|E |) space.



(1) Initialization. Select an arbitrary policyπ1.
Compute a generalized eigenmode(η1, x1) of
Aπ1, using Algorithm 4.1. Setk = 1.

(2) Policy improvement. Improve the policyπk, us-
ing Algorithm 4.3 with inputπ = πk, η =
ηk, x = xk. If the stopping condition of Algo-
rithm 4.3 is satisfied,(ηk, xk) is a generalized
eigenmode ofA. Stop. Otherwise, setπk+1 = π ′
(the output of Algorithm 4.3).

(3) Value determination. Find a generalized eigen-
mode (ηk+1, xk+1) of Aπk+1 using Algo-
rithm 4.1, taking the special valuexk+1

i = xk
i

in step 3,4.1.
(4) Incrementk by one and go to step 2.

The algorithm builds a sequence of generalized eigen-
modes(ηk, xk) that is strictly increasing for the lex-
icographic order on(Rn)2, defined by(x, y) <lex
(x′, y′) if x < x′ or x = x′ and y < y′. The
fact thatxk+1

i must be set toxk
i in step 3 of Algo-

rithm 4.1 is a conservative trick analogous to the fact
that the values ofπ are kept inπ ′ whenever possible,
in Algorithm 4.3. This technical condition is essential
to guarantee the strict monotonicity of the sequence
(ηk, xk), which is needed in the proof that the algo-
rithm terminates.

The proof of the following result is similar to the proof
of the main theorem of (Denardo and Fox 1968). It re-
lies essentially on a version of the maximum principle
for transient Markov chains. A more algebraic version
of this fact, using germs of affine functions, appears
in (Gaubert and Gunawardena 1998).

Theorem 4.5.The max-plus policy iteration algo-
rithm terminates in a number of iterationsNH which
is less than the number of policies. One iteration
requires14 O(|E|) time. The algorithm requiresO(n)

space15. 2

Indeed, the same policy is never selected twice.
Bounding NH by the number of policies which is
finite but exponential is very coarse. On experimental
random examples,NH is very small, as detailed in
section 5 below. The following result is an immediate
consequence of the termination of the policy iteration
algorithm and of Lemma 3.5.

Corollary 4.6. A good polynomial matrixA has a
generalized eigenmode(η, x). In particular, the cycle
timeχ(A) = η exists. 2

Remark 4.7.Howard’s algorithm is not limited to
spectral problems. It is possible to design policy itera-
tion algorithms for fixed points equations of the form
x = Ax⊕b, whereA is a square matrix with maximal
eigenvalue strictly less than1, andb a column vector.
This will be detailed elsewhere.

5. EXAMPLES AND NUMERICAL TESTS

We apply the max-plus policy iteration algorithm to
determine the eigenvalue of the matrix displayed in
Fig. 1. This corresponds to the case whereA = Aγ ,
andτ ≡ 1. In particular, the multigraph ofA will be
identified with the graph ofA. The following run of
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Fig. 1. A matrix and its graph

the algorithm is visualized in Fig. 2. We choose the
initial policy π1: 1 → 1, i → 2, for i = 2, 3, 4.
Applying Algorithm 4.1, we find a first circuitc1 :
1 → 1, with η = w(c1)/τ(c1) = 1. We setη1

1 = 1,
x1

1 = 0. Since 1 is the only node which has access to
1, we apply Algorithm 4.1 to the subgraph ofGA with
nodes 2, 3, 4. We find the circuitc2 : 2 → 2 and set
η = w(c2)/τ(c2) = 3, η1

2 = 3 andx1
2 = 0. Since

3, 4 have access to 2, we setη1
i = 3 for i = 3, 4.

Moreover, an application of (21) yieldsx1
3 = 4 − 3 +

x1
2, x1

4 = 2 − 3 + x1
2. To summarize:

η1 = [
1 3 3 3

]T
, x1 = [

0 0 1 −1
]T

.

We improve the policy using Algorithm 4.3. Since
J = {1} 6= ∅, we have a type 3a improvement. This
yieldsπ2 : i → 2, for i = 1, 2, 3, 4. Only the entry 1
of x1 andη1 has to be modified, which yields

η2 = [
3 3 3 3

]T
, x2 = [ −1 0 1 −1

]T
.

We next tabulate with less details the end of the
run of the algorithm.Algorithm 4.3, type 3b policy
improvement.π3 : 1 → 4, 2 → 3, 3 → 2, 4 → 3.
Algorithm 4.1. Value determination.Circuit found,c :
3 → 2 → 3, η = (w(2, 3) + w(3, 2))/2 = 9/2.

η3 =
[

9
2

9
2

9
2

9
2

]T
, x3 =

[
11
2 0 −1

2
3

]T

.

Algorithm 4.3, type 3b policy improvement.The only
change isπ4(3) = 4. Algorithm 4.1. Value determina-
tion. Circuit found,c : 3 → 4 → 3, η = (w(3, 4) +
w(4, 3))/2 = 11/2.

η4 =
[

11
2

11
2

11
2

11
2

]T
, x4 =

[
4 −1

2
0 5

2

]T

.

Algorithm 4.3. Stop. 11/2 is an eigenvalue ofA, and
x4 is an eigenvector.
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