Optimal Stochastic Control: Numerical
Methods

Diffusion processes are a very useful tool for modelling
differential equations perturbed by a noise. In this con-
text the control of such processes is quite natural. The
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optimality conditions are obtained by the dynamic pro-
gramming method (see Dynamic Programming: Intro-
duction), which leads to the solution of a nonlinear
partial differential equation called the Hamilton—Jacobi
equation (see Hamtlton—]acobz—Bellman Equatton)
The simplest is

3 N -y _
a—ty+mu1n izlb,-’(x,u)g;c—i+c(x,u)} +Ayé0‘

with y(T, x) given. In general this‘equation cannot be

solved analytically and numerical finite-element
methods are used to approximate its solution.
Another method of approximation is based on discre-

tization of the stochastic control problem It leads to

solving control of Markov chains.

One of the main difficulties is that very often the
dimension of the state is large (x € R", n large). In this
case we cannot apply the above methods and we search
for suboptimal control. For this purpose we discuss
three kinds of approach:

(a) optimization in the class of local feedbacks;
(b) Monte Carlo techniques;
(c) the small-noise case.

These three methods lead to the computation of feed-
backs of practical interest.

1. Stochastic Control Problem _

Defiried on some probability space (Q,F,, F, P) we
consider .the controlled diffusion process

dX, = b[X,, w(X))dt + o dW, 1)

where X, denotes the state € R", W, is a Brownian

perturbation, u:R"— R™ is a feedback control and o is-

an (n, n) matrix.
Given O an open set of R" of boundary I, U a closed
set-of R™, 7 a stopping time defined by

°() = arg min (X,() € 0} @

c:Ry X Ry = RZ, ) an instantaneous cost, f:R*— R*

a final cost, T a time horizont and A an actuahzatlon
rate, we wish to solve one of the followmg problems

: TN\t
y(x,S)=meiIU1EU o[ X, u(X,)]dt

+ f(Xone )| X(s) = x] €)

y(x) = rnel{/l E |:’fre_h C(Xn u(X,))dt
+e™ f(X )| X(0) =x} @
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y(x) = mﬁinE [J" e (X)) dt
+ e f(X,)|X(0) =x] ©)

We suppose in the last case that c is constant in u.
More general situations can-be studied, for example
modulation of the noise intensity of jump processes,
impulsive control and the ergodic control problem. The
examples discussed here present the most numerical
difficulties of the general situation.
Denoting

L(x,u,p,q) = Zlbi(xau)pi + Elaijqij +c(x,u) (6)
j=1
=to0* @)
the dynamic programming equations of Eqns. (3-5) are,
respectively,

Doy +min L(x,u,Dy,D*y)=0, x€0,
€y
y(x,)=f(x,8), x€T or t=T (8)
—/1y+mEiII}L(x,u,Dy,D2y)=0, X€E0,
yx)=fx), x€r (9)
min[—Ay + L(x,Dy,D%),g-y]=0, x€R" (10)
where
Dy, =9/3t,D;=08/ox;, D;=0d%/ox,0x;,

D=[D,,...,D,] and D*=[D,]

In general these equations cannot be solved analytically,
so - we discretize them and then solve numerically the
corresponding discretized problem. For discretization,
two kinds of approach are possible:

(a) discretization vof the
" equation;

dynamic programming

(b) discretization of the stochastic control problem.

These two points of view are the subject of the following
two sections.

2. Finite-Element Approximation of the
Dynamic Programming Equation
We discretize Eqn. (9) by the finite-element method,

give some convergence results and discuss the resolution
of the discretized problem.

. 2.1 Variational Formulation of the Dynamic

Programming Equation
We suppose that

0 X U—=>R"xXR*
(x.u) [6(x,u),c(x,4)]
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is bounded, Borelian, Lipschitz uniformily in u,

2 a;hh,=a Y b

i=1

VheR"”, fora €R>0 given (11)
and f = 0 to simplify the d‘iscussion,We denote
V = H\(0) ={z:zEL2(@) and N
Dz € L*(0),2(x) =0 Vx €}

a(y,v) = L (2 a;D,yDv + Ayv) a0  (12)
L]

H(x,p,u) =2 b/(x,wp, + c(x,u)  (13)
H(x,p) = min H(x, p, u) | (14)

Then a precise definition of the solution of the dynamic
programming - equation is the unique * solution
(Bensoussan and Lions 1978), belonging to V of

a(y,0) = (H(Dy),v) =0, Yoev (15
where (,) denotes the scalar product in L*(0). H

denotes the operator
L*(0) > L*(0)
2(x) A(x,2(x))

The interest of this formulation is that no second
derivative appears in Eqn. (15); thus this approach is a
method of generalizing the sense of Eqn. (9). Moreover,
in this way it is very easy to prove the existence and the
unicity of Eqn. (15) (Bensoussan and Lions 1978).

2.2 Finite-Dimensional Approximation

Let (Vi, B, Cg) be an internal approximation of V'
(Aubin 1972). That is, § ER*, Ve =RY, Be: V- Vis
a linear injection and Cg:V— Vi is linear, such that

" BCsv §—>0 v, VoEV

A typical example is obtained taking parallelepipedic -
finite elements Q; (linear on each component) (Ciarlet

1978). . '
To obtain a control interpretation of the discretized
problem we approximate:

(a) theset of feedbacks using an internal approximation

(W,, B, C,) of LP(0; R™), and

(b) the Hamiltonian H(x, p), using an internal approxi-
mation (Z,, B, C,) of L*0) which satisfies

fi=f,> B,Cyf, =B, Cyfy (16)
These two internal approximations must be such that

I?,,(z)=ug§iEnUB,,CnH(x,l§nC_',,u,z)
VxEQ ‘

exists Vz€L%(0,R") (17)

This condition is realized, for example, when B, Z, and
B,W, are piecewise-constant functions, on the same
partition. S . '

Then the discrete problem is defined by

a,(Bgys, Bzve) ~ (H,(DBgvy), Beog) =0,

) Vv 13 S VE (18)

Let us take the ‘example‘ where 0=10, 1[, U =10, 1],
L(x,u,p,q) =b(x,u)p+c(x,u) +q, E=n=1/N,
B.V; piecewise-linear functions, B,W, and B,Z
piecewise-constant functions on the pattition of [0, 11
defined by {Ji/N, (i + 1)/N}, i=0,..., N~ 1}. Then,
for an-interior point, (x#0, and x # 1), Eqn. (17)
becomes . :

AE . S
__6§[yt—1 + 4yl +yt+-l]
+%I'T,13111Hif1(ui_l,yi =y

+ dmin H @,y — y)
ul

Sl L
DT -y =0,

i=1,...,N—1 (19)

in. which we have dispensed with the indices & and 7
and used the notation :

H(u,p)=bwp +cw), u€U  (20)

+DE - . }

b,(u) = % f b(u,x)dx, uelU  (21)
JiE .

) E+1E
c(u) = f c(u,x)dx, ueU (22)
i

2.3 Convergence Results

THEOREM 1. If the solution of Egn. (15) belongs to
H*0) = {f:f, Df, D’f € L¥0)} and Yg is the solution of
the discretized problem, Eqn. (18), we have

v ~ Beyelly < k& (23)
where k is a constant.

‘In general we have

By adby : (24)

Proofs of such results are given in Quadrat (1975),
Goursat and 'Quadrat (1976) and Cortay-Dumont
(1979). '

2.4 Resolution of the Discretized Problem

The nonlinear operator defined by Eqn. (17) can be
written = '

n}in [AE,r;(un)yE + C&,n(un)] =0 v (25)
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and we can choose an internal approximation
(Vg, Bg, Cy) such that all the out-diagonal terms are
positive. But any internal approximation does not satisfy
this condition; for example, Q, finite element for n = 4.

Where the out-diagonal terms are positive, a gen-
eralized Howard algorithm gives the solution. The dif-
ference from the classical controlled Markov theory is
Eqn. (25), which has only a vectorial meaning. The
same u; appears in more than one row (see the example
of Eqn. (19)). Nevertheless, the minimizations defining
u; are the same, thanks to the condition of Eqn. (17).

HOWARD ALGORITHM (1ot using indices & and 7).
Step 1: u— y solving A(u)y + C(u) = 0.
Step 2: y—> u solving min, A(u)y + C(u).

In this way we define a decreasing sequence (", r € N,
y" =0, which converges to the solution of Eqn. (25).
An efficient algorithm is obtained by solving step 1 with
an iterative method. Then we have to optimize the
distribution of the computation effort between steps 1
and 2. For other algorithms see Lions and Mercier
(1980).

3. Discretization of the Stochastic Control
Problem

The approach in Sect. 2 leads to good numerical results,
but the implementation of the method is cumbersome
and the hypothesis of Eqn. (11) is not very often satis-
fied. A completely different approach gives convergence
in the general situation. We approximate the initial
control problem by a Markov chain control problem
and we prove the convergence of the probability law of
the ‘optimally controlled Markov chain to the law of
optimal  diffusion. To obtain a precise convergence
result we need a generalized meaning of the diffusion
process.

3.1 Martingale Problem for Set-Valued Local
Characteristics of Diffusion Processes

This approach is a generalization of the results of
Stroock and Varadhan (1979) for the problem of Eqn.
(3). Given

(a) a probability space (Q,F, F), where Q=
€([0, T]; R™) is the set of continuous trajectories,
F, is the smallest o algebra such that (X,,s<¢)
‘becomes measurable and F = F;; and

(b) an upper semicontinuous convex set-valued func-
tion in a fixed compact set

C:[0, T| X RP—> R x &7 (26)
C(t,x)={(b,9)}

where &} denotes the set of matrices of order n,
symmetric, nonnegative, and C defines for each
time ¢ and state x the set of admissible drift terms
b and diffusion terms a,
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we can give a sense to the set of admissible diffusion
processes as the set of probability laws % defined on
(Q, F,, F), such that P & P satisfies

(a) P(X(0) = x) 27

(b) Fc(s, w) = (b(s, ®), a(s, w)), F, measurable, Vs €
[0, T] such that for all ¢ € €}2([0, T], R") (the set
of functions with first derivative in time and second

- derivative in x continuous and bounded),

o(s; ) € C(s, X, (0)) (28)
¢(t’ Xt(w)) - ¢(t7 x)

t
- f L. ¢(s, w) dsis a (P, F,) martingale (29)
0
with :
L,=Dy,+ X b,D, + 2 (30)
i=1 i=1
ot

We have generalized to the stochastic situation the well-
known notion of set-valued differential equations used
in deterministic control theory (Ekeland and Temam
1974).

3.2 Existence of the Stochastic. Control Problem

THEOREM 2 (Quadrat 1980). & is a compact set.

Given a final cost function f:R*— R lower semi-

_ continuous and bounded, we have-the following.

COROLLARY. The control problem
min E f(X ) (31)
pPEP

has a solution.

3.3 Time Discretization of the Stochastic Control

Problem

As we accept the degeneracy of the diffusion term, the
integral term of the cost can be added ini the dynamics.
Thus there is no loss of generality in taking into account
only the final cost in Eqn. (31). With this notion of the
diffusion control problem, it is possible to define a
finite-dimensional approximation of Eqn. (31). For this
purpose we discretize the problem in time.

Let us denote by ki the time discretization

C, (s, x) = Gonvx {( U ¢ty
s<t<s+h

lz—x|=hn?
+ V{0, ph“z”)) N (R~ x 9’;)] 32)
where 0 < y < 4, p > 0, €onvx denotes the convex clos-

ure of a set and V(0, r) denotes the sphere of center 0
and radius r. We remark that C,\yC when & \y 0.



IT*(s,x) = {n’EM{L : [J (z = x)z(dy),

f (z- x)®2n'(dy)] € C,(s,x)h
B>2,a>1,p>0;

f|z—x|ﬂn(dy)<ph“} (33)

IT" describes precisely the set of admissible transition
probabilities of the discrete time process approximating
the admissible diffusions. The first condition tells us that
. the first and second moments of its increase “belong” to
- C; the second condition is necessdry to obtain some
compactness properties.
Now we can definie the discrete-time dynamic pro-
gramming equation:

y(h,x) = min Jy((i + 1)h, z) x(dz)
T E(ih,x)

(T, x) = f(x)

We denote P, the probability law of the stochastic
process with continuous trajectories obtained by linear
interpolation of the discrete-time Markov chain defined
by ' '

Ph(dx()’ dxly ] de) = 6x(dx0)ﬁ0,xo(dx1)
ﬁh,xl(de)' e ﬁ(N—l)h,xN_1 (dxy) (35)

where 7, , is a solution of Eqn. (34). Then we have the
following convergence result.

(G4

THEOREM 3. P, converges weakly to P, the optimal
solution of Egn. (31).

The weak convergence here means that for all
¢:Q— R bounded, continuous,

J¢mﬁmmn;f¢mm@m

This convergence is sufficient to prove the convergence
of the optimal discrete cost to the optimal continuous
one.

The discretization in space is obtained by approxi-
mating x — [T%(t, x) by a piecewise-constant set-valued
function. Then it is possible to bring back the mini-
mization problem to finite-dimensional linear programs
(Quadrat 1980).

The dynamic programming method is useful only
when the dimension of the state is small. If this is not
so, we search for suboptimal controls. Three kinds of
approach are described in the following sections.

Optimal Stochastic Control: Numerical Methods

4. Optimization.in the Class of Local Feedbacks

In general this problem is more difficult to solve than
computing the optimal global feedback (Quadrat 1982).
In the following particular cases this approach is of
practical interest.

4.1 Uncoupled Dynamic Systems

We denote by I ={1,2,...,n} the set of subsystems;
for simplicity their states are here only of dimension
one. We study the particular case where b, is a function
of x,and u, Vie I

by RxRxV,—» R
t

X uj bi(t,x,us)

The noises are not coupled between the subsystems,
that is, o is a diagonal matrix, and set U = I, U,,
U, C R. We denote by R a local strategy, that is,

R=(R;,R;,...,R,)WithR,;:R* X R —» U,

(6x:) w=Rit,x})
In this situation we have
pf=MNpk

i€l
with pf: the solution of
Ligpli=0, pk(O,)=p,  (36)
with p = ITu;, superior T denoting transposition, and
Lig,=Dg+b,oRD;+a;D;
where b e R denotes b(t, x, R(t, x)). Let us denote by

cFoR;:R* X R— R* (37)
t

xi JeoR(x)Mepfite,xp)dx;

the conditional expectation of the instantaneous cost,
knowing the information only for the local subsystem i.
We have the following sufficient conditions for a strategy
to be optimal player by player.

THEOREM 4. A sufficient condition for a strategy R to
be optimal player by player is that

min[L,zy,+cfoR]=0, i€l (38)
R;
with c® o R, defined by Eqns. (36, 37).'
The optimal cost is p,(y,) . . . = 4,(y,) with

wi(y;) = JR @i (dx)y (0, x,)

Let us consider the following algorithm.

ALGORITHM. Given: €, v € R*
Step 1:

(a) Choose i€l
(b) Solve Eqn. (38)

3527



Optimal Stochastic Control: Numerical Methods

(©) T uy) < v = & then v := u(y)
R, := arg min {Ligy; +ckoR}

(d) Otherwise choose another i€ until ufy,)=
v—¢, ViEeL

Step 2: When p(y,) = v — €, Vi€ I, then € :='¢/2, go
‘to step 1.

By this algorithm we obtain a decreasing sequence
v which converges to a cost optimal player by player.
A proof of a discrete version of this algorithm is given
in Quadrat and Viot (1980). We have to solve a coupled
system of PDEs, but each of them is defined on a space
of dimension one. In this way we can optimize, in the
class of local feedbacks, systems which are not attainable
by the direct approach. ;

4.2 Systems Having the Product-Form Property

The property that a system has its dynamic uncoupled
is very restrictive. In this section we present a class of
systems having an uncoupled invariant measure. They
are limits of networks of queues of Jackson type. This
property can be used to apply to them the results of Sect.
4.1. for the corresponding ergodic control problem, that
is,

L LT
m;n}gr}cfﬁ coS(w,) dt

Given B, a generator of a Markov chain defined on I s
afunction I X R;; ,, = R, ), a matrix 0 € §,, A = }o0*
and A a diagonal matrix satisfying

AB* + BA+2A =0 39

we have the following theorem.

THEOREM 5. The invariant measure of probability p
of the diffusion (b = Bu, a = A) such that Eqn. (39) is
true has the product-form property, that is,

plx) =k 1;[1 pix), i€l (40)

1 i
Pilx;) = exp (" T) j u;(s) ds (41)

where k is a constant of normalization.
Demonstration. The invariant measure p satisfies
—div[bp] + div[A grad p] = 0 (42)

Making the change of variables p = exp V in Eqn. 42),

we obtain
(grad V, b— A grad V) + div(b — A grad V) =0
using Eqn. (41), we have
=(A™'u, (B+AAYu) + tu[(B+AA 1) grad u] =0
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Figure 1
Jackson network of queues for diffusion processes

The quadratic part in (u) of Eqn. (43) is equal to 0 if
and only if

ATIB+ B*AT1 + 2ATIAA =0

which is equivalent to Eqn. (39).

We have also tr[B + AA™!] grad u = 0. Indeed, grad
u is diagonal because y, is a function of x; only and the ‘
coefficient of D, is b; + a;/A;, which is equal to zero,
thanks to Eqn. (39).

These diffusion processes are quite natural if we see
them as the limit process when N —> o, obtained from
a Jackson network of queues by the scaling x— x/N,

" t—t/N? (Fig. 1), where u,(x,) is the output rate of the

queue i and my; is the probability of a customer leaving
the queue i to go to the queue ;.

The correlation of the noise given by Eqn. (39) cor-
responds to a system for which the noise satisfies a
conservation law (for example, the total number: of
customers in a closed network of queues). -

We can now apply the resuit of Sect. 4.1 to compute
the optimal local feedback for systems having the pro-
duct-form property and an ergodic criterion. Indeed,

min%f coS(w,) dt=fc<>S(x)p(x)dx

px) = Epi(xi)

and p; satisfies
=Diup;]+DylAip;] =0, i€l

fpi(xi) dx; =1

4.3 Remarks on Decoupling Feedbacks

Another way of using the results of Sect. 4.1 when the

dynamic is coupled is to perform a change of feedback.

Let us consider the simpler case:
b:R" X U— R,

u b(x,u)

UCR"

We use the feedback transformation v = b(x, u) to
decouple the drift terms. Now v is the control and we
can apply the results of Sect. 4.1 to compute the best
local feedback v; = R(x;). Then the solution in u of

b(x, u) = R(x) 44)



Optiihal Stochastic Control: Numerical Methods

gives the best feedback among the class that we can
call local decoupling feedbacks. The new control must
belong to a hypercube, thatis, v € V = II%_| V, C
b(U), v,CR, which in general leads to a loss of
optimality.

5. Optimization in a Parametrized Class of
Feedbacks by Monte Carlo Techniques

In Sect. 4 we computed the optimal local feedback in

particular cases. Sometimes the local information is not

good; moreover, we may have a priori an idea of a
better feedback, and would like to use this a priori
information to solve a simpler problem. A method of
doing this is to parametrize the feedback and optimize
the open-loop parameter by.a Monte Carlo technique.
More precisely, given the stochastic control problem

dX,=b(t,X,,U)dt+dW,, X, eR"*, U,ER"
’ (45)
minE | ¢, X,,U,)dt ’
0
" we make the feedback transformation
Up)=38(X,,v,), v,€ER? (46)

where S:R* x R* X R? — R™ is given.
‘For the approximation of the probability law of the
noise M, we use the distribution

1 r
o= ;];1 6w,(w)

where w; are trajectories of the noise obtained by ran-
dom generation. We have to solve

dx} = b(¢t,x},S(t,x},0,)) dr + dw
1 T (47)

min;Ef c(t,x}, S(t,x},v,))dt

o 7i=1Je ,

where w) denotes a particular trajectory of the noise.
Thusin the end we have to solve a deterministic dynamic
control problem, for which we can use a gradient tech-
nique or the Pontryagin principle. In practice we discre-
tize the problem in time to avoid the difficulty of the
generation of diffusion trajectories.

The idea of the stochastic gradient method is the same
as the method of Sect. 4 but we use a recursive method
of optimization, the recursivity being on the index of
the trajectory of the noise generated. The problem of

Eqns. (45, 46) can be reduced to the problem (Polyak .

1978, Kushner and Clark 1976);

ng{/l EJ(v) (48)
where
J(v) = f c(t, X;, S(t, X,, v)) dt 49)
0

We suppose that we are able to compute DJ by an
adjoint-state technique. At least after discretization v
is finite-dimensional. The stochastic gradient algorithm
is. the following recursive. method of improving the
parameter v:

U1 =PV{v,—p,DJ(v,,w,)}, P,ER+, VFEN
(50)
2p,=»  Xpi<w (51)
r€N reN

where D denotes 8/dv and w, denotes a generated
ranidom realization of the stochastic parameter in the
definition of J(v); P, denotes the projection on the set
V of ‘admissible parameters.

In a convex situation we have global convergence
results. Unfortunately this hypothesis is not true, in
general, for the problem of Eqns. (36, 37).

THEdREM 6. On the hypothesis

v—J(w, v) convex Vw

f](w, v)YM(dw) <= Vo

sup-|DJ(v, w)| < gq (52)
=S
EJ(v) — J = ki2(v) (53)

(where J denotes the optzmal cost and l(v) denotes the
distance of v to the set of optimal solutions of Eqn. (48))

V a bounded set

we have lim TE I*(v,) = 0, and moreover if

7
, 1/<kr + —)
pr= Yok

E %(v,) we have

k? 1
E (v, sl/(—r+—)
() q° Yo

The proof of this theorem can be found in Dodu et
al. (1981).
We suppose now that

with y, =

(a) the noise is finite-valued and we denote by v, arg
min E, J(v), and -

(b) v—J(w, v) is twice differentiable and uniformly
convex Yo € Q.

Then the following result gives a bound on the optimal
speed of convergence. :

THEOREM 7. (Dodu et al. 1981).

1
E(®-v,)®= —r-H[le”H;l (54)
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with

H, =D2.E‘ J) (55)

=E (DJ(:JM))@’2 (56)
for all unbiased statistics §. of v, defined on (Q, u)®'

If we note that 1/k is an estimate of H;' and ¢° an
estimate of 0, we see that in a certain sense the speed
of convergence of the stochastxc gradient technique is
optimal. .

6. Perturbation Methods

By perturbation methods (see Optimal Control: Per-
turbation Methods) we can approximate a difficult prob-
lem by a simpler one. In this section we discuss the
small noise intensity case. It is possible to construct an
affine control which leads to €* error with respect to the
optimal control, where € denotes the diffusion term.
This situation is the common case.

We consider the following stochastic control problem:

dX,=f(X,,U)dt+edW,, x,€R", u,ER™ .
T v (57)
y¢(0,x) = muinE [L c(x,,u,)dt| X(0) =x]
where € belongs to R* and is small. We denote
H(x, u, p) = pf(x, u) + c(x,u) (58)
and we suppose that ' ’ -
u— f(x, u) is linear (59)
(0 Cuu) = Klof? -~ (60)

where k is a posmve conétant, Vx, and we us¢ the
notation c,, for D,,c. Consider the determlmstlc control
problem

dX, =f(Xt! Ur) dt

ol |, dnmairo=sf
y(0,x)= min c(x,,u)d X(0)=x

and denote by u(¢) the optlmal open-loop deterministic
control.

The second-variation calculus around the optimal

trajectory of Eqn. (61) gives the osculatory quadratic
problem. This quadratic form is defined by the (n, n)
time-dependent matrix P, the solution .of the Riccati
equation

P+PA+A*P-PSP+Q=0, P(T)=0 (62)
where the matrices

A=f,
S=f.H.f: : (64)
Q = Hxx - H:xH;ulHux (65)
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_quu_ulHux V (63)

are evaluated along the optimal trajectory of Eqn. (61)
with the notation of Eqn. (60).
To give a meariing to Eqns. (63-65), we suppose that
H,>0, H,—-H:HJH, =0 (66)
Then consider the following affine control:
ug(t, X(9) = uo()) + KOIX() — X,o()]  (67)

where X(t) denotes the optimal trajectory of the deter-
ministic. control problem, Eqn. (61), X(#) denotes the
actual trajectory of the diffusion process (Eqn. 57) when
the control is Eqn. (67) and K(?) is defined by

K(®=H}H, +fiP)®) ‘ (68)
evaluated along the optimal trajectory X,(f). ‘

The quality of this affine control is given by the
following theorem.

THEOREM 8. On the hypotheses of Eqns. (59, 60, 66)
and (f; c) twice differentiable, the affine control con-

.structed on the deterministic control problem, used in the

stochastic control problem, leads to a loss of optimality
of O(e*).
The proof follows from the results of Cruz (1972) and

Fleming (1970). New results in this direction are given
in Bensoussan (1987).

See also: Optimal Control: Perturbation Methods; Optimal
Feedback: Linear Quadratic Problem; Optimal Feedback:
Linear Time-Optimal Control’ Problem; Stochastic
Conftrol: Introduction; Stochastic Maximum Principle;
Optimal Stochastic Control: General Aspects; Optimal and
Suboptimal Stochastic Control: Discrete-Time Systems;
Stochastlc Adaptive Systems Stability: Martingale Theory
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