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a very good numerical approach for solving DPE
is the Multigrid point of view — algorithms based
on this idea have a complexity linear with the
number of discretization points ;

a main stone of expert systems able to solve opti-
mization problem in presence of uncertainty will
be the dynamic programming — we shall discuss
Pandore an expert system on stochastic control ;

. some algebraic treatment of dynamic program-

ming can be done using the (max,+) algebra.

We shall develop these points in this paper.
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1 INTRODUCTION 1.

Many people in the automatic control community
think that the dynamic programming equation (DPE)
is not useful in practise because it leads to algorithms
which have a too large complexity ; thus they are in-
terested only by the LQG approach. Other ones work
only on the mathematical aspect of some DPE. Our
thesis is :

1. it is very difficult to avoid the dynamic program-
ming approach on many concrete problems. We
shall discuss our experience on a specific exemple ;

2. the “curse of dimensionality” can be avoided in a
large amount by using the dynamic programming
approach more for its time-space decoupling prop-
erty than for computing the effective feedback —
the Bellman function can be seen as a set of de-
coupling prices which can be obtained by an ag-
gregated model ;

MOTIVATION

For solving problems in presence of uncertainties we
can have different points of view :

the oldest one is the design of a robust feedback
without actual preoccupation of optimization —
the H® method is its most recent development ;

the LQG approach is very restrictive at the mod-
elization level but is a very good tool for design-
ing stabilizing feedback — used around an opti-
mal deterministic trajectory it has a good approx-
imation property in presence of small noises and
on regularity assumptions Fleming [8],Bensoussan

21;

. adaptative methods suppose the presence of a lin-

ear system that evolves slowly ; stochastic itera-
tion can be used to adapt the linear model in line
; thus in some sense they optimize only a local (in
time) system ; nevertheless the idea of stochastic
iteration can be used to optimize parameters in a
non-linear feedback, but, in this case, it subsists
the difficulty of the choice of the class in which we
want to optimize ;
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4. the dynamic programming approach avoid a lot of
these difficulties but has the main drawback of the
“curse of the dimensionality” ; it has been more
developped by the operational research commu-
nity which is more concerned with the optimiza-
tion problems than the stabilization ones.

We think that on a lot of real problems it is very
difficult to avoid the dynamic approach and thus it
is important to develop good numerical methods for
solving it.

Let us take a storage system given to us by Elec-
tricity Of France. It is a pumping station system and
we want decide if it is useful to build it. To take a
rational decision we have to evaluate the gain that we
can expect from this investment.

We can consider that this investment is marginal
with respect to the existing ones ; thus we use the
following simplified model :

{ dXt=(U1—U2)dt OSXtS]- (1)
ming, v, B f; Yi(pUs — Up)dt
where :

o X, denotes the level of water in the stock,

o Y, the prices of the electricity,

e p the yield of the pumps,

U; the pumping flow 1 > U; > 0,

U, the turbining flow 1 > U, > 0,

e T the horizon of the management.

But Y; — the price of electricity — is a stochastic
process which is, in fact, itself a solution of an opti-
mization problem. We model it here by a diffusion
process in one dimension to avoid the dimension dif-
ficulty of the dynamic programming approach. Thus
the model for the prices will be :

dY; = b(t,Yy)dt + o(t, Y2)dW; , 2)

in which we have to identify b and o, a trajectory of Y;
being known as the solution of another optimization
problem.

The resolution of a such simple problem can save
million of dollars and the classical LQG problem is
not very relevant for solving it.

Let us compare the cost obtained using three differ-
ent strategies — on the actual datas.

1. The first one is the feedback obtained by solving
the DPE equation after the identification of the
process describing the price Y; ;

[ Strategy | Cost |

1 -8.7
2 -5.96
3 -6.38

Table 1: Comparaison of the three strategies on the
actual datas.

9. The second one is an open loop control ob-
tained by solving the deterministic control prob-
lem based on the average prices ;

3. The third one is a feedback defined by two param-

eters p,q :
if Yi>q, U1=1, U:2=0,
if Y;<P; UIZO) U2=1a
if p<Y;<yqg, U;=0, U;=0.

The form of this strategy has been suggered by the
form of the DPE solution. The two parameters
(p, q) are optimized by a dichotomy method.

These numerical results show an important improve-
ment obtained by the use of the DPE. It is natural to
think that, in general, there is a loss of optimality of
order 1 by a simplification of the class of the strate-
gies in which we optimize, unless there is somewhere
a small parameter.

These remarks show that unless we accept a loss of
optimality of order 1 we have to solve the DPE — it
is the only known way to optimize in the general class
of strategies.

Let us explain now how we can avoid the “curse of
dimensionality” in some cases by decoupling in time
and space the problem thanks to the resolution of the
DPE of an aggregate problem.

3 HOWARD ALGORITHM

Let us consider the DPE associated to the control of
diffusion processes with a discounted cost :

min{ AV + e(u)} = 0

with :

- v v
A(u)V = Zbi(x, u)_3x~ + Z aij _—3m-3mj - AV,
i=1 t j :

or its discretized version :
min{A(w)V* + c(u)} =0;

where h is the step of discretization and A} (u) is ob-
tained by discretization of Ax(u) by a finite differ-
ence or finite element method Kushner [13], Goursat-
Quadrat [11].

The Howard algorithm is defined by the iteration :
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1. 4™ — V" by resolution of :
AWV +c(u™) =0,
2. VP —untl by :
min A (u)V" + ¢(u) ,
u
can be interpreted as a Newton method for solving :
4
min{Ax(w)V +e(w)} £ 9(V) =0.

Indeed the iteration of the Newton method can be
written :

Vn+1 — Vﬂ _ w"l(V“)ib(V“) ’

but
v = E2am+ Zamo v+ ae)
= A\(u")

in the case of optimization without constraints.
Now let us suppose that :

e we have to solve a large dimension problem
for which the dynamic programming operator is
A} (u) and the cost c!(u) ;

e we know an aggregated or simplified model A3 (u)
with the aggregated or simplified cost ¢?(u).

Suppose that we use the strategy defined by :
v* € argmin{A}(u)V? + ¢} (u)}
with V2 solution of the DPE of the aggregated model :
min{A{(W)V? +c* ()} =0.

Let us call § = |V! — V2|. By the speed of conver-
gence of the Newton method we see that |[V*—V1| = §
where V* denotes the solution of A}(w*)V*+c1(uw*) =
0 — that is the cost of the strategy u* for the true
model.

The Newton method convergence conditions are not
necessarily fulfiled, but even in this case, by the global
convergence of the Howard algorithm we have |[V* —
Vi< [vi-V2.

The problem :

min{A} (v)V? + ¢! (v)}

which gives the actual control must be solved on line
along the realized trajectory and thus the dimension-
ality difficulty is partially resolved — up to a on-line
computation.

Some variant of this idea has been used with success
by Turgeon [19] and Lederer-Torrion-Bouttes [14] on a
real exemple of management of electricity production.

These considerations show that DPE can be useful
for some problems. Thus the remaining problem to
be solved is to find an efficient numeric algorithm to
compute the solution of the DPE.

4 COMPLEXITY

Let us consider the DPE in the discounted case that

is
n}‘in{A(u)V +e(u)}—AV=0,A>0;

with :

o A(u) the generator of the controled stochastic pro-
cess,

e u the control,
e c(u) the instantaneous cost, > 0,
o ) the actualization rate.

If the stochastic process does not belong to a finite
space we suppose that we have discretized it. Thus
A(u) is a matrix which satisfies :

Zj Aij (u) = 0 ViVu
~1< A;i(u) < O Vi Vu
Aij(u) > 0 j#FiVu
the three classical algorithms are — Ross [18],

Derman(6] :

e policy iteration that we have discussed in the pre-
vious paragraph ;

e value iteration that is :

Vn-l—l —_

TN n’gn{M(u)V“ + e(u)}
with

M(u) = A(u)+ 1
Some variant have been proposed by Gonzales-
Rofman [10] and Falcone [7], they corresponds in
the linear case — I/ has only one element — re-
spectively to the Gauss Seidel and overrelaxation
variant of the Jacobi algorithm.

e linear programming “find the largest subsolution”

maxy(1,V) 3)
AWV +c(u) = AV >20Vueld

This problem is a linear programming one if the
set U is finite.

Let us discuss this three algorithms. We have no ex-
perience on the linear programming one but it seems
not to be a good point of view when the control set
is large and when U has only one element it consumes
more time than a classical algorithm solving a linear
system — which is the problem to which is reduced

. the problem of control in this particular case.

Let us compare now the policy iteration and the
value iteration. It is in general admited that the value
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iteration is faster. Indeed because the policy iteration
is a Newton method the number of iterations is small.
Let us say 5 — until now on many examples that we
have tried no more than 4 iterations have been needed,
see Quadrat [17] for some numerical experiments ; but
at each iteration we have to solve a linear system ;
thus the cost is approximatively 5 linear systems + 5
minimizations for all the points of discretization.

The value iteration when U is reduced to one ele-
ment is the classical Jacobi iteration to solve a linear
system. It can be improved by the classical way of ac-
celeration of convergence. The cost of this algorithm is
the number of iterations for solving the linear system
times the cost of one optimization.

Now to improve the policy iteration we can use an it-
erative method to solve the linear systems. Let us sup-
pose that we don’t solve the linear system completely
but we stop when we have achieved a given precision.
The complete algorithm can be seen as a value itera-
tion where sometimes we skip the minimization step
— this is possible because the speed of convergence of
the control (Newton method) is superlinear thus faster
than the convergence of the cost (ill conditioning dif-
ficulties). Thus the best point of view is the policy
iteration with iterative method to solve the linear sys-
tem.

Now we have to decide when we make the minimiza-
tion step. The super-linear convergence of the newton
method suggests that if n is the index of iteration it
is enough to make a minimization only when logn is
integer thus the total cost is approximatively the cost
of solving one linear system by an iterative method.

Let us now study the conditioning property of the
linear system that we have to solve. The difficulty
appears often when the discrete problem comes from
a multidimensional control problem. In this case the
conditioning of the matrices A(u) is approximatively
the same as the discretized Laplacian operator (A)
one.

To study this problem let us look at the condition-
ing property of the discretized version of the following
problem :

AV
14
Suppose that the discretization is done by finite differ-
ence on a regular mesh. Let us denote by N 41 the
number of point of discretization in each direction and
let us denote by AP the discretized operator.
The eignevalue of A* are :

\ _ 4(sin2("2—h) + sinz(ﬂ;i))
nm = h2

fooin]o,nf
0 on the boundary T of ]0, «[?

with n,m = 1... N. The eigenvector associated are :

sin(inh)sin(jmh) 4,7 =1,...,N

Thus the conditionning of the matrix A* is gz and
the best iterative algorithm is of the form :

Vil =V 4 (AN - ) 4)

— which converges — costs using the Marchouk [16]
discussion : kN%log N if we want to stop when we
have achieved a precision of h? = gz — which is the
precision of the discretization. Because M = N? is
the number of discretization point, the complexity is
of order kM?log M and thus the complexity of DPE
by policy iteration will be of this order also.

The speed of convergence is of order # using
block-relaxation techmique. It can be improved up
to the order 7},—, which leads to a complexity of order
kM3/2log M, but this block-relaxation is specialized
to 2 dimensional problems.

Let us remark also that direct methods are more effi-
cient than the iterative ones only for small dimensions
(1 or 2) for higher dimension they have a complexity
near of M3,

Let us discuss now multigrid ideas which lead to a
linear algorithm — thus of order M = N™ whatever
is the dimension m (M is the number of discretiza-
tion points if N is the number of discretization in each

dimension).

5 MULTIGRID ALGORITHM
5.1 Multigrid ideas

This technique is used in the context of the resolu-
tion of large linear systems obtained by discretization
of partial differential equations. It is wanted to de-
sign an iterative algorithm with a contraction factor
independent of the mesh size. This result is obtained
using aggregation ideas. We build a pyramidal set of
more and more aggregated models. The more aggre-
gated ones giving a good approximation of the “slowest
part” of the system.
More precisely we have to solve :

Az +u=0 (5)

with A : V — V"’ linear, bounded coercive. We use the
diagram :

174 —_— v’
By, ) ! Cr
RN), _ﬁ’_‘_, RN"
By T i Cr—1




5 MULTIGRID ALGORITHM

with :
Ar = CrABy

Ap—1=Cr1Cr ABx By

and :
N1<N2<...<Nk.

To solve the approximated problem :
Apzr +ur =0 with Cru = u; (6)

we use an iterative method which is a numerical inte-
gration of the differential equation :

Ty = Apxr + ug . (7)

By a correct choice of Cy, and By, Ay keeps some prop-
erties of A — for example all its eigenvalues are nega-
tive. These properties insure the stability of (7) and

tlirglo zx(t) = —A7 Yug.

But the eigenvalues of Ay are spread, in general, on
a very large interval as we have seen on the previous
paragraph.
Let us suppose now that :
o R(Br-1) [resp. R(Bk-1Bx-2...)] is the right in-
variant space of Ay containing the Ni_j [resp.
Ni_2,...] slowest modes,

o R(C_;) [resp.R(Cy_1C_o-..)] is the left in-
variant space of Aj containing the Np_; [resp.
Ni_2,...] slowest modes.

Then :
Pr_1 = Br-1Cr—1

[resp.Py—2 = Bg—1B;-2Ck—2Ck-1,. . ]
is a projector on R(By.1) parallel to N(Ci_1).
The differential equation :

zr = Al +op1Per + -+

with a; > 0. has the same properties of stability than
(7). Thus :

+aPlze+ur (8)

Jim 20 = 7
which is such that :
(I+ep_1Po_i+--+01P1)zee = —A7 'up = 2oo (9)
The conditioning of the operator :
Ap = Ag[T+ -+ a1 P1]

can be improved by a good choice of the a;, @ =
1---k — 1. Indeed the eigenvalues of Ay are :

A(l-{-z la,) i=1,M
A(l‘l‘z zaz i=Ny+1,---,N;
/\i i=Ng-1+1,---,Ng

(10)

For example in the case of the discretized Laplacian
in dimension 1 with Ny_; = Ni/2, ak 1=l ap_; =
20k _i+1, the conditioning of Ay~ 1 mdependently of
k — that is the eigenvalues of Ak are spead on the
interval [-N? ,—%f-].

In general it is difficult to find a set of opera-
tors (B;,Cj). Nevertheless, using the continuity of
the eigenvalues with respect to the perturbation of
the operator it is sufficient to find a set of operators
(Bj,Cj) having approximatively the invariance prop-
erty needed. For example, we can take for B; a linear
mterpolation and for C; = B’ This choice is enough
precise — in the case of dlscretlzatlon of elliptic op-
erators — to give to Ay a conditioning < 1, indepen-
dently of Ni. These considerations lead to an algo-
rithm which solved (6) in §Ni log Ni with a precision
of (wz Ne )’

The implementation of the algorithm is a discrete
version of :

(% = Ag[zr + ag—1Br-128-1
tak—2Br—1Br_ozr—2+ -]+ ug
2po1 = Cro1Arzr + Ap—1[ok-12k-1
) +ap-2Br_ozk—2+ ... ]+ Croruk
zp—2 = Cro2Cr_1Ar2r + 04 1Ck-24r-17k-1
+Ap_2[ar—2zk—2+ .. ]+ Cro2Cr_1ux

‘ (11)
The properties discussed here are proved in Hackbush
[12] for example. To see the meaning of the equation
(11) let us consider the particular case with only one

level of aggregation and ap_1 = 1:

{ Zx = Ag[zx + Br—12k-1] + 2k
2r_1 = Cp_1Arzr + Ap—128-1 + Cr1ux
(12)

which can be written :

{ Zx = Ag[zx + Br—12k-1] + ux
tp_y = Cro1ArBr_12zk-1 + Ce-1[Aezr + w]
(13)
2x_1 is a correction term obtained by solving an aggre-
gated system — the second equation of (13) — with
a forcing term equal to an aggregate of the error be-
tween zp and the equilibrium point -—A,C ug. In fact,
this is the initial point of view which has conducted to
the multigrid methods.

5.2 The FMGH algorithm

Let us describe completely an algorithm based on the
policy iteration and multigrid ideas — it is called full
multigrid Howard algorithm (FMGH), it has been de-
signed and experimented by M. Akian [1]. It solves

- the DPE for diffusion processes and discounted cost :

min{A* (u*)V* 4 ¢(u*)} = 0.
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Figure 1: FMGH algorithm.

The following diagram explains the algorithm. In this
diagram each horizontal line is associated with a level
of discretization and the graphic symbols have the fol-
lowing meanings :

—  minimization :

VE - uf € argmin A¥(w)VF + c(u) ;

o —  solution of a linear system :
u* — V* solution of AF(uF)VF +c(u*) =0;
e — one Gauss—Seidel iteration

(b, VF) = VE = (LF)"Y(M*VE + c(uF))

with : A¥(u¥) = M* — L¥ | L* lower triangular

M* strictly upper triangular ;

restriction : V¥ — V*-1 = CFvE
/
/] -

!

state and control interpolation :
w1 s uF = Bhyk-1.

— in general the state interpolation operator and the
control one are not the same because V and u do not
belong to the same functional space.

Let us give now some numerical experiments of this
algorithm. We solve, in dimension d = 1,2,3, the
equations :

~V + AV + min (u.grad(V) +uu)+¢c=0
uelrd
in Q =)0, 1[¢,
V =0in 0Q,

for different ¢ choosen such that the solutions of the
equations are :

1. in dimension 1
(a) v(z) = sin(wz)
(b) v(z) = sin(rz) + 0.1sin(107z)
2. in dimension 2

(a) v(z,y) = sin(wz) sin(ry)

(8) v(z, y) = sin(wz) sin(wy)+0.1sin(107z) sin(107y)

state interpolation : V¥~! — V¥ = Byt

Pb. nb. la|1b [ 2-a [2b [ 3a [ 3D |
k h% £k
0 0.25 06 14 [ 044 {044 {032 38
1 0.06 0.7 13271036 ]246]009 | 14
2 || 15.10—° 1 61 0.31 1298 |0.24 | 1.09
31 39.107% | 1.1 | 41.2 | 0.28 | 29.7 | 0.53
4 10-3 1.1 1218 .27 | 273
5| 24.10°° || 1.1 | 16.8
6 || 61.10°° || 1.1 | 12.5

Table 2: Evolution of the error of FMGH algorithm
with the mesh size hy.

Pb.nb. l—a,l 1-b | 2-a l 2-b | 3-a I 3-b
k 6 4 2
£; 0.6 l 15.8 | 0.46 | 8.39 | 0.32 l 1.01

Table 3: Limit error of the FMGH when the number
of Howard cycles increases.

3. in dimension 3
(a) v(z,y,z) = sin(rz) sin(7ry) sin(7z)

(b) v(z,y, z) = sin(wz)sin(7y) sin(7z)
+0.3sin(37z) sin(37y) sin(372)

The first table shows the evolution of the error ¢ in
the ascending part — decreasing of the mesh size — of
the algorithm . It shows that the number of relaxation
steps at each level is enough to maintain the precision
wanted — of the form Ch? with C independent of A
for a h? scheme of discretization. Thus with a linear
computing cost in the number of discretization points
we obtain an approzimated solution of precision R2.

6 PANDORE

DP approach is useful but it is one possible approach.
Moreover this point of view is time consuming because
we have to develop a special computer program for
each application based always on this same idea. To
help the non specialist and save time of the specialist
we have designed an expert system on stochastic con-
trol called “Pandore” able to make by itself studies in
this domain.

Pandore knows four points of view (to solve stochas-
tic control problems of diffusion processes) : — dy-
namic programming, — decoupling, — stochastic it-
eration, — regular perturbation method. The more
developped one is the dynamic programming.

From a specification of the model it is able to make a
complete study that is : — verify the well posedness of
the problem, — write the DPE, — prove the existence
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of a solution of the DPE in some cases, — discretize
it by finite differences, — write a Fortran routine, —
make a numerical test, — plot the numerical result, —
write a Latex report summarizing all the study.

It knows, until now, only the classical algorithms. A
generator of programs based on the multigrid written
by M. Akian [1] exists and will be installed in the sys-
tem soon. It is written in Lisp, Prolog and Macsyma
and works on Lisp Symbolics machine. Studies like
the pumping station problem have been solved using
this system. A complete exemple solved by Pandore
with some explanations about its structure is given in
Chancelier-Gomez-Quadrat-Sulem [3].

7 FORMAL CALCULUS

Until now we have discussed numeric approximation of
the solution of the DPE. Let us study now some partic-
ular cases for which it is possible to use the formal cal-
culus. Let us suppose that we have a discrete time de-
terministic dynaming programming problem for which
all the datas — the dynamic and cost — are piecewise
linear functions ; then it must be clear — we shall give
a proof later on — that the solution is piecewise lin-
ear also. Thus in this case we have only to code and
manipulate this kind of functions.

A piecewise linear function can be coded by a ratio-
nal function in (max, +) algebra and thus this problem
— of computing the solution of the DPE — becomes a
problem of manipulation and simplification of rational
functions in the (max,+) algebra. A (max,-) formal
polynomial calculus can be developped for that. Let
us detail these points.

7.1 The (max,+) algebra

We consider IR the set of real numbers with the two
operations “max” and “+” which satisfy the following
axioms :

“max” is an idempotent semigroup. It : — is asso-
ciative, — is commutative, — has a neutral element
—oo called g, — is idempotent max(z, z) = .

“4” is a group, moreover : — “+” is distributive
with respect to the max, — ¢ is absorbing ¢ + 2z =¢.

Such kind of idempotent semi-ring is called a dioid.

We shall denote in this paragraph max by @ and
“4” by ® thus 2® z @ 3 means max(3,2 + z) and we
shall make the classical omission of the “x” — thus 2z
means 2 ® ¢ — and we omit also very often the circle
around de “4” — thus in the new notations 2z + 3
means max(3,2 + z) in the old ones. This change of
notations is done because it insists on the analogy with
the classical calculus.

7.2 The (max,+) rational functions

Proposition 1 The set of piecewise linear functions
are the (max, +) rational functions with integer slopes.

Proof. Given a (max, +) rational function R(z) = %(%—;
— with P(z) and Q(z) polynomial. It is the dif-
ference of two polynomials because the division is
the inverse of the multiplication that is the differ-
ence with the usual notation. Now a polynomial
P(z) = S5, aiz’ which means with classical notation
P(z) = maxX;=1,,(a; + iz) that is the superior envelop
of increasing piecewise-linear integer-slopes functions.

In this algebra there is the analogue of the funda-
mental algebra theorem.

Proposition 2 P(z) polynomial of degree n can be
factorized with n linear factors :

P(z)=a]](z+m)
i=1

The z; are the corner points of P(z) that is the points
where the slopes changes of value.

Proof. Let us denote by z; the corner points of P(z)
and k; the multiplicity of the corner point that is the
value of the increase of the slopes — which is an inte-
ger. Then Q(z) defined by :

Q(z) = an H(x + x;)k*

— where a,, is the coefficient of z” in P(z) — is
an increasing piecewise-linear integer—slopes function.
It changes of slope at the z; and the value of these
changes are the same as the ones of P(z). Moreover
P(:c) and Q(z) coincides for z large because the lead-
ing monomials are the same. Thus P(z) and Q(z) are
the same.

Corollaire 1 A rational function R(z) can be fac-

tored :
H (z+z:)
TG +zx)

where the “roots” z; are the positive changes of slope
and the “pole” z; are the negative changes of slope.

R(z) =

7.3 Piecewise linear DPE

Let us consider the finite horizon dynamic control
problem in the classical notation :

= Pu(2i)

x .
{ 1= n—1 u € U finite set
MaXyg,uy,..,Upai Zi.—:o cu‘(x;)
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Let us suppose that the P,(z) and c,(z) are piecewise
linear functions with integer slopes — that is rational
in the (max, +) algebra. Then the DPE V;(z) satisfies :

{ Vi(x)

ma‘xu{Vi—{-l(Pu (:L‘)) + cu(l‘)}
Va() 0

which can be written with the (max, +) notations :

We call such DPE a rational one in the (max, +) sense.

fhn

Théoréme 1 The solution of a rational DPE in the
(max, +) sense is rational.

Proof. In (14) we use only rational transformations
and start with a rational function thus the result is
rational e

The resolution of (14) can be done formally using the
(max, +) operations and can be seen as maintaining a
canonical form — for example the factorized one —
that is computing the corner points of the solution.
The experience accumulated in the formal calculus can
be adapted at this new situation to solve the problem.

This point of view may be developped. It can solve
the difficulty of the numerical diffusion which appears
when we want solve the deterministic DPE by numer-
ical methods.
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