Minplus Homogeneous Dynamical Systems

N. Farhi, M. Goursat & J.-P. Quadrat

Growth Rate Eigenvalue The Growth Rate is not an

Traffic Applicatior

Bibliography

Minplus Homogeneous Dynamical Systems Growth rate, Eigenvalues and Traffic Applications

N. Farhi, M. Goursat & J.-P. Quadrat

INRIA-Rocquencourt (France)

13/11/2008

Good Retirement Geert Jan !!

Minplus Homogeneous Dynamical Systems

N. Farhi, M. Goursat & J.-P. Quadrat

Introductio

Eigenvalue

The Growth Rate is not an Eigenvalue

Traffic Applicatior

Bibliography

Outline

Minplus Homogeneous Dynamical Systems

N. Farhi, M. Goursat & J.-P. Quadrat

Introduction

Growth Rate

Eigenvalue

The Growth Rate is not an Eigenvalue

Traffic Application

Bibliography

1 Introduction

2 Growth Rate

3 Eigenvalue

4 The Growth Rate is not an Eigenvalue

5 Traffic Application

6 Bibliography

Definitions

>

Minplus Homogeneous Dynamical Systems

N. Farhi, M. Goursat & J.-P. Quadrat

Introduction

Growth Rate

Eigenvalue

The Growth Rate is not an Eigenvalue

Traffic Applicatio

Bibliography

Minplus homogeneous dynamical systems:

$$\kappa^{k+1} = f(x^k), \text{ with } f: \mathbb{R}^n_{\min} \mapsto \mathbb{R}^n_{\min}: f(\lambda \otimes x) = \lambda \otimes f(x).$$

Growth rate $\chi \in \mathbb{R}_{\min}$:

$$\chi = \lim_{k} x_i^k / k, \quad \forall i = 1, \cdots, n.$$

Eigenvalues $\lambda \in \mathbb{R}_{\min}$:

 $\exists x \neq \varepsilon : f(x) = \lambda \otimes x.$

Problems and Applications

Minplus Homogeneous Dynamical Systems

N. Farhi, M. Goursat & J.-P. Quadrat

Introduction

Growth Rat

Eigenvalue

The Growth Rate is not an Eigenvalue

Traffic Applicatior

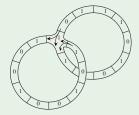
Bibliography

Questions:

$$?\exists \chi, ,?\exists \lambda, ?\chi = \lambda$$
.

TRUE when f is monotone and $\mathcal{G}(f)$ strongly connected.

Traffic Applications (*f* homogeneous not monotone):



Canonical form of Homogeneous Systems

Minplus Homogeneous Dynamical Systems

N. Farhi, M. Goursat & J.-P. Quadrat

Introduction

Growth Rate

Eigenvalue

The Growth Rate is not an Eigenvalue

Traffic Applicatior

Bibliography

The dynamics
$$x^{k+1} = f(x^k)$$
 is equivalent to

$$\begin{cases} x_1^{k+1}/x_1^k = f_1(x^k)/x_1^k, \\ x_i^{k+1}/x_1^{k+1} = f_i(x^k)/f_1(x^k), & i = 2, \cdots, n, \end{cases}$$

using the homogeneity it can be written :

Dynamics Canonical Form

$$\begin{cases} \Delta^k = h(y^k), \\ y^{k+1} = g(y^k), \end{cases}$$

with $\Delta^k \triangleq x_1^{k+1}/x_1^k$, $y_{i-1}^k = x_i^k/x_1^k$ and $g_{i-1} = f_i/f_1$ for $i = 2, \cdots, n$.

Growth rate

Minplus Homogeneous Dynamical Systems

N. Farhi, M. Goursat & J.-P. Quadrat

Introduction

Growth Rate

Eigenvalue

The Growth Rate is not an Eigenvalue

Traffic Applicatior

Bibliography

As soon as the y^k belong to a bounded closed (compact) set for all k, the set of measures:

$$\left\{ \mathsf{P}_{y^0}^{\mathsf{N}} = \frac{1}{\mathsf{N}} \left(\delta_{y^0} + \delta_{g(y^0)} + \dots + \delta_{g^{\mathsf{N}-1}(y^0)} \right), \ \mathsf{N} \in \mathbb{N} \right\} \ ,$$

is tight. Therefore we can extract convergent subsequences which converge towards invariant measures Q_{y^0} . Applying the ergodic theorem to the sequence $(y^k)_{k\in\mathbb{N}}$:

Growth Rate Existence

$$\chi = \frac{1}{N}(x_1^N - x_1^0) = \lim_N \frac{1}{N} \left(\sum_{k=0}^{N-1} h(y^k) \right) = \int h(y) dQ_{y^0}(y), \ Q_{y^0} \text{ a.e.}$$

Remarks on Growth rate Existence

Minplus Homogeneous Dynamical Systems

N. Farhi, M. Goursat & J.-P. Quadrat

Introduction

Growth Rate

Eigenvalue

The Growth Rate is not an Eigenvalue

Traffic Application

Bibliography

It would be very useful to prove that the limit exists for sequence starting from y^0 .

- A priori homogeneous systems have not the uniform continuity property necessary to prove the convergence of the Cesaro means for y⁰.
- 2 In the case where the compact set is finite, we can apply the ergodicity results on Markov chains with a finite state number to show the convergence of $P_{y^0}^N$ towards Q_{y^0} which proves the convergence of the Birkhoff average for the sequence starting from y^0 .

Non Everywhere Convergence of Birkhoff Averages

Minplus Homogeneous Dynamical Systems

N. Farhi, M. Goursat & J.-P. Quadrat

Introductior

Growth Rate

Eigenvalue

The Growth Rate is not an Eigenvalue

Traffic Applicatior

Bibliography

$$f: x \in \mathbb{T}^1 \to 2x \in \mathbb{T}^1$$
 with: $x^0 = 0.100111100000000 \cdots$

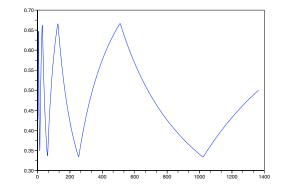


Figure: Plot of S(n) with: $S(n) \triangleq \frac{1}{n} \sum_{k=0}^{n-1} x^k$.

Eigenvalue of Homogeneous Systems

Minplus Homogeneous Dynamical Systems

N. Farhi, M. Goursat & J.-P. Quadrat

Introduction

Growth Rate

Eigenvalue

The Growth Rate is not an Eigenvalue

Traffic Applicatior

Bibliography

The eigenvalue problem a function $f : \mathbb{R}_{\min}^n \mapsto \mathbb{R}_{\min}^n$ can be formulated as finding $x \in \mathbb{R}_{\min}^n$ non zero, and $\lambda \in \mathbb{R}_{\min}$ such that:

$$\lambda \otimes x = f(x)$$
.

Since f is homogeneous, we can suppose without loss of generality that if x exists then $x_1 \neq \varepsilon$ and we have the:

Eigenvalue Canonical Form:

$$\begin{cases} \lambda &= h(y) , \\ y &= g(y) , \end{cases}$$

with $y_{i-1} = x_i/x_1$, $h(y) = f_1(x)/x_1$ and $g_{i-1} = f_i/f_1$ for $i = 2, \dots, n$.

Eigenvalue Existence

Minplus Homogeneous Dynamical Systems

N. Farhi, M. Goursat & J.-P. Quadrat

Introduction

Growth Rate

Eigenvalue

The Growth Rate is not an Eigenvalue

Traffic Applicatio

Bibliography

Eigenvector Existence

The existence of eigenvalue is reduced to the existence of the fixed point of g which gives an eigenvector.

Standard Examples

- \bullet f is a finite Markov chain transition operator.
- **2** f is affine in standard algebra with $dim(ker(f' I_d)) = 1$.
- \bullet f is minplus linear.
- f is a dynamic programming function associated to a stochastic control problem.
- *f* is a dynamic programming function associated to a stochastic game problem.

Affine Example with $dim(ker(f' - I_d)) = 1$.

Minplus Homogeneous Dynamical Systems

N. Farhi, M. Goursat & J.-P. Quadrat

Introduction

Eigenvalue

The Growth Rate is not an Eigenvalue

Traffic Applicatior

Bibliography

With standard notations we have to solve:

 $\lambda + x = Mx + b$, M1 = 1, Eigenvalue 1 simple.

Using the variable change z = Px with:

$$z = \begin{bmatrix} x_1 \\ y \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdot & \cdot & 0 \\ -1 & 1 & 0 & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ -1 & 0 & \cdot & \cdot & 1 \end{bmatrix} x \ .$$

The system $\lambda P\mathbf{1} + z = PMP^{-1}z + Pb$ has a block triangular form $PMP^{-1} = \begin{bmatrix} 1 & c \\ 0 & N \end{bmatrix}$ (thanks to the homogeneity $M\mathbf{1} = \mathbf{1}$), N has not the eigenvalue 1 (since 1 is a simple eigenvalue of PMP^{-1}) and therefore g has a unique fixed point.

Tent Example

Minplus Homogeneous Dynamical Systems

N. Farhi, M. Goursat & J.-P. Quadrat

Introduction Growth Rate Eigenvalue

The Growth Rate is not an Eigenvalue

Traffic Applicatio

Bibliography

Let us consider the homogeneous system:

$$\begin{cases} x_1^{k+1} = x_2^k \ , \\ x_2^{k+1} = (x_2^k)^3 / (x_1^k)^2 \oplus 2(x_1^k)^2 / x_2^k \ . \end{cases}$$

We have h(y) = y and $g(y) = y^2 \oplus 2/y^2$ (g is the tent transformation which is chaotic).

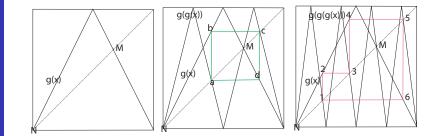


Figure: Tent transformation and its iterates.

$$\chi \neq \lambda$$

Minplus Homogeneous Dynamical Systems

N. Farhi, M. Goursat & J.-P. Quadrat

Introductior

Eigenvalue

The Growth Rate is not an Eigenvalue

Traffic Applicatior

Bibliography

The eigenvalues are $\lambda = y$ solution of $y = y^2 \oplus 2/y^2$ that is: $\lambda \in \left\{0, \frac{2}{3}\right\}.$

1 Starting from $y0 = \frac{2}{5}$, the trajectory is periodic of period 2. The invariant measure is $Q_{y^0} = \frac{1}{2}(\delta_{\frac{2}{5}} + \delta_{\frac{6}{5}})$, therefore:

$$\chi = rac{4}{5}, \quad Q_{y^0}$$
 a.e.

2 The tent transformation admits the uniform law as invariant measure, therefore:

$$\chi = \int_0^1 y dy = \frac{1}{2}$$
, a.e. for the Lebesgue measure.

2 Circular Roads with 1 junction

N. Farhi, M. Goursat & J.-P. Quadrat

Growth Rate Eigenvalue The Growth

Kate is not an Eigenvalue

Traffic Application

Bibliography



Figure: A junction with two circular roads cut in sections (top-right), its Petri net simplified modeling (middle) and the precise modeling of the junction (top left).

Dynamics

<

Minplus Homogeneous Dynamical Systems

N. Farhi, M. Goursat & J.-P. Quadrat

Introduction Growth Rate Eigenvalue The Growth Rate is not an Eigenvalue

Traffic Application

Bibliography

The general Petri net equation:

$$\min_{p \in q^{in}} \left\{ a_p + \sum_{q \in p^{in}} m_{pq} q^{k-1} - \sum_{q \in p^{out}} q^k \right\} = 0, \ \forall q \in \mathcal{Q}, \ \forall k,$$

does not define completely the dynamics. We precise the dynamics by giving the turning probability (1/2) and the right priority to enter in the junction.

$$\begin{cases} q_i^{k+1} = a_{i-1}q_{i-1}^k \oplus \bar{a}_i q_{i+1}^k, \ i \neq 1, n, n+1, n+m, \\ q_n^{k+1} = \bar{a}_n \frac{q_1^k q_{n+1}^k}{q_{n+m}^k} \oplus a_{n-1}q_{n-1}^k, \\ q_{n+m}^{k+1} = \bar{a}_{n+m} \frac{q_1^k q_{n+1}^k}{q_n^{k+1}} \oplus a_{n+m-1}q_{n+m-1}^k, \\ q_1^{k+1} = a_n \sqrt{q_n^k q_{n+m}^k} \oplus \bar{a}_1 q_2^k, \\ q_{n+1}^{k+1} = a_{n+m} \sqrt{q_n^k q_{n+m}^k} \oplus \bar{a}_{n+1} q_{n+2}^k. \end{cases}$$

Increasing trajectory property

Minplus Homogeneous Dynamical Systems

N. Farhi, M. Goursat & J.-P. Quadrat

Introduction Growth Rate Eigenvalue The Growth Rate is not an Eigenvalue

Traffic Application

Bibliography

Theorem

The trajectories of the states $(q_i^k)_{k \in \mathbb{N}}$, starting from 0, are nondecreasing for all *i*.

Proof by induction. For q_n :

If
$$q_n^{k+1} = a_{n-1}q_{n-1}^k$$

 $\Rightarrow q_n^{k+1} \ge a_{n-1}q_{n-1}^{k-1} \ge f_n(q^{k-1}) = q_n^k$

$$\begin{split} &\text{If } q_n^{k+1} = \bar{a}_n q_1^k q_{n+1}^k / q_{n+m}^k, \\ &\Rightarrow q_n^{k+1} \geq \bar{a}_n q_n^k q_1^k q_{n+1}^k / \bar{a}_{n+m} q_1^{k-1} q_{n+1}^{k-1} \\ &\text{since } q_{n+m}^k \leq \bar{a}_{n+m} q_1^{k-1} q_{n+1}^{k-1} / q_n^k \\ &\Rightarrow q_n^{k+1} \geq q_n^k \end{split}$$

Distances between states stay bounded

Minplus Homogeneous Dynamical Systems

N. Farhi, M. Goursat & J.-P. Quadrat

Introductior

Growth Rate

Eigenvalue

The Growth Rate is not an Eigenvalue

Traffic Application

Bibliography

Theorem

The distances between any pair of states stay bounded:

$$\exists c_1: \sup_k |q_i^k - q_j^k| \leq c_1, \forall i, j.$$

Moreover:

$$\forall T, \exists c_2 : \sup_k |q_i^{k+T} - q_i^k| \leq c_2 T, \forall i.$$

Existence of the Growth Rate

Minplus Homogeneous Dynamical Systems

N. Farhi, M. Goursat & J.-P. Quadrat

Introductior

Growth Rate

Eigenvalue

The Growth Rate is not an Eigenvalue

Traffic Application

Bibliography

Theorem

There exists an initial distribution on $(q_j^0/q_1^0)_{j=2,n+m}$, the Kryloff Bogoljuboff invariant measure, such that the average flow

$$\chi = \lim_{k} q_i^k / k, \ \forall i ,$$

exists almost everywhere.

Eigenvalue Formula

Minplus Homogeneous Dynamical Systems

N. Farhi, M. Goursat & J.-P. Quadrat

Introduction

Growth Rate

Eigenvalue

The Growth Rate is not an Eigenvalue

Traffic Application

Bibliography

The eigenvalue problem can be solved explicitly.

Theorem

The nonnegative eigenvalues λ are solutions of:

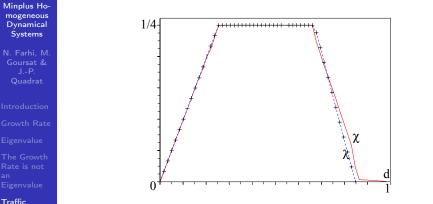
$$\top \left\{ -\lambda, \bot \left\{ (1-\rho) \, d - \lambda, \frac{1}{4} - \lambda, r - (1-\rho) \, d - (2r - 1 + 2\rho) \, \lambda \right\} \right\} = 0$$

with
$$N = n + m$$
, $ho = 1/N$, $r = m/N$, d the car density

N >> 1, r > 1/2

$$\lambda \simeq \max\left\{0, \min\left\{d, \frac{1}{4}, \frac{r-d}{2r-1}
ight\}
ight\}.$$

Difference Between Eigenvalue and Growth Rate



Application

Figure: The traffic fundamental diagram $\chi(d)$ when r = 5/6 (continuous line) obtained by simulation and its comparison with the eigenvalue $\lambda(d)$.

Phases

Minplus Homogeneous Dynamical Systems

N. Farhi, M. Goursat & J.-P. Quadrat

Introduction

Eigenvalue

The Growth Rate is not an Eigenvalue

Traffic Application

Bibliography

- **1** Free moving: When the density is small, $0 \le d \le \alpha$ with $\alpha = \frac{1}{4(1-\rho)}$, after a finite time, all the cars move freely.
- Saturation: When α ≤ d ≤ β with β = ½ r+1/2-ρ/(1-ρ) the junction is used at its maximal capacity without being bothered by downstream cars.
- **3** Recession: When $\beta < d < \gamma$ with $\gamma = \frac{r}{1-\rho}$ the crossing is fully occupied but cars sometimes cannot leave it because the roads where they want to go are crowded. When $\gamma < \beta$, on the interval $[\gamma, \beta]$ three eigenvalues exist. In this case the system is in fact blocked.
- **4** Blocking: When $\gamma \leq d \leq 1$, the road without priority is full of cars, no car can leave it and one car wants to enter.

Extension to Regular Towns

N. Farhi, M. Goursat & J.-P. Quadrat

Introduction Growth Rate Eigenvalue The Growth Rate is not an

Traffic Application

Bibliography

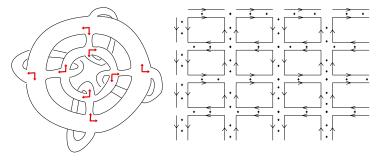


Figure: Roads on a torus of 4×2 streets with its authorized turn at junctions (left) and the asymptotic car repartition in the streets on a torus of 4×4 streets obtained by simulation.

Bibliography

Minplus Homogeneous Dynamical Systems

N. Farhi, M. Goursat & J.-P. Quadrat

Introduction

Growth Rate

Eigenvalue

The Growth Rate is not an Eigenvalue

Traffic Applicatior

Bibliography

- F. Baccelli, G. Cohen, G.J. Olsder, and J.P. Quadrat: *Synchronization and Linearity*, Wiley (1992).
- N. Farhi, M. Goursat, J.-P. Quadrat: Fundamental Traffic Diagram of Elementary Road Networks algebra and Petri net modeling, in Proceedings ECC-2007, Kos, Dec. 2007.
- N. Farhi: *Modélisation minplus et commande du trafic de villes régulière*, thesis dissertation, University Paris 1 Panthéon Sorbonne, 2008.
- M. Fukui, Y. Ishibashi: *Phase Diagram for the traffic on Two One-dimensional Roads with a Crossing*, Journal of the Physical Society of Japan, Vol. 65, N. 9, pp. 2793-2795, 1996.

S. Gaubert and J. Gunawerdena: *The Perron-Frobenius theorem for homogeneous monotone functions*, Transacton of AMS, Vol. 356, N. 12, pp. 4931-4950, 2004.

B. Hassenblatt and A. Katok: *A first course in Dynamics*, Cambridge University Press, 2003.