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Definitions

Minplus homogeneous dynamical systems:

xk+1 = f (xk), with f : Rn
min 7→ Rn

min : f (λ⊗ x) = λ⊗ f (x) .

Growth rate χ ∈ Rmin:

χ = lim
k

xk
i /k , ∀i = 1, · · · , n .

Eigenvalues λ ∈ Rmin:

∃x 6= ε : f (x) = λ⊗ x .
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Problems and Applications

Questions:

?∃χ, , ?∃λ, ?χ = λ .

TRUE when f is monotone and G(f ) strongly connected.

Traffic Applications (f homogeneous not monotone):
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Canonical form of Homogeneous Systems

The dynamics xk+1 = f (xk) is equivalent to{
xk+1
1 /xk

1 = f1(xk)/xk
1 ,

xk+1
i /xk+1

1 = fi (xk)/f1(xk), i = 2, · · · , n,

using the homogeneity it can be written :

Dynamics Canonical Form{
∆k = h(yk),

yk+1 = g(yk),

with ∆k , xk+1
1 /xk

1 , y
k
i−1 = xk

i /x
k
1 and gi−1 = fi/f1 for

i = 2, · · · , n.
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Growth rate

As soon as the yk belong to a bounded closed (compact) set
for all k , the set of measures:{

PN
y0 =

1
N

(
δy0 + δg(y0) + · · ·+ δgN−1(y0)

)
, N ∈ N

}
,

is tight. Therefore we can extract convergent subsequences
which converge towards invariant measures Qy0 .
Applying the ergodic theorem to the sequence (yk)k∈N:

Growth Rate Existence

χ =
1
N

(xN
1 −x0

1 ) = lim
N

1
N

(
N−1∑
k=0

h(yk)

)
=

∫
h(y)dQy0(y), Qy0 a.e.
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Remarks on Growth rate Existence

It would be very useful to prove that the limit exists for
sequence starting from y0.

1 A priori homogeneous systems have not the uniform
continuity property necessary to prove the convergence of
the Cesaro means for y0.

2 In the case where the compact set is finite, we can apply
the ergodicity results on Markov chains with a finite state
number to show the convergence of PN

y0 towards Qy0 which
proves the convergence of the Birkhoff average for the
sequence starting from y0.
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Non Everywhere Convergence of Birkhoff Averages

f : x ∈ T1 → 2x ∈ T1 with: x0 = 0.1
2
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Figure: Plot of S(n) with: S(n) , 1
n

∑n−1
k=0 xk .
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Eigenvalue of Homogeneous Systems

The eigenvalue problem a function f : Rn
min 7→ Rn

min can be
formulated as finding x ∈ Rn

min non zero, and λ ∈ Rmin such
that:

λ⊗ x = f (x) .

Since f is homogeneous, we can suppose without loss of
generality that if x exists then x1 6= ε and we have the:

Eigenvalue Canonical Form:{
λ = h(y) ,

y = g(y) ,

with yi−1 = xi/x1, h(y) = f1(x)/x1 and gi−1 = fi/f1 for
i = 2, · · · , n.
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Eigenvalue Existence

Eigenvector Existence

The existence of eigenvalue is reduced to the existence of the
fixed point of g which gives an eigenvector.

Standard Examples

1 f is a finite Markov chain transition operator.
2 f is affine in standard algebra with dim(ker(f ′ − Id )) = 1.
3 f is minplus linear.
4 f is a dynamic programming function associated to a

stochastic control problem.
5 f is a dynamic programming function associated to a

stochastic game problem.
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Affine Example with dim(ker(f ′ − Id)) = 1.

With standard notations we have to solve:

λ+ x = Mx + b, M1 = 1, Eigenvalue 1 simple .

Using the variable change z = Px with:

z =

[
x1
y

]
=


1 0 · · 0
−1 1 0 · 0
· · · · ·
−1 0 · · 1

 x .

The system λP1 + z = PMP−1z + Pb has a block triangular

form PMP−1 =

[
1 c
0 N

]
(thanks to the homogeneity M1 = 1),

N has not the eigenvalue 1 (since 1 is a simple eigenvalue of
PMP−1) and therefore g has a unique fixed point.



Minplus Ho-
mogeneous
Dynamical
Systems

N. Farhi, M.
Goursat &

J.-P.
Quadrat

Introduction

Growth Rate

Eigenvalue

The Growth
Rate is not
an
Eigenvalue

Traffic
Application

Bibliography

Tent Example

Let us consider the homogeneous system:{
xk+1
1 = xk

2 ,

xk+1
2 = (xk

2 )3/(xk
1 )2 ⊕ 2(xk

1 )2/xk
2 .

We have h(y) = y and g(y) = y2 ⊕ 2/y2 (g is the tent
transformation which is chaotic).

M

N

a

b c

dg(x)
g(x)

g(g(x))

1

2 3

4 5

6

M

N

g(x)

g(g(g(x)))

M

N

Figure: Tent transformation and its iterates.



Minplus Ho-
mogeneous
Dynamical
Systems

N. Farhi, M.
Goursat &

J.-P.
Quadrat

Introduction

Growth Rate

Eigenvalue

The Growth
Rate is not
an
Eigenvalue

Traffic
Application

Bibliography

χ 6= λ

The eigenvalues are λ = y solution of y = y2 ⊕ 2/y2 that is:

λ ∈
{
0,

2
3

}
.

1 Starting from y0 = 2
5 , the trajectory is periodic of period

2. The invariant measure is Qy0 = 1
2(δ 2

5
+ δ 6

5
) , therefore:

χ =
4
5
, Qy0 a.e.

2 The tent transformation admits the uniform law as
invariant measure, therefore:

χ =

∫ 1

0
ydy =

1
2
, a.e. for the Lebesgue measure.
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2 Circular Roads with 1 junction
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Figure: A junction with two circular roads cut in sections (top-right),
its Petri net simplified modeling (middle) and the precise modeling of
the junction (top left).
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Dynamics

The general Petri net equation:

min
p∈qin

ap +
∑
q∈pin

mpqqk−1 −
∑

q∈pout

qk

 = 0, ∀q ∈ Q, ∀k ,

does not define completely the dynamics.
We precise the dynamics by giving the turning probability (1/2)
and the right priority to enter in the junction.

qk+1
i = ai−1qk

i−1 ⊕ āiqk
i+1, i 6= 1, n, n + 1, n + m,

qk+1
n = ān

qk
1qk

n+1
qk
n+m

⊕ an−1qk
n−1 ,

qk+1
n+m = ān+m

qk
1qk

n+1

qk+1
n
⊕ an+m−1qk

n+m−1 ,

qk+1
1 = an

√
qk
nqk

n+m ⊕ ā1qk
2 ,

qk+1
n+1 = an+m

√
qk
nqk

n+m ⊕ ān+1qk
n+2 .
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Increasing trajectory property

Theorem

The trajectories of the states (qk
i )k∈N, starting from 0, are

nondecreasing for all i .

Proof by induction. For qn:

If qk+1
n = an−1qk

n−1

⇒ qk+1
n ≥ an−1qk−1

n−1 ≥ fn(qk−1) = qk
n .

If qk+1
n = ānqk

1q
k
n+1/q

k
n+m,

⇒ qk+1
n ≥ ānqk

nq
k
1q

k
n+1/ān+mqk−1

1 qk−1
n+1

since qk
n+m ≤ ān+mqk−1

1 qk−1
n+1/q

k
n

⇒ qk+1
n ≥ qk

n
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Distances between states stay bounded

Theorem

The distances between any pair of states stay bounded:

∃c1 : sup
k
|qk

i − qk
j | ≤ c1, ∀i , j .

Moreover:

∀T ,∃c2 : sup
k
|qk+T

i − qk
i | ≤ c2T , ∀i .
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Existence of the Growth Rate

Theorem

There exists an initial distribution on (q0
j /q

0
1)j=2,n+m, the

Kryloff Bogoljuboff invariant measure, such that the average
flow

χ = lim
k

qk
i /k , ∀i ,

exists almost everywhere.
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Eigenvalue Formula

The eigenvalue problem can be solved explicitly.

Theorem
The nonnegative eigenvalues λ are solutions of:

>

−λ,⊥


(1− ρ) d − λ, 1

4
− λ, r − (1− ρ) d − (2r − 1 + 2ρ)λ

ffff
= 0

with N = n + m, ρ = 1/N, r = m/N, d the car density.

N >> 1, r > 1/2

λ ' max
{
0, min

{
d ,

1
4
,
r − d
2r − 1

}}
.
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Difference Between Eigenvalue and Growth Rate

χ 
λ 

d 

1/4 

0 1 

Figure: The traffic fundamental diagram χ(d) when r = 5/6
(continuous line) obtained by simulation and its comparison with the
eigenvalue λ(d).



Minplus Ho-
mogeneous
Dynamical
Systems

N. Farhi, M.
Goursat &

J.-P.
Quadrat

Introduction

Growth Rate

Eigenvalue

The Growth
Rate is not
an
Eigenvalue

Traffic
Application

Bibliography

Phases

1 Free moving: When the density is small, 0 ≤ d ≤ α with
α = 1

4(1−ρ) , after a finite time, all the cars move freely.

2 Saturation: When α ≤ d ≤ β with β = 1
2

r+1/2−ρ
1−ρ the

junction is used at its maximal capacity without being
bothered by downstream cars.

3 Recession: When β < d < γ with γ = r
1−ρ the crossing is

fully occupied but cars sometimes cannot leave it because
the roads where they want to go are crowded. When
γ < β, on the interval [γ, β] three eigenvalues exist. In this
case the system is in fact blocked.

4 Blocking: When γ ≤ d ≤ 1, the road without priority is
full of cars, no car can leave it and one car wants to enter.
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Extension to Regular Towns
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Figure: Roads on a torus of 4× 2 streets with its authorized turn at
junctions (left) and the asymptotic car repartition in the streets on a
torus of 4× 4 streets obtained by simulation.
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