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Definitions
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B <l = f(x5), with Fi R, R FA®xX) =A@ f(x).

Quadrat
Introduction

Growth rate x € Rpin:

leilznx,-k/k, Vi=1,---,n.

Eigenvalues A € Rpin:

Ix#£e:f(x)=A®x.



Problems and Applications
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TRUE when f is monotone and G(f) strongly connected.

Introduction

Traffic Applications (f homogeneous not monotone):




Canonical form of Homogeneous Systems

Minplus Ho-
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Systems
Xik+1/x]l_(+1 = f;'(Xk)/fl(Xk)7 = 27 e, N,

using the homogeneity it can be written :

Growth Rate
Dynamics Canonical Form

{Ak = h(y¥),

yk = g(yh),

with AR £ xfH/xd yk = xK/xi and gi1 = £;/f; for
=2, ,n.



Growth rate

plsedill  As soon as the y* belong to a bounded closed (compact) set

mogeneous

Dynamical for all k, the set of measures:
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J-p {Py = N <5yo + 6g(y°) + -+ 5gN—1(y0)) , N e N} R
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is tight. Therefore we can extract convergent subsequences
Sl which converge towards invariant measures Q0.
Applying the ergodic theorem to the sequence (y*)yen:

Growth Rate Existence

x = 0 —xd) = lim 1 ( ) h(%)) — [ h0)dQe(y). Qo e



Remarks on Growth rate Existence
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It would be very useful to prove that the limit exists for
s sequence starting from y©.

Quadrat

@ A priori homogeneous systems have not the uniform

continuity property necessary to prove the convergence of
et R the Cesaro means for y°.

® In the case where the compact set is finite, we can apply
the ergodicity results on Markov chains with a finite state
number to show the convergence of PY towards Qyo which

proves the convergence of the Birkhofyf average for the
sequence starting from y°.



Non Everywhere Convergence of Birkhoff Averages
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Figure: Plot of S(n) with: S(n) £ 137~ Oxk.



Eigenvalue of Homogeneous Systems
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mogeneous The eigenvalue problem a function f : R
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that:

0 A®x = f(x).
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n n
min > R can be

non zero, and A € Rpyin such

Since f is homogeneous, we can suppose without loss of
generality that if x exists then x; # ¢ and we have the:

Eigenvalue Eigenvalue Canonical Form:

h

with yi—1 = x;j/x1, h(y) = fi(x)/x1 and gi_1 = f;/f for
i=2--,n

h(y),
g(y),




Eigenvalue Existence
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The existence of eigenvalue is reduced to the existence of the
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Standard Examples

@ f is a finite Markov chain transition operator.
@ f is affine in standard algebra with dim(ker(f' — 1)) = 1.

®© f is minplus linear.

Eigenvalue

@ f is a dynamic programming function associated to a
stochastic control problem.

@ f is a dynamic programming function associated to a
stochastic game problem.



Affine Example with dim(ker(f' — I4)) = 1.
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A+ x=Mx-+b, M1 =1, Eigenvalue 1 simple .

Quadrat Using the variable change z = Px with:
1 0 0
|:X1:| -1 1 0 0
Eigenvalue zZ = == X .
y .
-1 0 1

The system AP1 + z = PMP~'z + Pb has a block triangular

form PMP~1 = [é lil] (thanks to the homogeneity M1 = 1),

N has not the eigenvalue 1 (since 1 is a simple eigenvalue of
PMP~1) and therefore g has a unique fixed point.
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Tent Example

Let us consider the homogeneous system:

5= 08)2 /() @204 /x5

We have h(y) = y and g(y) = y?> © 2/y? (g is the te
transformation which is chaotic).

nt

9(gl) b/ s (9(gx)h4
'S

=

[

Figure: Tent transformation and its iterates.
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The eigenvalues are A = y solution of y = y? @ 2/y? that is:

2
redo ot
6{’3}

@ Starting from y0 = % the trajectory is periodic of period
2. The invariant measure is Qo = %(52 + ds) , therefore:
5 5

4
X=g Qyo ae.

® The tent transformation admits the uniform law as
invariant measure, therefore:

1
1
X = / ydy = 5 ae for the Lebesgue measure.
0
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Traffic
Application

2 Circular Roads with 1 junction

Figure: A junction with two circular roads cut in sections (top-right),
its Petri net simplified modeling (middle) and the precise modeling of
the junction (top left).




Dynamics

R The general Petri net equation:
mogeneous

Dynamical

Systems

min ¢ ap + Z mpqqk*:l — Z g% =0, Vg e Q, Vk,

Peq™ qui" qepout
Quadrat

does not define completely the dynamics.
We precise the dynamics by giving the turning probability (1/2)
and the right priority to enter in the junction.

k+1 _ k 5. 4k H
q; - ai—lq,’_l@aiqi_t,_la / 7é 17n7n+1an+ma
k ok
k+1 _ 5 919 k
qn+ =3, lkn+1 @ an-19% |,
9n+m
Traffic k41 — q: q k
Application qnj:m = dn+m ;ki{l S an+m—1qn+m71 )
n

g = an/qkqk, . @ 3145

k+1 __ k 4k 5 k
dp+1 = 9n+tm \/ 9n9nim S an+19p42 -




Increasing trajectory property
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If gkt = 2,19k,
= qur:l > a,_ 1qn I'>f (qk_l) = q,’; .

k+1 _ 5 .k k k
Trafi If dn = anq; qn+1/qn+m7
o iI:::a ion k+1 = k _k _k = 1 _k—1
ATl = g5 > 3,081 Ah 11/ Bt m T et

. - k—1 _k—1/ k
since q,,+m < antm9; Gpi1/qn

k+1 k
= gyt > gy



Distances between states stay bounded
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Ja :suplgi — gf| < a1, Vi,
k
Moreover:

i

VT,dc : sup|qk+T — q,k| < T,Vi.
k

Traffic
Application



Existence of the Growth Rate
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There exists an initial distribution on (qJQ /@)j=2.n4+m., the
Kryloff Bogoljuboff invariant measure, such that the average
flow

x = limaj/k, Vi,

exists almost everywhere.

Traffic
Application



Eigenvalue Formula
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T{—)\,J_{(l—p)d—/\,%—)\,r—(l—p)d—(2r—1+2p))\}}:O
with N=n+m, p=1/N, r = m/N, d the car density.
N>>1 r>1/2

_ 1 r—d
)\_max{O, mln{d,z,2r_1}}.
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Difference Between Eigenvalue and Growth Rate
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0
Traffic
Application Figure: The traffic fundamental diagram x(d) when r =5/6
(continuous line) obtained by simulation and its comparison with the

eigenvalue A(d).



Phases
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RS @ Free moving: When the density is small, 0 < d < « with
a= ﬁ, after a finite time, all the cars move freely.
Quadrat @® Saturation: When o < d < 3 with 3 = %erl/# the

junction is used at its maximal capacity without being
bothered by downstream cars.

© Recession: When g < d < v with v = lip the crossing is
fully occupied but cars sometimes cannot leave it because
the roads where they want to go are crowded. When

v < (3, on the interval [y, (] three eigenvalues exist. In this

Traffi P
Application case the system is in fact blocked.

O Blocking: When v < d < 1, the road without priority is
full of cars, no car can leave it and one car wants to enter.



Extension to Regular Towns
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Traffic Figure: Roads on a torus of 4 x 2 streets with its authorized turn at
Aol junctions (left) and the asymptotic car repartition in the streets on a
torus of 4 x 4 streets obtained by simulation.
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