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Abstract

We show that Continuous Timed Petri Nets (CTPN) can be mod-
eled by generalized polynomial recurrent equations in the (min,+)
semiring. We establish a correspondence between CTPN and Markov
decision processes. We survey the basic system theoretical results avail-
able: behavioral (input-output) properties, algebraic representations,
asymptotic regime. A particular attention is paid to the subclass of
stable systems (with asymptotic linear growth).

1 Introduction

The fact that a subclass of Discrete Event Systems equations write linearly
in the (min,+) or in the (max,+) semiring is now almost classical [9, 2].
The (min,+) linearity allows the presence of synchronization and saturation
features but unfortunately prohibits the modeling of many interesting phe-
nomena such as “birth” and “death” processes (multiplication of tokens) and
concurrency. The purpose of this paper is to show that after some simplifica-
tions, these additional features can be represented by polynomial recurrences
in the (min,+) semiring.

We introduce a fluid analogue of general Timed Petri Nets (in which
the quantities of tokens are real numbers), called Continuous Timed Petri
Nets (CTPN). We show that, assuming a stationary routing policy, the
counter variables of a CTPN satisfy recurrent equations involving the op-
erators min,+,×. We interpret CTPN equations as dynamic programming
equations of classical Markov Decision Problems: CTPN can be seen as the
dedicated hardware executing the value iteration.

We set up a hierarchy of CTPN which mirrors the natural hierarchy of
optimization problems (deterministic vs. stochastic, discounted vs. ergodic).
For each level and sublevel of this hierarchy, we recall or introduce the required
algebraic and analytic tools, we provide input-output characterizations and
give asymptotic results.

The paper is organized as follows. In §2, we give the dynamic equations
satisfied by general Petri Nets under the earliest firing rule. The counter
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equations given here are much more tractable than the dater equations ob-
tained previously [1]. Similar equations have been introduced by Baccelli et
al. [3] in a stochastic context.

In §3, we introduce the continuous analogue of Timed Petri Nets. We
discuss various natural routing policies, and show that they lead to simple
recurrent equations.

In §4, we present the first level of the hierarchy: Continuous Timed Event
Graphs with Multipliers (CTEGM), characterized by the absence of routing
decisions. We single out several interesting subclasses. 1. Ordinary Timed
Event Graphs (TEG) are probably the simplest and best understood class of
Timed Discrete Event Systems. TEG are exactly causal finite dimensional
recurrent linear systems over the (min,+) semiring. They correspond to de-
terministic decision problems with finite state and additive undiscounted cost.
Their asymptotic theory is mere translation of the (min,+) spectral theory.
Their input-output relations are inf-convolutions with (min,+) rational se-
quences. 2. We introduce the subclass of CTEGM with potential, which
reduce to TEG after a change of units (they are linearized by a non linear
change of variable in the (min,+) semiring). The importance and tractabil-
ity of the (non continuous) version of these systems, called expansible [23]
was first recognized by Munier. 3. α-discounted TEG are the TEG-analogue
of uniformly discounted deterministic optimization problems. They repre-
sent systems with constant birth (or death) rate α. 4. We consider gen-
eral CTEGM. Their input-output relations are affine convolutions (minima
of affine functions of the delayed input). The transfer operators are rational
series with coefficients in the semiring of piecewise affine concave monotone
maps. To CTEGM correspond deterministic decision problems where the ac-
tualization rate (and not only the transition cost) is controlled. Last, certain
routing policies, called injective, reduce CTPN to CTEGM. Related resource
optimization problems (optimizing the allocation of the initial marking) are
discussed in §4.7.

In §5, we examine the second level of the hierarchy: general CTPN, which
correspond to stochastic decision problems. Algebraically, CTPN are (min,+)
polynomial systems whose outputs admit Volterra series expansions. They
are characterized by simple behavioral properties (essentially monotonicity
and concavity). We focus on the following tractable subclasses. 1. Undis-
counted TPN are the Petri Net analogue of stochastic control problems with
undiscounted (ergodic) cost. They are characterized by a structural condition
(as many input as output arcs at each place) plus a compatibility condition
on routings. Undiscounted TPN admit an asymptotically linear growth. The
asymptotic behavior can be obtained by transferring the results known for the
value iteration: we give a “critical circuit” formula similar to the TEG case
(the circuits have to be replaced by recurrent classes of stationary policies).
2. Similar results exist for TPN with potential (obtained from undiscounted
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TPN by diagonal change of variable). 3. CTPN with fixed birth/death rate
α correspond to the well studied class of discounted Dynamic Programming
recurrences.

2 Recurrent Equations of Timed Petri Nets

Figure 1: Notation for Petri Nets. P = {p1, p2}, Q = {q1, . . . , q6}, pout
1 =

{q1, q4, q5}, pin
1 = {q1, q2, q3}, pout

2 = {q5, q6}, Mq5p1 = 2, Mp1q2 = 3, mp1 = 3,
mp2 = 1.

Definition 2.1 (TPNM). A Timed Petri Net with Multipliers (TPNM) is
a valued bipartite graph given by a 5-tuple N = (P ,Q,M,m, τ).

1. The finite set P is called the set of places. A place may contain tokens
which travel from place to place according to a firing process described later
on.

2. The finite set Q is called the set of transitions. A transition may fire.
When it fires, it consumes and produces tokens.

3. M ∈ NP×Q∪Q×P . Mpq (resp. Mqp) gives the number of edges from tran-
sition q to place p (resp. from place p to transition q). In particular, the
zero value for M corresponds to the absence of edge.

4. m ∈ NP : mp denotes the number of tokens being initially in place p (initial
marking).

5. τ ∈ NP : τp gives the minimal time a token must spend in place p before
becoming available for consumption by downstream transitions1. It will be
called holding time of the place throughout this paper.

We denote by rout the set of vertices (places or transitions) downstream a
vertex r and rin the set of vertices upstream r. Formally,

rout = {s | Msr 6= 0}, rin = {s | Mrs 6= 0} .

In order to specify a unique behavior of the system, we equip TPN with
routing policies.

1Without loss of modeling power, the firing of transitions is supposed to be instanta-
neous (i.e. it involves no delay in consuming and producing tokens).

p1

p2

q1 q2 q3

q5 q6 q4
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Definition 2.2 (Routing Policy). A routing policy at place p is a family
{mqp,Π

p
qq′}q∈pout,q′∈pin , where,

1. mp =
∑

q∈pout mqp is an integer partition of the initial marking. mqp tells
the number of tokens of the initial marking reserved for transition q.

2. {Πp
qq′}q∈pout is a partition of the flow from q′. That is, Πp

qq′(n) tells the num-
ber of tokens routed from q′ to q via p among the first n ones. More for-
mally, Πp

qq′ are nondecreasing maps N → N such that ∀n,
∑

q∈pout Πp
qq′(n) =

n.

A routing policy for the net is a collection of routing policies for places.

Then, the earliest behavior of the system is defined as follows. As soon
as a token enters a place, it is reserved for the firing of a given downstream
transition according to the routing policy. A transition q must fire as soon as
all the places p upstream q contain enough tokens (Mqp) reserved for transition
q and having spent at least τp units of time in place p (by convention, the
tokens of the initial marking are present since time −∞, so that they are
immediately available at time 0). When the transition fires, it consumes
the corresponding upstream tokens and immediately produces an amount of
tokens equal to Mpq in each place p downstream q.

We next give the dynamic equations satisfied by the Timed Petri Net. We
associate counter functions to nodes and arcs of the graph: Zp(t) denotes
the cumulated number of tokens which have entered place p up to time t,
including the initial marking; Zq(t) denotes the number of firings of transition
q having occurred up to time t; Wpq(t) denotes the cumulated number of
tokens arrived at place p from transition q up to time t; Wqp(t) denotes the
cumulated number of tokens arrived at place p up to time t (including the
initial marking) reserved for the firing of transition q. We introduce the
notation

µpq
def
= Mpq, µqp

def
= M−1

qp ,

and we set bxc = sup{n ∈ Z | n ≤ x}.

Assertion 2.3. The counter variables of a Timed Petri Net under the earliest
firing rule satisfy the following equations2

Zq(t) = min
p∈qin

bµqpWqp(t− τp)c , (2.1a)

Wpq(t) = µpqZq(t) , (2.1b)

Zp(t) = mp +
∑

q∈pin
Wpq(t) , (2.1c)

2We adopt the convention
∑

q∈∅() = 0, so that (2.1c) becomes Zp(t) = mp when pin = ∅.
The transitions q such that qin = ∅ will be considered as input transitions whose behavior
is given externally. Thus, Eq. (2.1a) should be ignored whenever q has no predecessors.



Algebraic System Analysis of Timed Petri Nets 5

Wqp = mqp +
∑

q′∈pin
Πp
qq′(Wpq′) . (2.1d)

We deduce from (2.1) the transition-to-transition equation

Zq(t) = min
p∈qin

⌊
µqp

(
mqp +

∑

q′∈pin
Πp
qq′

(
µpq′Zq′(t− τp)

))⌋
. (2.2)

If τp = 0 for some places, this equation becomes implicit and we may have
difficulties in proving the existence of a finite solution. We say that the
TPN is explicit if there is no circuits containing only places with zero holding
times. This ensures the uniqueness of the solution of (2.1) and (2.2) under
any routing policy Π.

Input-Output Partition We partition the set of transitions Q = U∪X∪Y
where U is the set of transitions with no predecessors (input transitions), Y
is the set of transitions with no successors (output transitions) and X =
Q \ (U ∪ Y). We denote by u (resp. x, y) the vector of input (resp. state,
output) counters Zq, q ∈ U (resp. X , Y). Throughout the paper, we will study
the input-output behavior of the system. That is, we look for the minimal
trajectory (x, y) generated by the input history u(t), t ∈ Z. This encompasses
the autonomous regime traditionally considered in the Petri Net literature,
when the system is frozen at an initial condition Zq(t) = vq ∈ R for negative
t, and evolves freely according to the dynamics (2.1) for t ≥ 0. This can be
obtained as a specialization of the input-output case by adjoining an input
transition q′ upstream each original transition q, setting uq′(t) = vq for t < 0,
uq′(t) = +∞ otherwise.

3 Modeling of Continuous Timed Petri Nets

We shall address the continuous version of TPN (in which the number of
tokens are real numbers instead of integers). Such continuous models occur
naturally when fluids rather than tokens flow in networks (see [2, §1.2.7],[24]
for an elementary example). They also arise as approximation of (discrete)
Petri Nets since they provide an upper bound for the real behavior.

A continuous TPN (CTPN) is defined as a TPN, but the marking m, the
multipliers M and the counter functions are real-valued (the multipliers must
be nonnegative: Mrs ∈ R+). This allows one to define some simple stationary
routing policies. We shall single out three classes of policies.

General Stationary Routing A stationary routing policy is of the form
Πp
qq′(n) = ρpqq′ × n for some constants ρpqq′ ≥ 0 such that for all q′ ∈ pin,
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∑
q∈pout ρ

p
qq′ = 1 That is, the flow from q′ at place p goes to q with proportion

ρpqq′ . The counter functions of a CTPN satisfy the following equations

Zq(t) = min
p∈qin

µqpWqp(t− τp) , (3.1a)

Wqp(t) = mqp +
∑

q′∈pin

ρpqq′Wpq′(t) , (3.1b)

together with (2.1c), (2.1b). Eliminating W , we get a transition-to-transition
equation

Zq(t) = min
p∈qin


µqpmqp +

∑

q′∈pin
µqpρ

p
qq′µpq′Zq′(t− τp)


 . (3.2)

Dually, an equation involving only the variables Wqp can be obtained:

Wqp = mqp +
∑

q′∈pin
min

p′∈(q′)in

(
ρpqq′µpq′µq′p′Wq′p′(t− τp′)

)
. (3.3)

The following special cases of stationary routing are worth mentioning.

Origin Independent Routing When the routing at place p does not take
into account the origin of the token but only its numbering, we get the con-
dition

∀p, q, ∀q′, q′′ ∈ pin, ρpqq′ = ρpqq′′, ρpqq′mp = mqp . (3.4)

We shorten ρpqq′ to ρpq. The dynamics of the system (3.1) can be rewritten
with the aggregated variables Zp (instead of Wqp):

Zq(t) = min
p∈qin

µqpρ
p
qZp(t− τp) , (3.5a)

Zp(t) = mp +
∑

q∈pin
µpqZq . (3.5b)

Such routing policies depending only on the numbering of tokens (and leading
to similar equations) have been studied by Baccelli et al. in a stochastic
context [3]. We note that when τp ≡ 1, (3.5) reads as the coupling of a
conventional linear system with a (min,×) linear system, namely3

ZQ(t) = µ′QP ⊗ ZP(t− 1) , (3.6)

ZP(t) = m + µPQZQ(t) , (3.7)

where (A⊗x)i =
⊕

j Aij⊗xj = minj Aijxj is the matrix product of the dioid4

Rmin,×
def
= (R+∗ ∪ {+∞},min,×).

Example 3.1. The origin independent routing ρp5q3 = ρp5q4 = 1/2 reduces the
CTPN in Fig 2a to that of Fig 2d.

3We denote by ZQ (resp. ZP) restriction of Z to transitions (resp. to places). The
convention for µpq is similar. We have set (µ′QP)qp = ρpqµqp.

4A dioid [9, 2] is a semiring whose addition is idempotent: a⊕ a = a.
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Figure 2: A Balanced Petri Net under various Routing Policies

Injective Routing We say that the routing function ρp at place p is injec-
tive if there is a map f p : pout → pin such that

∀q, ρpqq′ 6= 0 ⇒ q′ = f p(q) . (3.8)

That is, all the tokens routed to q at place p come for a single transition
f(q). Such routings occur frequently when tokens correspond to resources
(e.g. pallets) which follow some well defined physical routes. An injective
routing exists iff5 |pout| ≥ |pin|. Indeed, the following stronger condition is
often satisfied in practice (e.g. in Fig. 2a).

Definition 3.2 (Balanced TPN). A TPN is balanced if ∀p, |p|out = |p|in.

In this particular case, we shall speak of bijective routing policies (since
f p becomes a bijection pout → pin). We shall see later on that injective and
bijective routing policies lead to tractable classes of systems.

4 Timed Event Graphs and (min,+) Linear

Systems

4.1 Ordinary and Generalized Timed Event Graphs

Definition 4.1 (Timed Event Graphs). A Continuous Timed Event
Graph with Multipliers (CTEGM) is a CTPN such that there is exactly one

5We denote by |X| the cardinal of a set X.

(b)

(c)

(a)

(d)

Marking mq4 p 5Marking mq3 p5

Marking m p 5

f p
5(q4 ) =

q1

f p
5(q3 ) =

q2

q3

p3 p1 p2 p4

p3 p1 p5 p2 p4

q4

q1 q2

q1 q2

q3 q4

p3 p1 p2 p4

q1 q2

q3 q4

p3 p1 p2 p4

q1 q2

q3 q4

f p 5 (q4 ) = q2

f p 5 (q3 ) = q1

Origin  independent  routing

Bijective routing

Bijective routing
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transition upstream and one transition downstream each place. An (ordi-
nary) Continuous Timed Event Graph (CTEG) is a CTEGM such that all
arcs have multiplier one: Mpq,Mqp ∈ {0, 1}. More generally, we define the
place multipliers6

αp
def
= µpoutpµppin . (4.1)

A (rate α)-CTEG is a CTEGM with unit holding times and constant
place multipliers. A CTEGM admits a potential if there exists a vector
v ∈ (R+∗)Q∪P (potential) such that

∀r, s ∈ Q ∪ P, r ∈ sout ⇒ vr = µrsvs . (4.2)

We set

νp
def
= µpoutpmp . (4.3)

Assertion 4.2. The dynamics of a CTEGM writes

Zq(t) = min
p∈qin

(
νp + αpZpin(t− τp)

)
. (4.4a)

We have the following specializations:

Zq(t) = min
p∈qin

(
νp + Zpin(t− τp)

)
(TEG case), (4.4b)

Zq(t) = min
p∈qin

(
νp + αZpin(t− 1)

)
(rate α case), (4.4c)

Zq(t) = vq min
p∈qin

(
v−1
p mp + v−1

pinZpin(t− τp)
)

(Potential case). (4.4d)

The last equation shows that CTEGM with potential reduces to ordinary
CTEG after the diagonal change of variable Zq = vqZ

′
q. This change of

variables should be interpreted as a change of units (vq firings of transition q
being counted as a single one).

Example 4.3. If one mixes white and red paints in equal proportions to pro-
duce pink paint, the main concern is to say that with 3 liters of red for a
single liter of white, there is 2 liters of red which are useless (that is, the min
is the appropriate operator) but then 2 liters of pink can be produced, hence
the right thing to do is to count pink paint by pairs of liters.

Theorem 4.4. CTPN under injective routing policies reduce to CTEGM.
Balanced CTPN with unit multipliers reduce to (ordinary) TEG.

6Since pout and pin are singletons, the notation will be used to designate their single
members.
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Proof. Define the new set of places P ′ = Q× P, with the incidence relation
qin = {(qp) | p ∈ pin}, (qp)in = fp(q). Then, the dynamics (3.2) reduce to
(4.4a), with αqp = µqpµpfp(q), The specialization to the TEG case is immedi-
ate.

Example 4.5. The Petri Net of Figure 2a admits two possible bijective routing
policies at place p5 which lead to the two Timed Event Graphs of Fig. 2b
and 2c respectively.

4.2 Dynamic Programming Interpretation of CTEGM

We exhibit a correspondence between the above classes of Event Graphs and
classical deterministic decision problems.

Given a CTEGM, we consider the discrete time controlled process qn over
an horizon t with

1. finite state space Q;

2. set of admissible control histories Pad = {p1, . . . , pt | ∀n, pn ∈ qin
n };

3. backward dynamics qn−1 = pin
n where pn ∈ qin

n .

In other words, the controlled process follows the edges of the net with the
reverse orientation, backward in time. The control at state (transition) q con-
sists in choosing a place p upstream q, which leads to the (unique) transition
q′ upstream p.

We shall consider the following 3 deterministic cost structures.

Additive

J add(p, t) = Z(0)q0 +

t∑

n=1

νpn . (4.5)

Note that the initial cost Z(0) coincides with the initial value of the counter
function of the CTEGM.

Additive with Constant Discount Rate

Jdisc(p, t) = αtZ(0)q0 +

t∑

n=1

αt−nνpn . (4.6)
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Additive with Controlled Discount Rate

Jc-disc(p, t) =

(
t∏

j=1

αpj

)
Z(0)q0 +

t∑

n=1

(
t∏

j=n+1

αpj

)
νpn . (4.7)

The value function associated with any of the above cost functions J is the
map

Zq(t) = min
p∈Pad, qt=q

J(p, t) .

Theorem 4.6. When τp ≡ 1,

1. The counter of a CTEG coincides with the value function for the additive
cost Jadd.

2. The counter of a (rate α)-CTEG coincides with the value function for the
discounted cost Jdisc.

3. The counter of a CTEGM coincides with the value function for the cost
with controlled discount rate Jc-disc.

Remark 4.7. Minimizing J c-disc is known as a problem of shortest path with
gains. See [17, Chap. 3, §7] and the references therein.

4.3 Operatorial Representation of CTEGM

We introduce the set of signals S def
= (R∪ {+∞})Z to represent counter func-

tions (although this will be the case in most applications, we do not require
the signals to be either positive valued or nondecreasing).

Definition 4.8. An operator f : S → S is

1. additive if it satisfies the min–superposition property

f(min(x, x′)) = min(f (x), f(x′)) ; (4.8)

2. linear if it is additive and satisfies the homogeneity property

f(λ + x) = λ + f (x) .

Of course, “linear” refers to the (min,+) dioid Rmin
def
= (R∪{+∞},min,+).

Throughout the paper, we shall freely use the dioid notation a⊕b for min(a, b),
a ⊗ b for a + b, ε = +∞ for the zero element, e = 0 for the unit.

The following 3 families of operators play a central role in CTEGM:

γν : γνx(t)
def
= x(t) + ν (shift in counting)

δτ : δτx(t)
def
= x(t− τ) (shift in dating)

µ : µx(t)
def
= µ× x(t) (scaling),

(4.9)
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where ν ∈ R, τ ∈ N, µ ∈ R+∗. We note that γ and δ are linear while µ is only
additive. We have the commutation rules:

γνδτ = δτγν , (4.10a)

µδτ = δτµ , (4.10b)

µγν = γµνµ . (4.10c)

Additive operators equipped with pointwise min and composition form an
idempotent semiring, that we denote by O. The following subsemirings of O
are central.

1. The semiring generated by γν ; ν ∈ R is isomorphic to Rmin via the identi-
fication of ν to γν .

2. The semiring generated by γν , δτ ; ν ∈ R, τ ∈ R is isomorphic to the semir-
ing of polynomials in the indeterminate δ, Rmin[δ] (via the same identifi-
cation).

3. The semiring generated by γν ; ν ∈ R+ and by the powers of αδ, where α is
a given and fixed value of µ, will be denoted by Rmin[αδ]. It is a particular
instance of a classical structure in difference algebra: Ore polynomials7

[26, 19, 13].

4. The semiring generated by γν, µ; ν ∈ R, µ ∈ R+∗ is isomorphic to the
semiring of nondecreasing concave piecewise affine maps R ∪ {+∞} →
R ∪ {+∞}, that we denote by Amin. A generic element in Amin is a map
p =

⊕k
i=1 µiγ

νi ,

p(x) = min
1≤i≤k

(νi + µix) .

5. Finally, the semiring generated by γν , δτ , µ; ν ∈ R, τ ∈ N, µ ∈ R+∗ is
isomorphic to the semiring of polynomials Amin[δ] .

We extend the operatorial notation to matrices by setting for A ∈ On×p and
x ∈ Sp,

(Ax)i
def
= min

j
Aij(xj) . (4.11)

7We recall that given a semiring S equipped with an automorphism α : S → S, the
semiring of Ore polynomials in the indeterminate X, denoted by S[X;α], is the set of
finite formal sums

∑
n snX

n (all but a finite number of sn are zero), equipped with the

usual componentwise sum (s ⊕ s′)n
def
= sn ⊕ s′n and the skew Cauchy product (s ⊗ s′)n

def
=⊕

p+q=n sp ⊗ αp(sq). This product is determined by the rule Xa = α(a)X for all a ∈ S.

Identifying X with αδ and setting α(ν)
def
= α× ν for ν ∈ Rmin, we see that Xν = α(ν)X is

nothing but the rule αδγν = γαναδ which follows from (4.10).
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Note that for operator matrices A,A′, B and vectors of counters x, x′ of ap-
propriate sizes

(AB)x = A(Bx), (A⊕ A′)x = Ax ⊕A′x, A(x⊕ x′) = Ax⊕ Ax′ .,

More formally, vectors of counter functions are a left semimodule under the
action of additive matrix operators.

Theorem 4.9. The counter equations of a CTEGM write

x = Ax⊕ Bu, y = Cx ⊕Du (4.12)

where A,B,C,D are matrices with entries in O. More precisely,

1. the entries of A,B,C,D belong to Rmin[δ] for an ordinary CTEG;

2. the entries belong to Rmin[αδ] for a (rate α)-CTEG;

3. the entries belong to Amin[δ] for a general CTEGM.

Theorem 4.10 (Convolution Representation). An explicit SISO8

CTEGM admits an input output relation of the form

y(t) = inf
τ∈N

[h(τ) + u(t− τ )] (Ordinary CTEG) (4.13)

y(t) = vy inf
τ∈N

[h(τ ) + v−1
u u(t− τ)] (CTEG with potential) (4.14)

y(t) = inf
τ∈N

[h(τ) + ατu(t− τ )] (CTEG with rate α) (4.15)

y(t) = inf
i∈I

[νi + µiu(t− τi)] (General Case) (4.16)

where h is a map N → R ∪ {+∞}, vu, vy ∈ R+∗, and where the family
{νi ∈ R, µi ∈ R+∗, τi ∈ N} is such that there is only finitely many i such that
τi = τ for any τ ∈ N.

We postpone the proof: these representation results will appear as conse-
quences of the more general behavioral properties of CTEGM operators given
in §4.4.

Theorem 4.9 established a connection between various algebras of polyno-
mial type and various classes of Event Graphs. Theorem 4.10 now establishes
a similar connection between input-output representations and certain formal
series algebras. Let us recall that given a semiring K and an indeterminate
δ, we denote by K[[δ]] the semiring of series with coefficients in K (set of for-
mal sums

⊕
t∈Nhtδ

t with ht ∈ K, equipped with pointwise sum and Cauchy
product). The generic series of Amin[[δ]] writes

h =
⊕

τ∈N
hτδ

τ =
⊕

τ

(
⊕

i∈Iτ

µiτγ
νiτ

)
δτ

8Single Input-Single Output. The extension to the Multiple Inputs Multiple Outputs
(MIMO) case is immediate.
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where for all τ , Iτ is finite. Such series act naturally on S by interpreting the
indeterminate δ as the shift operator

hu(t) =
⊕

τ∈N
hτ(u(t− τ)) = inf

τ∈N
min
i∈Iτ

(νiτ + µiτu(t− τ )) .

Theorem 4.10 asserts that (i)- CTEGM operators correspond to the action of
Amin[[δ]] on counter functions, (ii)- CTEG operators correspond to the action
of Rmin[[δ]], (iii)- α-CTEG operators correspond to the action of the dioid
of Ore series Rmin[[αδ]] (defined as Ore polynomials, without the finiteness
condition).

4.4 Behavioral Characterizations of CTEGM

Theorem 4.11. The input-output map H : u → y of a SISO explicit
CTEGM satisfies the following properties.

1. Stationarity. Hδτ = δτH.

2. Causality. u(t) = v(t), ∀t ≤ τ ⇒ ∀t ≤ τ, Hu(t) = Hv(t).

3. Additivity. H(min(u, v)) = min(Hu,Hv).

4. Scott continuity. For any filtered9 family {ui}i∈I, H(inf i∈I ui) = inf i∈I Hui.

5. Concavity. H(
∑n

i=1 λiui) ≥
∑

i λiHui, ∀λi ≥ 0,
∑

i λi = 1.

A CTEG with rate α satisfies the additional property

6. α-homogeneity. For all constant λ, H(λαt + u) = λαt + Hu, with an
obvious convention10.

A CTEGM with potential satisfies the alternative additional property11

7. (vu, vy)-homogeneity. For all λ ∈ R, H(λvu + u) = λvy +H(u).

Note that the specialization of the α-homogeneity to α = 1 gives the
standard homogeneity property λ+ u→ λ + y. So does the specialization of
the (vu, vy)-homogeneity to the case of constant potential v.

9A family is filtered if any finite subfamily admits a lower bound in the family. Note that
the Scott continuity together with additivity is equivalent to the preservation of arbitrary
inf: H(infi ui) = inf iHui for an arbitrary family. The Scott topology is presented in details
in [16]. What we call here Scott continuity is in fact Scott continuity with respect to the
algebraic order ¹ of the (min,+) semiring, defined by a ¹ b ⇐⇒ a ⊕ b = b ( which is
reversed with respect to natural order).

10αt denotes the map t 7→ αt.
11λ+ u denotes the signal t 7→ λ+ u(t).
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Proof. The additivity of H is an immediate consequence of the additivity of
A,B,C,D and the uniqueness of the solution of x = Ax⊕Bu, y = Cx⊕Du.
The other properties can be proved along the same lines by transferring to H
the properties valid for A,B,C,D.

The following converse theorem shows that the properties listed are accurate.

Theorem 4.12. A map H which satisfies properties 1–5 in Theorem 4.11
is a nonincreasing limit of CTEGM operators12. An operator which satisfies
1–6 (resp. 1–5,7) is a nonincreasing limit of rate α CTEG operators (resp.
with potential v).

The main point of the proof consists in the following general “convolution”
representation lemma for additive continuous stationary operators.

Lemma 4.13. Let D denote a complete13 dioid, H : DZ → DZ. The fol-
lowing assertions are equivalent. 1. H is stationary, causal, additive, and
Scott continuous; 2. there exists a family of additive Scott continuous maps
hτ ,D → D, τ ∈ N such that

Hu(t) =
⊕

τ∈N
hτ (u(t− τ )) . (4.17)

Proof. Clearly, 2⇒1. Conversely. We introduce the Dirac function

e : Z → D, e(t) =

{
e if t = 0

ε otherwise.

We have the decomposition of an arbitrary signal u ∈ DZ on the basis of
shifted Dirac functions:

u =
⊕

τ∈Z
u(τ )δτe .

The additivity, stationarity and Scott continuity assumptions yield

Hu =
⊕

τ∈Z
δτH(u(τ )e) . (4.18)

Now, let us decompose the output corresponding to u = xe (with x ∈ D) on
the basis {δτe}τ∈Z:

H(xe) =
⊕

τ∈Z
hτ (x)δτe .

12I.e. there exists a nonincreasing sequence Hi ≥ Hi+1, i ∈ N of input-output operators
of CTEGM such that H = infi∈I Hi.

13A dioid D is complete if an arbitrary subset admits a least upper bound (for the order
a ¹ b ⇐⇒ a⊕ b = b) and if the product is Scott continuous.
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This together with (4.18) gives

Hu =
⊕

τ,τ ′∈Z
hτ (u(τ))δτ+τ

′
e

i.e.

Hu(t) =
⊕

τ∈Z
hτ (u(t− τ )) .

The sum can be obviously restricted to τ ∈ N due to causality. The additivity
and continuity of hτ are immediate.

To complete the proof of Theorem 4.12, it suffices to observe that the addi-
tivity, concavity, and potential properties, valid for H, transfer to each hτ .
Then, the concave monotone real valued map hτ admits a representation as
a denumerable infimum of increasing affine functions:

hτ (x) = inf
n∈N

(νnτ + µnτx), where νn ∈ R ∪ {+∞}, µnτ > 0 . (4.19)

The operatorHn =
⊕

τ≤n,k≤n γ
νkτµkτδ

τ arises from a CTEGM operator (since
it obtained by a finite number of parallel/series composition of elementary
γ, µ, δ operators). It follows from (4.17)–(4.19) that limn ↓ Hnu = Hu. This
proves the first assertion of Theorem 4.12. The α-rate and potential special
cases are immediate.

Finally, we note that the construction of the above proof explicitly yields
the convolution representations stated in Theorem 4.10, with the exception
of the additional finiteness condition that hτ is a finite sum of γνiµi. This
last result stems from the rationality features that we next introduce.

4.5 Rational Operators

A natural problem is to characterize the subclass of series of Amin[[δ]] which
arise as transfer operators of CTEGM (called transfer series). We recall
that given a semiring of formal series K[[δ]], the semiring of rational series
[4] denoted by Krat[[δ]] is the least subsemiring containing polynomials and

stable by the operation ⊕,⊗, ∗, where a∗
def
=

⊕
n∈Na

n is defined only on series
with zero constant coefficient. An immediate fixed-point argument14 shows
that the input and output counters given by (4.12) satisfy y = hu, where
h = CA∗B⊕D is the transfer series of the system. Therefore, rephrasing the
Kleene-Schützenberger theorem [4], we claim that transfer series and rational
series coincide.

14The unique solution of x = Ax ⊕ Bu is x = A∗Bu. The existence of A∗ and the
uniqueness of the solution follow from the assumption that there are no circuits with zero
holding times.
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Assertion 4.14. The transfer series of explicit SISO CTEGM (resp. α-
CTEG, CTEG) are precisely the elements of Arat

min[[δ]] (resp. Rrat
min[[αδ]],

Rrat
min[[δ]]).

One important problem is to characterize these particular classes of ratio-
nal series. The answer is known in the case of Rmin[[δ]] and Rmin[[αδ]]. We
say that a series is ultimately periodic with rate α if there exists a constant λ
and a positive integer c (cyclicity) such that for t large enough

ht+c = λ
1− αc

1− α
+ αcht . (4.20)

When α < 1, this periodicity property means that ht converges towards
λ/(1−α) with rate α and that the rate is attained exactly after a finite time.
The specialization to α = 1 (in fact, α = 1−) yields ht+c = λc + ht. The

merge of k series h(0), . . . , h(k−1) is the series with coefficients hi+nk = h
(i)
n for

0 ≤ i ≤ k − 1, n ∈ N.

Theorem 4.15. A series in Rmin[[αδ]] is rational iff it is a merge of ulti-
mately α-periodic series.

The CTEG case (i.e. α = 1) is proved in [9, 2] for the subclass of mono-
tone15 series hn+1 ≥ hn. It was already noticed by Moller [22] in the non
monotone case. It is essentially known to the tropical community [20]. The
α-generalization was announced in [13]. The proof will appear in a paper in
preparation [15].

No such simple characterization seems to exist for Arat
min[[δ]]: the coefficient

hτ of δτ in h is an element of Amin, but its complexity16 grows in general as
τ →∞.

4.6 Asymptotic Behavior of CTEGM

We consider the autonomous case Z = AZ with boundary condition
∀t ≤ 0, Z(t) = v ∈ RQ, where A belongs to one of the above matrix
operator algebras. We associate several additive weights with the circuit
C = (q1, p1, q2, . . . , qk, pk),

|C|ν =
∑

i νqipi Total normalized marking
|C|τ =

∑
i τpi Total holding time

|C|l =
∑

i 1 = k Length
|C|m,v =

∑
impiv

−1
pi Total weighted marking

15The results are stated in the so called Max
in [[γ, δ]] dioid which is isomorphic to the dioid

of series in one indeterminate δ with coefficients in Rmin
def
= (R ∪ {±∞},min,+) such that

hn+1 ≥ hn.
16The minimal number of monomials in a sum hτ =

⊕
i γ

νiµi.
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where the latest quantity will be used only when the graph admits potential v.
The following periodicity theorem is central. The CTEG case is a consequence
of the (max,+)-Perron Frobenius theorem [25, 8, 2, 10]. Another proof has
been given by Chretienne [7]. The inequality variant below (4.24) can be
found in [12, Ch. IV, Lemma 1.3.8],[14]. The α-discounted case is due to
Braker and Resing [5, 6].

Theorem 4.16. Consider a strongly connected CTEG. There exists N ≥ 0
and c ≥ 1 (cyclicity) such that, for all initial condition v,

t ≥ N ⇒ Z(t+ c) = λc+ Z(t) , (4.21)

where

λ = min
C

|C|ν
|C|τ

(4.22)

(the minimum is taken over the elementary circuits of the graph). Alterna-
tively, λ is the unique scalar for which there exists a finite vector v solution
of the spectral problem17

vq = min
p∈qin

(
νqp − λτp + vpin

)
, (4.23)

or it is the solution of the LP problem

λ→ max, ∀p ∈ qin, vq ≤ νqp − λτp + vpin . (4.24)

For a strongly connected CTEG with potential, the periodicity property (4.21)
becomes Zr(t + c) = λrc + Zr(t), where

λrv
−1
r = min

C

|C|m,v

|C|τ
. (4.25)

For a strongly connected CTEG with rate α, the periodicity property (4.21)
becomes

t ≥ N ⇒ Zq(t+ c) = λq
1− αc

1− α
+ αcZq(t) (4.26)

where λq ∈ R+ (the dependence in q is essential).

The asymptotic behavior of general CTEGM is more subtle. We shall not
attempt to treat it here.

Remark 4.17. When α < 1, from (4.26) we get limt→∞ Zq(t) = λq/(1 − α).
It is well known that one obtains the average cost value as the limit of the
discounted case, i.e. ∀q, limα→1− λq = λ.

Remark 4.18. When the graph has a potential v, for all circuit C, the quantity
|C|m,v used in the periodic throughput formula is an invariant of the net (the
firing of one transition leads to a new marking m′ with the same weight).

17With the (min,+) notation, when τp ≡ 1, (4.23) rewrites as Av = λ ⊗ v where Aqq′ =⊕
p∈qin∩(q′)out νqp.
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4.7 Resource Optimization Problems

As a by product of the above characterizations of the throughput λ, it is pos-
sible to address resource optimization problems. The most classical problem
[8, 18, 21, 12] relative to TEG consists in optimizing a linear cost function
J(m) associated with the initial marking, under the constraint λ ≥ λ0. Phys-
ically, the initial marking represents resources (number of machines, pallets,
processor, storage capacities), and the problem consists in minimizing the
cost of the resources in order to guarantee a given throughput λ0. By ap-
pealing to (4.24), this class of problems reduces to linear programming, with
integer and real variables.

We will discuss here new resource optimization problems which arises for
more general TPN due to the presence of routing decisions. We restrain to
balanced TPN with unit multipliers. When a bijective routing f is fixed, the
only remaining decision consists in the assignment of the initial marking mp

to the downstream transitions: mp =
∑

q∈pout mqp. We thus consider the
problem of finding the allocation of the initial marking which maximizes the
performance of the system. We only consider internally stable systems in
the sense of [2] (such that tokens do not accumulate indefinitely in places).
Then, there is a single periodic throughput λr associated with every simply
connected component r of the graph (characterized by (4.22)). We denote by
R the set of simply connected components. The most natural performance
measure to be optimized will be a linear combination of these throughputs,

cλ
def
=

∑
r∈R crλr where cr ≥ 0 are given weights.

Theorem 4.19. The resource assignment problem for a balanced CTPN with
unit multipliers under the bijective policy f reduces to the following Linear
Programming problem. Given {mp, τp}p∈P, c and f , denoting by r(q) the
simply connected component of transition q under policy f , solve

max
vq,λr ,mqp

cλ ,

{
mp =

∑
q∈pout mqp , ∀p ,

vq ≤ mqp − λr(q)τp + vfp(q) , ∀q, ∀p ∈ qin ,

where {vq}q∈Q, {mqp}q∈pout,p∈P , and {λr}r∈R are real (finitely) valued vari-
ables.

Proof. Easy consequence of the characterization (4.24).

The same resource assignment problem for discrete (non continuous) TEG
leads to a similar LP problem with mixed integer and real variables.

Example 4.20. For the routing policy of Fig. 2b, we obtain two strongly
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connected components with rates

λ1 = min

(
mq3p5 +mp3

τp5 + τp3
, κ1

)
, where κ1 =

mp1 +mp3

τp1 + τp3
(4.27)

λ2 = min

(
mq4p5 +mp4

τp5 + τp4
, κ2

)
, where κ2 =

mp2 + mp4

τp2 + τp4
. (4.28)

Maximizing the throughput in place p5 reduces to

max
mq3p5+mq4p5=mp5

(λ1 + λ2) . (4.29)

The bijective policy shown of Fig. 2c gives a unique strongly connected
component and a throughput

λ = min

(
κ1, κ2,

mp3 +mp4 +mp5

τp3 + τp4 + 2τp5

)
(4.30)

independent of the allocation of mp5 .

5 Time Behavior of Continuous Timed Petri

Nets

5.1 Stochastic Control Interpretation

We interpret the evolution equations of a CTPN as the dynamic program-
ming equation of the following stochastic extension of the deterministic deci-
sion process described in §4.2. The control at state (transition) q selects an
upstream place p ∈ qin. Then, q moves randomly (in backward time) to one
of the upstream transitions q′ ∈ pin. More precisely,

1. the dynamics is given by a controlled Markov chain in backward time: the
probability P p

qq′ of the transition q → q′ from time n to time n− 1 under
the decision p is given by

P p
qq′ = α−1

qp µqpρ
p
qq′µpq′

where αqp > 0 is a normalization factor18 (chosen such that
∑

q′∈pin P
p
qq′ =

1).

2. The set Pad of admissible control histories is the set of sequences p1, . . . , pt
such that pn ∈ qin

n and the decision pn is a feedback of qn.

18Note that in the CTEGM case, for q = pout, we have αqp = µpoutpµppin so that αqp
coincides with αp as defined in (4.1).
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3. We consider a mean cost at state q of the form

J(p, t, q) = E
(( t∏

j=1

αqjpj
)
Z(0)q0 +

t∑

n=1

( t∏

j=n+1

αqjpj
)
νqnpn

∣∣∣qt = q
)
.

Assertion 5.1. For a CTPN such that τp ≡ 1, the counter function coincides
with the value function:

Zq(t) = inf
p∈Pad

J(p, t, q) . (5.1)

As in the case of Event Graphs, we shall pay a particular attention to simple
cost functions.

Definition 5.2. A CTPN is undiscounted if αqp ≡ 1. It is α-discounted if
τp ≡ 1 and αqp ≡ α. It admits a potential if there exists a vector v ∈ (R+∗)Q

such that the change of variable Zq = vqZ
′
q makes the CTPN undiscounted.

Clearly, the cost function of an undiscounted (resp. α-discounted) CTPN
writes

J(p, t, q) = E
(
Z(0)q0 +

t∑

n=1

νqnpn

∣∣∣qt = q
)
, (5.2)

resp. J(p, t, q) = E
(
αtZ(0)q0 +

t∑

n=1

αt−nνqnpn

∣∣∣qt = q
)
. (5.3)

Theorem 5.3. 1. A CTPN becomes undiscounted under a stationary routing
iff it satisfies the following equilibrium condition:

∀p,
∑

q∈pout

Mqp =
∑

q∈pin
Mpq . (5.4)

Then, the only origin independent routing policy which makes the net undis-
counted is given by19:

∀q′ ∈ pin, ρpqq′ =
Mqp∑

q′′∈pout Mq′′p
. (5.5)

2. A CTPN with τp ≡ 1 becomes α-discounted under a stationary routing iff

∀p,
∑

q∈pin
Mqp = α

( ∑

q∈pout

Mpq

)
. (5.6)

19This is a fairness condition which states that tokens are routed equally to the down-
stream arcs, counted with their multiplicities.
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3. There exists a stationary routing under potential v iff

∀p,
∑

q∈pout

vqMqp =
∑

q∈pin
Mpqvq . (5.7)

4. A CTEGM with routing ρ admits a potential v iff for all q ∈ Q, p ∈ qin,

vq =
∑

q′∈pin
µqpρ

p
qq′µpq′vq′ . (5.8)

Proof. We prove item 3 (which contains item 1 as a special case). The CTPN
has potential v iff for all p, the matrix

P p
qq′ = v−1

q M−1
qp ρ

p
qq′Mpq′vq′

is stochastic. Summing up as q′ ∈ pin, we get vqMqp =
∑

q′∈pin ρ
p
qq′Mpq′vq′ .

Summing up as q ∈ pout and using the fact that the transpose of ρp·,· is
stochastic, we get the necessary condition (5.7). Then, the origin independent
routing policy

ρpqq′ =
vqMqp∑

q′′∈pout vq′′Mq′′p
∀q′ ∈ pin (5.9)

turns out to be admissible, which shows that the condition is also sufficient.
The other points are left to the reader.

5.2 Input-Output Representation of CTPN

Pursuing the program previously illustrated with additive systems (CTEGM),
we provide an algebraic input-output representation for CTPN. In view of the
dynamics of CTPN (see (3.2)), we introduce (min,+) polynomials and formal
series in several commutative indeterminates. Given a family of indetermi-
nates {zi}i∈I (not necessarily finite), we denote by (R+)(I) the set of almost

zero sequences αi ∈ R+, i ∈ I (such that I(α)
def
= {i ∈ I | αi 6= 0} is

finite). A generalized20 formal series in the commutative indeterminates zi
with coefficients in Rmin is a sum

s =
⊕

α∈(R+)(I)

sα
⊗

i∈I(α)

zαii , sα ∈ Rmin . (5.10)

It is a polynomial whenever sα = ε for all but a finite number of α. The
numerical function associated with a series s is the map S : RI → R∪{±∞},

S(z) = inf
α

(
sα +

∑

i∈I(α)

αizi

)
. (5.11)

20We allow nonnegative real valued exponents αi, not only integer ones.
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When s is a nonzero polynomial, the infimum in (5.11) is finite. This defines
a proper notion of finitely valued (min,+) polynomial function. Polynomial
functions are stable by pointwise min, pointwise sum and composition. It is
clear that (3.2) is nothing but a polynomial induction of the form

x(t) = A(x(t), . . . , x(t− τ), u(t), . . . , u(t− τ)), (5.12)

y(t) = C(x(t), . . . , x(t− τ), u(t), . . . , u(t− τ)) , (5.13)

where A,C are polynomial functions and τ
def
= maxp τp. Thus, CTPN and

(min,+) recurrent stationary polynomial systems coincide. For simplicity, we
shall limit ourselves to SISO systems (the MIMO case is not more difficult,
although the notation is more intricate). We introduce the family of indeter-
minates uτ , τ ∈ N. The series s given by (5.10) is a Volterra series [11] if for
all τ , the series is a polynomial in the indeterminate uτ (equivalently, if the
indeterminate uτ appears in (5.10) with a finite number of exponents). The
evaluation su of the Volterra series s at the input u is obtained by substituting
u(t− τ) for the indeterminate uτ .

Theorem 5.4 (Volterra Expansion). The output of an explicit SISO
CTPN is obtained as the evaluation of a Volterra series:

y(t) = su(t) = inf
α

(
aα +

∑

τ∈I(α)

ατu(t− τ )
)
. (5.14)

A case of particular interest arises for inputs with finite past: u(τ ) = ε for
τ ≤ T0. Then, for all t, the Volterra expansion of y(t) is obviously finite.

5.3 Behavioral Properties of CTPN

Theorem 5.5. The input-output map H of a MIMO CTPN is

1. stationary,

2. causal,

3. monotone: u ≤ v ⇒ Hu ≤ Hv,
4. Scott continuous,

5. concave (see Theorem 4.11 for the definitions).

Undiscounted CTPN satisfy the following property.

6. Homogeneity: H(λ + u) = λ +H(u).

CTPN with potential v satisfy the following.

7. (vu, vy)-homogeneity: H(λvu + u) = λvy +Hu.

All these properties are immediate consequences of the (MIMO extension)
of the Volterra expansion (5.14). Again, these properties are accurate: it
could be shown that an map satisfying the above properties is a limit of
CTPN operators, but we shall not attempt to detail this statement here.
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5.4 Asymptotic Properties of Undiscounted Petri Nets

Theorem 5.6. For a strongly connected undiscounted CTPN, we have

lim
t→∞

1

t
Zq(t) = λ, ∀q ,

where λ is a constant. The periodic throughput λ is characterized as the
unique value for which a finite vector v is solution of

v = min
p

(ν·p − λτp + P pv) . (5.15)

Indeed, the asymptotic behavior of Z(t) is known in much more details
[27]. Note that the effective computation of λ from (5.15) proceeds from
standard algorithms (Policy Improvement [28], Linear Programming).

Proof. This is an adaptation of standard stochastic control results [28, Chap.
33, Th. 4.1]. The growth rate λ is independent of the initial point q for the
subclass of communicating systems21. This assumption is equivalent to the
strong connectivity of the net.

There is an equivalent characterization of λ which exhibits the analogy
with the CTEG case in a better way. A feedback policy (or policy22, for short)
is a map u : Q → P. The policy is admissible if u(q) ∈ qin, that is, if setting
pn = u(qn) yields and admissible policy for the stochastic control problem
presented in §5.1. With a policy u are associated the following vectors and
matrices

νuq
def
= νqu(q) , τuq

def
= τu(q) , P u

qq′
def
= P

u(q)
qq′ .

We denote by R(u) the set of final classes23 of the matrix Pu. For each
class r ∈ R(u), we have a unique invariant measure πru with support r (i.e.
πruP u = πru, and πruq = 0 if q 6∈ r.)

Theorem 5.7. For a strongly connected undiscounted CTPN, we have

λ = min
u

min
r∈R(u)

πruνu

πruτu
. (5.16)

Thus, λ is the minimal ratio of the mean marking over the mean holding
time in the places visited following a stationary policy. In the CTEG case,
the final classes are precisely circuits and the invariant measures are uniform
on the final classes, so that (5.16) reduces to the well known (4.22).

The proof of Theorem 5.7 uses the fact that the rate λ is obtained asymp-
totically for stationary policies, together with the following lemma.

21The system is communicating if for all q, q′, there is a policy u and an integer k such
that (Pu

qq′)
k > 0 —i.e. q has access to q′.

22This feedback policy has nothing to do with the routing policy introduced in §3.
23The classes of a matrix A are by definition the strongly connected components of the

graph of A. A class is final if there is no other class downstream.
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Lemma 5.8. Let u denote a policy such that Pu admits a positive invariant
measure π. The unique λ such that there exists a finite vector v:

v = νu − λτu + P uv (5.17)

is given by

λ =
πνu

πτu
. (5.18)

Proof. Left multiplying (5.17) by the row vector π, we get that λ is necessarily
equal to (5.18). Conversely, we are reduced to prove the existence of a solution
(λ, v) when P u is irreducible. Then 1 is a simple eigenvalue of Pu, hence,
Im(P u − I) is |Q| − 1 dimensional. Moreover, τu 6∈ Im(Pu − I) (for τu =
P uv−v ⇒ πτu = π(P uv−v) = 0, a contradiction). Hence, Rτu+Im(P u−I) =
RQ.

It is not surprising that the terms at the right-hand side of (5.16) are indeed
invariants of the net.

Theorem 5.9 (Invariants). Given an undiscounted CTPN, for all policy u
and for all final class r associated with u,

Iur
def
= πurνu =

∑

q∈r

πurνuq (5.19)

is invariant by firing of transitions.

Proof. After firing once transition q ∈ r (the case when q 6∈ r is trivial), Iur

increases by

−πurq +
∑

q′∈(qout)out∩r

πurq′ P
u
q′q

which is zero because πur is an invariant measure of P u with support r.

Example 5.10. The CTPN shown in Fig. 2a is equivalent to that of Fig. 2d
under a fair routing policy independent of the origin of the tokens. In this
particular case, we obtain the same periodic throughput λ as in the case of
the bijective routing shown in Fig. 2c (see (4.30)). This can be seen from the
following table and Formula (5.16).

Policy Final classes Invariant measures Invariants
u1(q3) = p1

u1(q4) = p2

r1 = {q1, q3},
r2 = {q2, q4}

πu1r1 = [ 12 ,0,
1
2 , 0]

πu1r2 = [0, 1
2 , 0,

1
2 ]

Iu1r1 = 1
2 (mp1 +mp3)

Iu1r2 = 1
2 (mp2 +mp4)

u2(q3) = p1

u2(q4) = p5
r1 πu1r1 Iu1r1

u3(q3) = p5

u3(q4) = p2
r2 πu1r2 Iu1r2

u4(q3) = p5

u4(q4) = p5
r3 = {q1, q2, q3, q4} πu4r3 = [ 14 ,

1
4 ,

1
4 ,

1
4 ] Iu4r3 = 1

4 (mp3 +mp2 +mp5)
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Finally, we indicate how the above results can be extended to CTPN with
potential. With a feedback policy u we associate the matrix Ru: Ru

qq′ =

µqu(q)ρ
u(q)
qq′ µu(q)q′ if q′ ∈ u(q)in (Ru

qq′ = 0 otherwise); we denote by R(u) the set
of final classes of Ru; which each final class r we associate a left eigenvector of
Ru: πru = πruRu with support r; and we define νu, τu as in Theorem 5.7. We
denote by diag v the diagonal matrix with diagonal entries (diag v)qq = vq.
Then, the folllowing formula is an immediate consequence of Theorem 5.7.

Corollary 5.11. For a strongly connected CTPN with potential v, we have

lim
t→∞

1

t
Zq(t) = λq, where v−1

q λq = min
u

min
r∈R(u)

πruνu

πru(diag v)τu
. (5.20)

The terms πruνu which determine the throughput are of course invariants
of the net. More generally, it follows from standard dynamic programming
results that the counter functions of α-discounted CTPN exhibit a geometric
growth (or convergence) with rate α. The geometric growth of other classes
of CTPN could be obtained by transferring existing results about non nor-
malized dynamic programming inductions [29].
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