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I - INTRODUCTION.

We discuss three different approaches, leading to numerical methods, for the
solution of optimal stochastic control problem of large dimension :

- Optimization in the class of local feedbacks,
- Monte Carlo and stochastic gradient techniques,
- Perturbation methods in the small intensity noise case.

We consider the stochastic control problem of diffusion processes in the
complete observation case

_ n m
dXt = b (Xt’Ut)dt + dWt ) Xt e R, Ut e R
(1)

+c0 -t
V(o,y) = MinkE {f e C(Xt,Ut)dt [X(0) = y}
u 0

The solution of the Hamilton Jacobi equation

(2) Min {b(x,u) grad V + C(x,u)} + AV - AV =0
u

gives the optimal cost and the optimal strategies of (1).

The numerical solution of (2) is almost impossible in the general situation
when n is large. The difficulty is not a problem of numerical analysis but an
irreducible difficulty. To see that consider the simpler problem

AV -2V =C X 8 =10,11"
(3)

Vor =0

C



where 0& denotes the boundary of @.

For such problem it is easy to show that the number of eigen vectors associated
to an eigen value smaller than a fixed value, increases exponentially with the
dimension. But we need to have a good representation of the eigen vector associated
to eigen value of small modulus, in any good finite dimensional approximation of (2).
And thus, whatever could be the approximation, the obtention of a given precision
will be obtain at a cost which increases exponentially with the dimension.

In the three following point of view we avoid this difficulty but we have a

lost of optimality.

II - OPTIMIZATION IN THE CLASS OF LOCAL FEEDBACKS.

In this paragraph we give the optimality conditions in the class of Tocal
feedbacks, and show that it is more difficult to solve these conditions than to
compute the solution of the Hamilton-Jacobi equation. Than we study two particular
cases :

- the case of the uncoupled dynamics,

- the case of systems having the product form property.

In these cases only it is possible to compute the optimal local feedbacks for
large systems. Finally we discuss briefly the decoupling point of view.

- - -

Given I the indexes of the subsystems I = {1,2,..,k} ni,ﬁresp-mij denotes
the number of the states Tresp. the controls] of the subsystem i ¢ I. The Tocal
feedback 51 is a mapping of R¥ x]Rniin s ciRmi the set of the admissible values
of the control i. 8, denotes the class of local feedbacks g, = {S = (Sl,...,SI)}.
Given the drift term of the system :

b:IR+x]Rnx 'lf—>]Rn
t X u b(t,x,u)

with n= )n,, =T 7.,
jel 1



- the diffusion term :

c5:]R+x1Rn - Mn
t X o(t,x)

with Mn the set of matrices (n,n) and a = v 00" where * denotes the transposition

- the instantaneous cost :
c=]R+x]Rnx'7f+ ]R+
t X u c(t,x,u)

n n
than boS Tresp coS7] denotes the functions R" xR - R

n
Fresp R" xR > R'] b(t,x,S(t,x)) fresp c(t,x,S(t,x))]

Than if XS denotes the diffusion (boS,a) (drift boS, and diffusion term o) and

Pi its measure defined on @ = CGR+,'Rn) with 1 the law of the initial condition

we want to solve

T
Min Eps J CoS(t,wt)dt

Se8 0
L

where w ¢ 2, T denotes the time horizon. We have here a team of I players working
to optimize a unique criterium.

A simple way to obtain the optimality conditions is to consider another formu-
lation of this problem : the control of the Fokker Planck equation that is :

Min  J° = J CoS(t,x)pS(t,x)dt dx

SegL

with p solution of

*
s _

£s p- =0

p°(0,.) = u

with Q=r0,T1xg andg=R"

.3 d 32

L= =+ ) bsoS — +-Z'a1.j—
ot j axj 1,J axiaxj

u the law of the initial condition.



Than we have :

Theorem 1
ANS.C. for dR>0°,R  se g, is that :
(1) Het,R, R V) = H(E,S,pRVS)  ppin t
with
: H(t,R,p,V) = J FCoR(t,x) + Z bioR(t,x) é%% (t,x)] p(t,x)dx
(2) : G 1 1

R R S
£5p" =0 p(0,.) =u; £ V2 +CoS =0, Vv3(T,.) = 0

Remark 1. From this theorem the Pontriagyn can be obtained, that is a necessary
condition of optimality of the strategy S is that : p,V,S satisfies

H(t,5,p0,V°) = Min H(t,R,p,V°) ;
ResL
* S
(3) Zp” =0 5 plo,.) =u

2P+ CoS =0, V(T,.) = 0.

A proof is given in J.L. Lions [11.

Remark 2. This theorem give an algorithm to improve a given strategy R that is :

Step 1 : compute pR
Step 2 : solve backward simultaneously

2GV> + CoS = 0 v

S < Arg Min H(t,Z,pR,v>)
7

By this way we obtain a better strategy S.

A fixed point of the application R+S will satisfy the conditions (3).

We see that one iteration (4) of this algorithm is more expensive than the
computation cost of the solution of the H.J.B. equation.



- o o g - Yo g Y - -

This is the particular case where bi is a function of X and Uss Vi el

n.

n i

bizm"x]R‘x-zﬁ- > R
t X; us bi(t’xi’ui)

and the noises are not coupled between the subsystems that is :

n.
o;t ROxR ' = M"i

t X; Gi(t’xi)
In this situation we have

R R
ph = T

with p1.R1 solution of

xR _ Ri ) . )
(5) £1,R-ip'i =0 p'i (0, ) =u with u = 121 U.i
and
3 9 82
£ﬁ,R. ==+ ) bkoRi(t,X ) =— + ) 3y
with Ii={)n, <ks< ) n.l.
j<i J j<i+l J
Let us denote by
(6) C?oRi RF xR > R .
t X JCOR(t,x) T pRd(t,X.)dX,
1 j2i J J J

That is the conditional expectation of the instantaneous cost knowing the infor-
mation only on the local subsystem 7.
We have the following sufficient conditions to be optimal player by player :

Theorem 2. A sufficient condition for a strategy S to be optimal player by player
is that the following conditions are satisfied :




R . . .
. Vi + CioR11 =0, 1el ;

(7) Min [,
i

R.
;

,R

with C?oRi defined by (6) and (5)

The optimal cost is u1(Vp..=1JI(VI) with ui(vi) = J . ui(dXi)Vi(o,Xi)
R

Remark 3. The theorem 3 gives an algorithm to compute a feedback optimal player

by player
given €, V¢ R+

Step 1) Choose i ¢ 1

Solve (7)
if @ (V) sv-c¢ than v o= s (V)
1 1 ) 1 1 . . f R
R, 3= Arg ﬂgn %£1,R1V1+C10Ri}

1

if not choose another i ¢ I until

Ui(v-

1) >v - e, ¥i ¢ I.

Step 2) When “i(vi) >v-¢e, ¥iel, than ¢:= , go to step 1.

Ny

By this algorithm we obtain a decreasing sequence v(n) which converges to a
cost optimal player by player.

For a proof of a discrete version of this algorithm see Quadrat-Viot rzj.

Remark 4. The interpretation of Vi(t’xi) i eI in terms of the variables of
theorem 1 is :
RJ

(t,X;)dXy

V. (tux,) = JV(t,x) mop ;

J=i
Remark 5. In this situation we have to solve a coupled system of P.D.E. but each
of them is on a space of small dimension. By this way we can optimize , in the class
of local feedback, systems which are not reachable by H.J.B. equation. An application
to hydropower systems is given in Delebecque-Quadrat [ 4].



The property that a system has its dynamic uncoupled is very restrictive in
this paragraph, we show systems which have their invariant measure uncoupled, they
are 1imit of network of queues of Jackson type. This property can be used to apply
to them the results of II-2 for the corresponding ergodic control problem that is:

1 (T
Min 1im 3 J CoS(w, )dt
S Toe

Given B a generator of a Markov chain defined on E = {1,2,...,n}, a function

ExR->R a matrixoe Mn » A= % o, D a diagonal matrix satisfying :
(1,%) u(x)

(8) DB* + BD + 2A = 0

Theorem 3

The invariant measure of probability p of the diffusion (b = Bu, a=A) such
that (8) is true has the product form property that is :

(10)

©
-
—
>
—
~
]

1 i
exp - - f ui(s)ds
ii 10—

where C is a constant of normalization.

Demonstration : The Fokker-Planck equation can be written :

(11) -div [bp] + div [A grad pl = 0

Let us make the change of variables p = exp V in (11), we obtain
(grad V, b-A grad V) + div (b-A grad V) = 0
Using (10), we have :

1

(12) 0y, 8+ A0 Yyu) + tr (B +ADY) grad ul = 0

The quadratic part in (u) of (12) is equal to O if and only if :

1 1 1,1

D"'B + BD™* + 2D *AD * =0

which can be written :

BD + DB + 2A = 0



which is (8).

We have also tr [B + AD'1] grad u = 0 . Indeed grad u is diagonal because us is

oUs
a function of X; only and the coefficient of §§1 is bii + A, / dii which is equal
to zero by (8). 1

Remark 6. This class of diffusion processes are quite natural if we see them as the

limit process when N - » , obtained from Jackson network of queues by the scaling
x—»l)\l-(,t—r-%.
N

h 4

/
queue J W “j<x')

queue i “i(xi)

—>—

where “i(xi) is the output rate of the queue i, m.. is the probability of a customer

1J
leaving the queue i to go to the queue j.

The correlation of the noise given by (8) corresponds to system for which the
noise satisfies a conservation law (for example the total number of customer in a
closed network of queues).

Remark 7. We can now apply the result of II-2 to compute the optimal local feedback
for systems having the product form property and an ergodic criterium. Indeed :

)
Min 1 [ CoS  (w)dt = fcos (x) p(x)dx

0

and Py satisfies :
- 2 ru.p.
axi i ?
in(xi) dx; =1

Another way to use the results of II-2 when the dynamic is coupled is to do a
change of feedback let us consider the simpler case

with u ¢ R"



we use the feedback transformation v = b(x,u) to decouple the drift terms. Now v is
the control and we can apply the results of II-2 to compute the best local feedback

Vi = Si(xi)’
Then the solution in u of
(13) b(x,u) = S(x)
gives the best feedback among the class that we can call "local decoupling feedbacks".

One difficulty with this approach is for example the constraints on the
control : the image by b of an hypercube is not in general an hypercube and if we
take for constraints on the new control v ¢ V(x) < b(x,W) with V(x) an hypercube of

Rn, the lost of optimality can become unacceptable.

This approach is well studied for deterministic linear and non Tinear systems
Womham [ 81, Isidori[17] and in the dynamic programming litterature Larson [11].

II1 - OPTIMIZATION IN A PARAMETRIZED CLASS OF FEEDBACKS BY MONTE CARLO TECHNIQUES.

We have seen in §2 that we are able to compute the optimal local feedback only
in particular cases. Moreover, sometimes the local information is not good ; we can
have, a priori, an idea on a better one and would like to use this a priori
information to solve a simpler problem than the general one. A way to do that is to
parametrize the feedback, optimize the open loop parameter by a Monte Carlo technique.
More precisely given the stochastic control problem.

_ n m
dXt = b(t,xt,ut)dt + dwt Xg e RO, Uy e R
(1) .
Min E Jo C(t,xt,ut)dt

we make the feedback transformation

- p
(2) u(t) = S(t,xt,vt) Vi € R
where S : Rt xR" xRP -~ R" is given.

We use for the approximation of the probability law of the noise P, the
distribution

where wj are trajectories of the noise obtained by random generation perhaps after
a discretization time if we want to avoid the difficulties of the non existence of a



solution trajectory by trajectory to (1). And now we have to solve :

J_ J J Jj
(3) 1 r T . .
Min = ) J C(t,xT,S(t,xd,v,))dt
v r j=1 Jo t t°'t

wi denotes here a particular trajectory of the noise. Thus, at the end, we have to
solve a deterministic dynamic control problem. For that, we can use a gradient
technique or the Pontryagin principle. For discrete time system the convergence
properties of this approach has been studied in Quadrat-Viot [15]. Application to

the French hydropower system is currently done at EDF now. Feedbacks on the demand of
electricity and the level of water in the local dam are optimized with success by this

technique (Lederer - Colleter [21]).

The idea of the stochastic gradient method is the same than the former one but
we use a recursive way to optimize. The recursivity being on the index of the
trajectory of the noise generated. The problem (1) (2) can be reduced to the problem

Min E J(v)
veV
is a situation where we are able to compute g% byadjoint state technique here
T
Iv) = Jo Ctx, »S(ts%,ov,) ) dt.

Moreover, we can consider that after discretization v is finite dimensional.
Then the stochastic gradient algorithm is the following recursive way to improve
the parameter v

- - aJ +
= Pv {vr 0 (Vr’wr)} Py € R, ¥relN,

le r av

2
“2 p = o s z p < o
reN " reN "

Wy, denotes a generated random realization of the stochastic parameter in the
definition of J(v), for our problem (1), (2) that is a realization of the Wiener
process w,. Pv denotes the projection on the set V.

In a convex situation which is not in general the case for the problem (1), (2),
we can give some global convergence results.



Theorem 1

On the hypotheses

1) v J(w,v) convex ¥uw 3

2) w =+ J(w,v) is L' , ¥v

3J
3) sup |&= (vsw)| < g3
veV oV
wes

2

AYE g(v) - 35 = C 25(v)

where J* denotes the optimal cost and 2(v) denotes the distance of v to the optimal
set.

5) V a bounded convex set, we have TimE zz(vn) = 0 and moreover if oy = 1 5
n cr + L
2 Yot
with y, = E 2 (vo) we have :
E ﬁz(v ) < —L
r 2

C 1

‘—2‘1"+S/—

a 0

The proof of this theorem can be found Dodu-Goursat-Hertz-Quadrat-Viot [ £ ] a
lot of similar results can be found in Polyak [14] and in the reference of this
paper. In Kushner-Clark [12]17ocal convergence are proved in the non convex case.

The following result shows that in some sense the stochastic gradient algorithm is
optimal. We suppose that :

6) the noise is finite valued and we denote by v, = Argmin Eu J(v) and we suppose
that

7) v+ J(w,v) is two times differentiable and uniformly convex ¥w e ©  than we
have D.G.H.Q.V. [ 51.

Theorem 2

On the hypothese 6) and7) we have :

E, (v -v)®s Ty

-1 -1
H Q, H

HH M

with 2
d
H = —> E J(v)
U«C}VU

E (2 )%
0, = E,(yv)°




for all unbiased statistic v of“vu defined on (Q,u)&v.

If we remark that é is an estimation of H;1 and q2 an estimation of Qu we see
that in a certain sense the speed of convergence of the stochastic gradient

technique is optimal.

We have applied this algorithm to the problem of the optimization of the
investment of a transmission network of electricity D.G.H.Q.V. [ 5 1. The comparison
with a sophisticated simplex approach shows that the stochastic gradient mathematic
is undoubtly better.

IV - PERTURBATION METHODS.

By perturbation methods we can reduce a difficult problem to a simpler one.
In this chapter we study the small intensity noise case. In this situation it is
possible to build an affine control which leads to e4 error with respect to the
optimal control, where ¢ denotes diffusion term.

We consider the following stochastic control problem :

i} y n
dX, = f(x,,u)dt + edwy, , X R, ug <R

(1) T
VE(0,y) = MinE [| C(x,,u,)dt | X(o) = yI.
(0:9) = Wi E [ Clxgsu,)t | X(0) =y

where ¢ belongs to R and is small.

We denote by
(2) H(x,u,p) = p f(x,u) + C(x,u)

We suppose that :

(3) u-~> f(x,u) is linear ;
2%c 2 .

(4) (Vo= v) 2 k |v|© where k is a positive constant, ¥x ;
au

Let us consider the deterministic control problem

(5) dX, = f(xt,ut)dt

1
V(o,y) = Min{J C(xt,ut)dt | X(0) =y} 3
u Jo

and denote by uo(t) the optimal open loop deterministic control problem.



The second variation calculus around the optimal trajectory of (6) Cruz [3]
gives the quadratic form "osculatrice" of the optimal cost V around the optimal
trajectory. This quadratic form is defined by the (n,n) time dependent matrix P
solution of the Riccati equation :

(6) P+PA+AP-PSP+Q=0 P(T) = 0
where
- '1 ]
(7) A= fX - fu Huu HuX
_ -1 .
(8) S =1, Huu fu
- - -1 |
(9) Q= Hxx Hux Huu ux

are evaluated along the optimal trajectory of (5) on the hypotheses that :

- -1
(10) Huu > 0, HXX Hux Huu Hux >0

Let us consider the following affine control :

(11) ug(tsX(t)) = ug(t) + K(t) [X(t) - X (t)]

where Xo(t) denotes the optimal trajectory of the deterministic control problem (5),
X(t) the actual trajectory of the diffusion process (11) when the control is (11),
and K(t) is defined by

_'1 ] ]
(12) K(t) = Huu (Hux + ) P)(t)
evaluated on the optimal trajectory Xo(t).

We have :

Theorem

On the hypotheses (3), (4), (10) and (f,c) two time differentiable, the affine
control build on the deterministic control problem, used in the stochastic control
problem leads to a lost of optimality of order 6(34).

Ideas of the proof : Fleming [ 61has shown that the optimal deterministic feedback
used in the stochastic control problem leads to an error of @(94). But in the
estimation of the proof he does not need the optimal deterministic control but a

control which gives exact V, %g, §_¥ along the optimal trajectory of the deterministic

oy

control problem.



Using for example Cruz [3] we know that the affine feedback (11) has this
property and thus the result is proved.
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