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Abstract

We introduce max-plus analogues of basic Euclidian geometry notions: scalar product is
replaced by a scalar division, and the associated distance is essentially Hilbert’s projective dis-
tance. We introduce an orthogonal projection and prove a Hahn-Banach type theorem: a point
can be separated from a semimodule by a hyperplane orthogonal to the direction of projection.
We use these results to separate max-plus convex sets, and illustrate this new geometry by two-
dimensional examples.

1 Introduction

In the last twenty years, the max-plus algebra and related structures (called “dioids” or idem-
potent semirings) have emerged as a natural setting for various areas of applied mathematics
and mathematical models (e.g. the so-called “discrete event systems” area [1], optimization
theory [13], etc.). As vector spaces are built up from fields of scalars{li@eR, semimod-

ules with an idempotent addition can be built up from the max-plus semiring. Such algebraic
structures share several common features with their more conventional counterparts. The
main departure point is the idempotency of addition which induces a semilattice structure,
and often a lattice structure. This natural order provides an alternative way to solve problems
which are more usually solved by appealing to the minus sign or division in conventional al-
gebra. Residuation theory [2], the aim of which is to provide solution concepts to equations,
is perhaps the best illustration of how order can help to provide for the absence of invertibility
of operations such as addition and multiplication.

Since discrete event systems entered the realm of system theory in particular through the
use of such algebraic tools, this is a good instance for making the following considerations.
In linear system theory, most techniques (in particular for control synthesis purposes, but
already for system description) have two origins: algebra and geometry (of linear vector
spaces). This duality is well illustrated by the parallel works of Wolovich [15] and Wonham
[16]. The confrontation of both points of view has been very fruitful for this area. Thanks to
the algebraic tools alluded to before, similar (indeed very similar) developments have been
made possible for discrete event systems, at least for the subcategory recognized as “linear
systems” (which can also be viewed as timed event graphs in the Petri net parlance), and as far
asalgebraictechniques are concerned. But, admittedly,geemetricdevelopments did not
follow the same path and, in fact, our understanding of geometry in idempotent semimodules
is more limited at this moment.



In the last few years, the authors made some progress in understanding some elementary
geometric notions such as that of projection on the image of an operator parallel to the ker-
nel of another operator [4]. These operators need not be linear — residuated is enough —
and indeed residuation was the basic technique to provide expressions for projectors. Conse-
guently, even when one starts from linear operators, projectors appear to be nonlinear if one
wants to stick to either the max-plus or the min-plus algebra (both algebras need in fact be
mixed in general). However, there are interesting cases when linearity of projectors can be
preserved [5].

This paper is a continuation of this effort to understand some geometric notions in max-
plus semimodules. As already said, projectors have been introduced so far using residuation
techniques which are specific to lattice structures. In conventional Hilbert spaces and in con-
vexity theory,orthogonalprojections are defined by using such notions as scalar or duality
product and minimization of norms. A related and very important topic is that of the Hahn-
Banach theorem in its geometric form, namely the separation of nonintersecting convex sets.
This result is the ground for many fundamental results in convexity (“external” represen-
tations of convex as intersections of “supporting” half spaces, subdifferential calculus for
convex functions) and in optimization (duality and multipliers).

In the present paper, we will focus on what we believe to be analogues of these notions in
max-plus semimodules. After a summary on the basic tools provided by residuation and on
results obtained so far on projections, we will consoi#hogonalprojections, at least special
projections which seem to play that role. Then, we will turn ourselves towards putting these
notions of orthogonal projections in relation with some kind of “scalar products” allowing
us to define kinds of “hyperplanes” which will then be used to state a “separation theorem”.
Despite the fact that our “scalar products” are not really products and that several other analo-
gies we make may seem odd at first sight, we hope that these preliminary results will open
the road to more progress in understanding the geometry of “subspaces” and analogues to
“convex sets” in the framework of idempotent semimodules.

2 Summary about Residuation and Nonorthogonal Projections

2.1 Max-Plus Algebra and Idempotent Semimodules

The max-plus semiringRnax IS the setR U {—oo} equipped with the max operation as
addition (denotedp) and the conventionaf as multiplication (denote@, but this symbol

is often omitted). The zero isoo, which is denoted. The usual 0, denoteg is the unit

for ®, and® distributes overd. Finally, ¢ is absorbing for® (¢ ® x = ¢ for all x), and

@ is idempotentX & x = x). A natural order is associated with any idempotent operation,
namelyx <y < y = y®Xx, and this order (here the usual ordeRiv {—oo}) is compatible

with ® (that is, all elements behave as “nonnegative” elements when multiplying both sides
of inequalities). This natural order endows an idempotent semiring with a sup-semilattice
structure (for whiclxey = x vy is the least upper bound nfandy), and, in the case @& ax,

it suffices to addtoo (denotedT) to the set to obtain aompletesup-semilattice (in which
arbitrary subsets have a least upper bound). The corresponding semiring will be denoted
Rmax Itis a standard result that complete sup-semilattices are also (complete) lattices, which
means that arbitrary subsets have a greatest lower bound (in particular, we xiengtie
greatest lower bound dk, y}). In the case oRmax A is nothing but min. We say that an
idempotent semiring is complete when it is complete as an ordered set, and when the product
distributes over arbitrary sups. For instance, the semiRing is complete. (Notice that, in

Rmax SiNce zero is absorbing® T = —oo+ 00 = ¢ = —00.) It is straightforward to extend



“addition” and “multiplication” to rectangular matrices. In particular, making the semiring
of scalarsRmax act on the additive monoid@&ax, @) of n-dimensional columns vectors by
multiplication, we equid@&ax with a structure of (free, finitely generated) semimodule, in
which addition is idempotent. We warn the reader that unlike vector spaces, idempotent
semimodules areaot free except in very special cases. Although some of our results do
hold for rather general semimodules, we shall only consider, in the sequel, finitely generated
subsemimodules of the free semimooﬂﬁ[}%xz the main interesting features of the theory are

already apparent in this case.

2.2 Residuation Theory

A mappingf : U — X between two ordered setsrissiduatedf it is isotone (that is, order-
preserving), and if, for alkk € X, the subsefu € U | f(u) < x} admits a maximal element,
denotedf?(x). The isotone mapping® : X — U is called theresidualof f. The residual

f# is the only isotone mapping satisfying the following properties:

foff<l, fiofx>1. (1)

A simple characterization holds in the casecompletdattices. Before considering it, let us
introduce some terminology.

WhenU andX are lattices, we say thdt: U — X is av- or supmorphismf f(uvv) =
f(u) v f(v) for all u,v € U (same terminology witm). When the latticed( andX are
complete, we say thdt is v- or sup€ontinuousf f preserves least upper bounds of arbitrary
sets (specializing this property to the empty set, we geh) = f(supg) = supg = e,
where,e denotes the bottom element of an ordered set). The dual propertyidaralled inf-
continuity (in [1], these properties are callledver andupper semicontinuityrespectively).
Finally, if U andX are semimodules, we say thits linear if it is an additive morphism and,
in addition, f (wu) = «f (u) with « a scalar andi € U. Now, returning to our residuation
summary,f is residuated ifff is sup-continuous. In particular, linear mappings between free
finitely generated semimodules are residuated.

The following identities can be easily derived from (1):

foffof=1"f, flofoffi=1f" (hof)!=ffoh?, (2)

wheref, h are residuated mappings with: U — X, h: X — Y.

The notion ofdually residuatednapping is defined naturally by reversing the order in
the above definitions. See [1] for details. We use the notatticior the dual residual of .
An immediate consequence of characterization (1) and its dual is that a residuatdd imap

itself dually residuated anff*)" = f.

2.3 Matrix Residuation

In Rimax, CONsider the mappint, : x — ax for some givera (L is for Left multiplication
by a@). This mapping is linear and thus residuated. Its resitijas denotedy > ayy (left
“division” by a) and is actually the conventional subtractioradfom y with the additional
rule (which results from the very definition}:y e = T (that is,—oo + oo = 400, to be
contrasted withe ® T = ¢ which may also, ambiguously, be written-aso + co = —00).

We denotel the identity map, without reference to the underlying set, which should be clear from the
context.



Similar considerations apply to the left multiplicatian by a rectangular matriA € R
with the following formula:

max’

m
(A\B)y = /\ (Ai\Bj). forl<i<n 1<k<p,
j=1

whereB € Rmax . Therefore, calculating\y B amounts to performing a kind of (left) matrix
product of B by the transposeof A where scalar multiplication is replaced by (left) divi-
sion and scalar addition is replaced by lower bound. Of course, since matrix product is not
commutative, one must distinguish betwdeft andright division, the latter, denoted A,

being the residual of right multiplicatioRa(-) = - ® A. We shall use the following general
residuation inequalities (see [1, Table 4.1]), which hold in particular for rectangular matrices
(of compatible dimensions):

A(A\ B)
(A B)C

B, (3a)
A\(BC) . (3b)

=
=

One must be careful in using expressions sucAasx WhICh as written without parenthe-
ses, are amblguous On the one hand, when for msbarazc&max, A&(Bx) is interpreted as
L% o Lg(x): L o Lg is not in general @-morphism fromRmaX to Rmax On the other hand,

X +— (AX B)x is to be interpreted aslaear operator froanaX to Rmax becauseAx B is,

by definition, the greatest matrix such thatAX < B. In terms of operators, one can prove
thatL’ o Lg > A\ B using (3b).

3 Projections

3.1 Nonorthogonal Projections

This section summarizes results published in [4, 5] on projections dB jparallel to the
kernel of C (denoted ke€), whereB : U — X andC : DC — Y are re5|duated or linear
operators between complete semimodules (say, here Rmax, X = Rmax, Y = Rmax) In
semimodules, it makes sense to definekass the followingequivalence relatioover X:

x T & o Cx)=CE) & xeCCH), (4)

rather than in the more usual wgy € X | C(X) = &} which is not very useful. The

projectioné of x € XX onim B parallel tokerC is such that € im B andé 2 x. Compared
with the analogous notion in conventional vector spaces, one must consider that, in a way,
& — x € kerC is the direction of projection, but notice how the absence of a “minus sign”
is now compensated for. As in the classical case, there are conditions for existence and
uniqueness of such projections, and then one can possibly get an explicit formula for the
corresponding projector in terms BfandC (in linear vector spaces and for matrid@snd
C such thaC B is invertible, the projectorl is equal toB(C B)~1C).

In the present situation, conditions for existence and uniqueness are also known (see [4])
under whichf1§ is given by the expression

M =Bo(CoB)!cC=(BoB0o(C*cC). (5)

Observe that the former expression has a strong similarity with that encountered in vector
spaces, whereas the latter form is written as the composition of two projectors, onéBon im
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and the other one parallel to keér These individual projectors amthogonalprojectors
which are discussed in the next section.

Even if either the uniqueness or the existence (or both) condition(s) is (are) not satisfied,
the operatof1§, defined by (5), acts in an interesting ways (x) is the maximal elemerit
of the image ofB such thalC¢ < Cx (but equality does hold true ¥ is already in imB).

If B andC are not only residuated blihear, and if the uniqueness and existence con-
ditions are both satisfied, then, it turns out tiiH is indeedlinear. More explicitly, the
expressions in (5) which are seemingly nonlinear, boil down to either of the following two
forms:

Mg = (BA(CB))C = B((CB)\C) . (6)

The question arises of when, for a given subsemimodulB B andC are still supposed
linear here), there exists a subsemimodule of the fornCkehich is such that the existence

and uniqueness conditions are satisfied (then the projector is linear as just said), in which
case we say that ifd and kerC aredirect factors> We showed in [5] that this property
holds iff B is regular, that is, if B has a g-inversd®', which satisfies8B'B = B. Then,

the maximal g-inverse i8\ B/ B, andB has a g-inverse ifB = B(BY B/ B)B, which

allows us to check regularity (the expressiBiy B # B is nonambiguous because, in general,
(UNV) AW = UN(V 4 W)).

3.2 Orthogonal Projections

Let B : U — X be a residuated operator with = Eﬂax andX = Enmax. The following
theorem provides equivalent definitions of tiithogonal projectiorllg on im B.

Theorem 1. LetI1g B B Then,

e &£ = I1g(X) is thegreateselement inm B which islessthan x.

e II3 is the projector orim B C X parallel tokerB* c X.

Proof. Looking for & such thatt = Bzfor somez andBz < x, we know that the greatest
solution is provided by = B*(x), hencet = ITg(x), which proves the former statement.
Also, B*(¢§) = B*(x) (from (2)) which shows that the projection is parallel to Bér O

Of course, ifx € im B, TTg(X) = X, which shows that inilg = im B andIlg c B = B.
We callT1g anorthogonalprojector because in standard algebra, Wiéth matrix, keB "
(the transpose oB) is orthogonal to inB, and we believe thaB* plays the role ofB" in
our context. This terminology will also be enforced by the results to come on the separation
theorem.

4 Max-plus Inversion, Scalar Division, and Hilbert's Projective Metric

In Rmax, We consider the transformatior: — X~ &t e/ x = xye. Note that(x™)~ = x,
e =eande” = T.Whenx € Enmzs we setx™ = &,/ X = x§ &, where for allk > 1, &y
denotes th& x k matrix:

e T .. T
def
ch — T e
. T
T ... T e

2The role of the “given” and the “whether there exists” operators can be inverted, that is, the property is a
symmetric one between the image and the kernel subsemimodules.
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In the sequel, we shall simply write instead of®y, and we denote the identity matrix of
any size. The practical rule to compute is: transposethe matrix andnverseits entries.
Again(x~)~ = x,ande” = ®,¢~ = T. We next list some useful properties of the inversion
X +— X~, which follow from the general formuleae of [1, Table 4.1]. Fifgatbb)- =a~ Ab~,
hence(anb)” = a~ @b~. In particular, the mapping — a~ is antitone residuateddually
residuated— in an adapted sense — afgklf-residuated” (both residuals are equal to the
mapping itself). Also(ab)” = bya™ = b~ fa, hencebya = (a b)” andajb = (ba™)~
(avoid division!). Moreoveraa- < ®. For example,

a= (), a =(87), aa =(¢]) .
Howeveray (aa”) = (a"a)fa=a".
We now play withcolumnvectors with entries iRmax We define(x | y) def X~y and
[X Y] d:‘Ekaz y. We shall need the following easy properties, that we state without proof:

L(xIy)=xx)" =@ /x) andix |yl =(y|x)";
2. forallx e R, (x| x) <eand [k | x] > €

max’

3. for scalarsy,
X|y)la={Xfa|y) = (X]|ya) and  aX[x|y]=[Xa|y] =(X|Yyfa) ;

4. for all matricesA, (x | Ay) = (A*(x) | y)and[x | A*(y)] = [Ax | y];
5. the following three statements are equivalent:

(@ (x|x)=e¢
(b) [x | x] =e,
(c) x has at least one finite coordinaté ¢ andT).

6. If (y | X) < eandy < x, theny = x.

Whenx, y havefinite entries, the scalar produgts -) and [ | -] have a remarkable geometric
interpretationi{X | y)®(y | X) = [IX—Y|l«, Where|| - || denotes the sup-norm, afnd| y) ®

(y | X) = [IX — Y|Iln, where||X|ln = maX<j<n Xi — Mini<j<p X; denotes Hilbert’s seminorm.
Hilbert’'s seminorm induces a norm on the additive projective space, which is the quotient of
R" by the additive parallelism relatiorx | y <= X — y is a constant vectok— X =

A ® y for somer € R. In the sequel, it will be convenient to extend the definition of the
associated Hilbert’s additive projective distandg(X, y) = ||[X — Y|/ u, to the case whex, y

have infinite values. The right definition turns out to be:

du(x, y) = (x| yYI®[y|x])"

(since for scalarg, b, (ab)~ = a~b~ except in the exceptional case wh@nb) = (¢, T)
or (T, €), we see in particular thak, (x, y) coincides with(x | y) ® (y | X) when the entries
of x andy are finite). Our generalizatiody of Hilbert’s distance satisfies the following
properties:

di(X,2) < (du (X, y)” @ du(y,27)" (triangular inequality) (7a)
dy(X,y) =0 — x =1 Q®yforsomer e R (definiteness) (7b)
du(X,y) <0 < x=ye s T}" (nonnegativity) (7¢)

(the converse implication holds in (7b) wheny ¢ {e, T}").
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5 Bivectors, Duality and Separation Theorem

n

We callbivectora pair of vectorgx, y). Theorthogonalof the bivector(x, y) € (Emax 2is

the semimodule:

def —
oyt Elze R |12 =(y12].
Theorem 2. Given a linear operator B R°. — R and x € R, TIg(x) is theleast
£ e R such that
imB c (x,&)*.

Proof. Since (x | B(u)) = (¢ | B(w) iff (B*(x) |u) = (B*&) |u), imB C (x,&)™ iff
B*(x) = B*(§). The least sucl is B(B*(x)) becauseB is dually residuated withiB?)" =
B. O

Theorem 3. The bivector(x, ITg(x)) separatesm B from x iff x ¢ im B.

Proof. We know from Theorem 2 that i C (X, l‘[B(x))l. It remains to prove that itself
is notorthogonal to that bivector iff it does not belong to Bnthat is,

(X | X) # (MIg(X) | X) < x&imB.

Indeed, it suffices to prove théat | x) = (I1g(X) | X) = X € im B (which is equivalent to
saying thaix = ITg(x)). If (x| X) = (ITg(X) | X), then(ITg(x) | X) < eaccording to item 2
of §4. Moreover,ITg(X) < X (see Theorem 1), hence both assumptions in item 8l afre
satisfied and we get thétg(x) = X. O

As an immediate corollary of the separation theorem, we get the following duality result,
a variant of which was already proved in [7, C_hn. 3, Cor.1.2.5] (see also [9, Th. 9]). The
orthogonalim B" is the set of bivectorsy, z) € (R, 2 such that(y | u) = (z | u) for all
ueimB.

Corollary 4. We havgim B")+ = im B.

Theorem 3 should be geometrically intuitive: in an Euclidian space, to separate a point
x from a convex seB, a canonical choice is to take an hyperplane orthogonal to the vector
(X, X"), wherex' is the projection ok ontoB. Moreover, the projection minimizes the Euclid-
ian distance. We next give a max-plus analogue of the later property: thelpgiry which
defines the direction of the separating hyperplane in Theorem 3 minimizes the generalized
Hilbert’s projective distancdy.

Theorem 5. For all x € R.

max

Proof. Settingy = Bu and using the inequalities (3) together with items 2 and $ofve
get

and ye im B, dy (X, y) > du (X, [Tg(X)).

dy(x, Buy~ = [x| Bu][Bu]X]

[x | BU] [u | B*(0)] = (x\(Bw)(u\ B*(x))
x\ (Bu(uy B¥(0)) < x\(BB())

(x\ (BB () (B () BF ()

= [x|BBF(0][BB*(X) | X] = du(x, (X))~ ,

A

A

and after inversion, we obtady (x, Bu) > dy (X, TTg(X)). O
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6 Max-plus Affine Spaces and Convex Sets

In this section, we illustrate the above constructions with max-plus convex sets, using the
classical correspondence between projective and affine geometry, which sends convex cones
to convex sets.

A max-plus convex combination of two vectarsv € R
audBv, wherew®dp = e. AsubsetB C R isconvesxfitis stable by convex combinations.

max
We say thatB is finitely generatedf B = vexB for someB ¢ Enmzs where veB = {Bu |

P, ui = e} denotes the set of convex combinations of the columns of a matrike denote
by B € @:::anp the matrix obtained by adding a row of unit element8tdNith any convex
we associate the semimoddiec @2; generated by the vectors of the fodm

setB C R,
whereu € ‘B. In particular, wherB = vexB is finitely generated (as a convex sé)= im B
is finitely generated (as a semimodule).

The results of the above section allow us to separate a point from a finitely generated
convex set, by means of affine hyperplanes. Indeexdbes not belong to the convex set
vexB, X does not belong to the semimodule Bnand by Theorem 3, the bivectox, T (X))
separates from im B. This result can be translated in affine terms by introdugiffipe
hyperplaneswhich are sets of points E&ax solutions of(a|2) ®a = (b| 2) ® B, for
somea, b e R

n .
max IS @ny vector of the form

max @Nda, B € Ryax Such that@a, «) # (b, ). Since

o B(B*X)AE)
[Mg(X) = < Et(B*(x) A E) ) )

whereE denotes thg dimensional column vector whose entries are equa] tet us intro-
duce the affine hyperplane

H(x):{ze@”

max

| (XI2@e=(BEMNAE |J0EENAB ] . (@)

Theorem 3 implies thaH (x) separatex from vexB, i.e H(x) D vexB butx ¢ H(x).
Moreover, Theorem 1 shows that the operai@rdefined by

M (x) = (E'(B*(x) A E)) "B(B*(x) A E) (9)

for all x € R, such thatB?(x) # &, is a projector onto veR.
For instance, the convex set generated by the columns of the nBateix(3 31 3) is the

dark region depicted in Figure 1. The three columns are the extremal pQiNtsM of the

Figure 1: The convex generated by the 3 points (M,N,P) and the action of the projector.



convex set. The projector dbi is

XAYAZ D XA (-DYA32
Mg((X,y,2) = (XAYA32) D (AXAYA4LZ)
XAYAZ

and the action of the projectdty on vexB is represented by arrows. In this figure, we see
that the poin®Q is sent tol1;(Q) and thai(IT;) ~1(P) is the shaded region with vertéx We
have represented some balls of cei@dor the distancel;, obtained by transporting Hilbert’s
projective distance to the affine spaa;(x,y) = du(X, §). Sincellgz(X) minimizes the
Hilbert's projective distance from to im B, ITj;(x) minimizes the distancd, from x to
vexB, a property that is geometrically clear from the shape of the balls.

Before considering separating hyperplanes, it is useful to look at the geometry of affine
max-plus hyperplanes dﬁiax, that we shall callines The general line is defined by an
equation of the formax @ bydc = ax® by &/, forsomea, b, c,a’, b, ¢’ € Rnax but not
so many coefficients are needed. For instance, the lines with equatieny 2= 1IX oy & 3
and X@y = y® 3, coincide. More generally, it is not difficult to see that there are 12 generic
shapes of lines, as shown in Figure 2. Indeed, a generic line can be defined by three real

axdby=ax@®bydc

ax @by =c

axg € = )
by ¢

Figure 2: The twelve generic lines ﬁﬁm

numbersa, b, ¢ plus a “sign” information, which tells the side of the equation in which the
corresponding coefficients is dominant (say"for the left hand side, &” for the right and
side, and a dot when coefficients on both sides are equal). For instance, the line with equation
ax® c = by® cwill be denoted. (&a, Sb, ¢). This notation can be justified by introducing
thesymmetrizeanax-plus semiring [12, 1]. It is fundamental to note that a line with a dotted
coefficient has dimension 2 in the usual sense. There is no point to distinguish algebraically
between lines and half-planes, since for instance an inequality of thexXormy can be
written as an equatior = x @ y. Coming back to our example, the separating keQ),
given by (8),isL(1,2,2) = {(x,y) | IX®y® 2=y & 2}.

Corollary 4 can be rephrased by saying that a (finitely generated) semimodule is exactly
the set of solutions of the linear equations that it satisfies. Translating this theorem to the
affine case, we get in particular that the convexBéx the intersection of the lines in which

9



itis contained. Infact, it is not difficult to see that \Bxs the intersection of the five following
lines:

L1,0,3: Ixey®3=1xa3, L©O,-1,0: x& (-)y®0=(-1ya0,
LO -20:xd(—2)y®0=x, L0Oe&3):xp3=3, L(E00:ydp0=y.

Thefirstline,L (1, 0, 3) is the half-plane whose upper boundary contains the segiierit),
the second lineL (0, —1, 0), has a lower boundary which contains the segm@&htM),
whereas the third linel_(0, —2, 0), has upper boundar¢P, N). The two remaining lines
make vertical and horizontal cutslslt and P, respectively.

More generally, a finitely generated convex set is the intersection of finitely many hyper-
planes. Passing from the set of generators of a convex set to a definition as an intersection
of hyperplanes is a non trivial operation: the only known algorithm is nonpolynomial [3], [7,
Ch. 3] (see also [9, 8]).
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