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1. INTRODUCTION

The mapping limε→0 logε defines a morphism of algebra between the
asymptotics (around zero) of positive real functions of a real number and
the real numbers endowed with the two operations min and plus, indeed:

lim
ε→0

logε(ε
a + εb) = min(a,b), logε(ε

aεb) = a+ b.

This morphism sends probability calculus into optimal control problems.
Therefore almost of the concepts introduced in probability calculus have an
optimization counterpart. The purpose of this paper is to make a presen-
tation of known and new results of optimal control with this morphism in
mind. The emphasis of this talk isi ) on the trajectory point of view by op-
position to the cost point of view andii ) on the optimization counterpart of
processes with independent increments.

2. INF-CONVOLUTION AND CRAMER TRANSFORM

Definition 1. Given two mappings f and g fromR intoR def= R∪{+∞}, the
inf-convolution of f andg is the mapping z∈ R 7→ infx,y [ f (x)+ g(y) |
x + y = z]. It is denoted f�g. When f and g are lower bounded f�g is
also lower bounded.

Example 2. For m ∈ R let us define the convex Dirac function:

δc
m(x) =

{ +∞ for x 6= m,
0 for x = m,

and consider the functionMp
m,σ (x) = 1

p(|x − m|/σ)p for p ≥ 1 with

Mp
m,0 = δc

m . We have the formula

Mp
m,σ�M

p
m̄,σ̄ =Mp

m+m̄,[σ p′+σ̄ p′ ]1/p′ with 1/p+ 1/p′ = 1 .

This result is the analogue of

Nm,σ ∗Nm̄,σ̄ = Nm+m̄,
√
σ 2+σ̄ 2

in the particular case p= 2, whereNm,σ denotes the Gaussian law of mean
m and standard deviationσ and∗ the convolution operator.

Therefore there exists a morphism between the set of quadratic forms
endowed with the inf-convolution operator and the set of exponentials of
quadratic forms endowed with the convolution operator. This morphism is
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a particular case of the Cramer transform that we will define later. Let us
first recall the definition of the Fenchel transform.

Definition 3. Let c∈ Cx, whereCx denotes the set of mappings fromR into
R convex, l.s.c. and proper. Its Fenchel transform is the function fromR
intoR defined bŷc(θ)

def= [F(c)](θ) def= supx[θx − c(x)].

Example 4. The Fenchel transform ofMp
m,σ is

[F(Mp
m,σ )](θ) =

1

p′
|θσ |p′ +mθ ,

with 1/p + 1/p′ = 1. The particular case p= 2 corresponds to the
characteristic function of a Gaussian law.

Theorem 5. For f, g ∈ Cx we have i) F( f ) ∈ Cx, ii ) F is an involution
that isF(F( f )) = f , iii ) F( f�g) = F( f ) + F(g), iv) F( f + g) =
F( f )�F(g).
Definition 6. The Cramer transformC is a function fromM, the set of

positive measures, intoCx defined byC def= F ◦ log◦L, whereL denotes the
Laplace transform.

From the definition and the properties of the Laplace and Fenchel trans-
form the following result is clear.

Theorem 7. For µ, ν ∈M we haveC(µ ∗ ν) = C(µ)�C(ν).
The Cramer transform changes the convolutions into inf-convolutions.

In Table 1 we summarize the main properties and examples concerning the
Cramer transform. The difficult results of this table can be found in Azen-
cott [4]. In this table we have denoted byĂ the interior of the setA.

3. DECISION VARIABLES

The morphism between convolution and inf-convolution described in the
previous section suggests the existence of a formalism adapted to optimiza-
tion analogous to probability calculus. Some of the notions given here have
been introduced in Bellalouna [5]. Another similar and independent work
can be found in Del Moral [8]. We start by defining cost measures which
can be seen as normalized idempotent measures of Maslov [13].

Definition 8. We call decision spacethe triplet (U,U,K) where U is a
topological space,U the set of the open sets of U andK a mapping fromU
into R+ such that: i) K(U) = 0, ii ) K(∅) = +∞, iii ) K

(⋃
n An

) =
infnK(An) for any An ∈ U .

The mappingK is called acost measure.
A map c: u ∈ U 7→ c(u) ∈ R+ such thatK(A) = infu∈A c(u), ∀A ⊂ U

is called acost densityof the cost measureK.

The set Dc
def= {u ∈ U | c(u) 6= +∞} is called thedomainof c.
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TABLE 1. Properties of the Cramer transform.

M log(L(M)) = F(C(M)) C(M)

µ ĉµ(θ) = log
∫

eθxdµ(x) cµ(x) = supθ (θx − ĉ(θ))
0 −∞ +∞
δ 0 δc

δa θa δc
a

e−H (x) H (−θ)− log(−θ) H (x)− 1− log(x)

H (x)
def= 0 if x ≥ O

+∞ elsewhere
λe−λx−H (x) H (λ− θ)+ log(λ/(λ − θ)) H (x)+ λx − 1− log(λx)

pδ + (1− p)δ1 log(p+ (1− p)eθ ) x log( x
1−p )

+(1− x) log( 1−x
p )

+H (x)+ H (1− x)
1

σ
√

2π
e−

1
2 (x−m)2/σ2

mθ + 1
2(σθ)

2 M2
m,σ

Inf. divis. distrib. mθ + 1
p′ |σθ |p

′ Mp
m,σ

Feller [10] with p > 1, 1/p+ 1/p′ = 1
mθ + H (−θ + 1/σ) M1

m,σ
+H (θ + 1/σ)

aθ ∨ bθ, a ≤ b H (x− a)+ H (−x+ b)

µ ∗ ν ĉµ + ĉν cµ�cν
kµ log(k)+ ĉ c− log(k)
µ ≥ 0 ĉ convex l.s.c. c convex l.s.c.

m0
def= ∫

µ ĉ(0) = log(m0) infx c(x) = − log(m0)

m0 = 1 ĉ(0) = 0 infx c(x) = 0

P def= {µ ≥ 0 | m0 = 1} Dc
def= dom(c)

Sµ
def= cvx(supp(µ)) ĉ strictly convex inDĉ D̆c = S̆µ
µ ∈ P C∞ in D̆ĉ C1 in D̆c

m0 = 1, m
def= ∫

xµ ĉ′(0) = m c(m) = 0

m0 = 1, m2
def= ∫

x2µ ĉ′′(0) = σ 2 def= m2 −m2 c′′(m) = 1/σ 2

m0 = 1 ĉ(p
′)(0+) = 0(p′)σ p′ c(p)(0+) = 0(p)/σ p

ĉ = |σθ |p′ /p′ + o(|θ |p′ )

Theorem 9. Given a l.s.c. positive real valued function c such that
infu c(u) = 0, K(A) = infu∈A c(u) for all A open set of U defines a cost
measure. Conversely any cost measure defined on the open sets of a Pol-
ish space admits a unique minimal extensionK∗ to P(U) (the set of the
parts of U) having a density c which is a l.s.c. function on U satisfying
infu c(u) = 0.

Proof. This precise result is proved in Akian[1]. See Maslov[13] for the
first result of this kind. See also Del Moral[8] for analogous results.

We have seen that the images by the Cramer transform of the probability
measures areC1 and convex cost density functions.

By analogy with the conditional probability we define now the condi-
tional cost excess.

Definition 10. Theconditional cost excessto take the best decision in A
knowing that it must be taken in B is

K(A|B) def= K(A∩ B)−K(B) .
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Definition 11. By analogy with random variables we define decision vari-
ables and related notions.

1. A numerical decision vectorX on(U,U,K) is a mapping from U into
Rn. It inducesKX a cost measure on(Rn,B) (B denotes the set of
open sets ofRn) defined byKX(A) = K∗(X−1(A)), ∀A ∈ B. The
cost measureKX has a l.s.c. density denoted cX . When the vector is
of dimension 1 we call it adecision variable.

2. A decision variable is saidregularwhen its cost measure is regular.
3. Two decision variables X and Y are saidindependentwhen:

cX,Y(x, y) = cX(x)+ cY(y).

4. Theconditional cost excessof X knowing Y is defined by:

cX|Y(x, y)
def= K∗(X = x | Y = y) = cX,Y(x, y)− cY(y).

5. Theoptimumof a decision variable is defined by

O(X) def= arg min
x

cX(x)

when the minimum exists. When a decision variable X satisfies
O(X) = 0 we say that it iscentered.

6. When the optimum of a decision variable X is unique and when near
the optimum, we have:

cX(x) = 1

p

∣∣∣∣x −O(x)σ

∣∣∣∣p+ o(|x −O(x)|p) ,

we define thesensitivity of orderp of K by Sp(X)
def= σ . When a

decision variable satisfiesSp(X) = 1 we say that it isof order p and
normalized. When we speak of sensitivity without making the order
precise, we implicitly mean that this order is 2.

7. The numbers

|X|p def= inf

{
σ | cX(x) ≥ 1

p
|(x −O(X))/σ |p

}
and‖X‖p

def= |X|p + |O(X)|
define respectively a seminorm and a norm on the set of decision vari-
ables having a unique optimum such that‖X‖p is bounded. The cor-
responding set of decision variables is calledDp.

8. Themeanof a decision variable X isM(X) def= infx(x + cX(x)), the

conditional meanisM(X | Y = y)
def= infx(x + cX|Y(x, y)).

9. Thecharacteristic functionof a decision variable isF(X) def= F(cX)

(clearlyF characterizes only decision variables with cost inCx).

Example 12. For a decision variable X of costMp
m,σ , p> 1, we have

O(X) = m, Sp(X) = |X|p = σ, M(X) = m− 1

p′
σ p′ .

The role of the Laplace or Fourier transform in the probability calculus
is played by the Fenchel transform in the decision calculus.



BELLMAN PROCESSES 5

Theorem 13. If the cost density of a decision variable is convex, admits a
unique minimum and is of order p, we have:

F(X)′(0) = O(X), [F(X −O(X))](p)(0) = 0(p′)[Sp(X)] p′ .

Theorem 14. For two independent decision variables X and Y of order p
and k∈ R we have

cX+Y = cX�cY, F(X + Y) = F(X)+ F(Y), [F(kX)](θ) = [F(X)](kθ) ,

O(X + Y) = O(X)+O(Y), O(kX) = kO(X), Sp(kX) = |k|Sp(X) ,

[Sp(X + Y)] p′ = [Sp(X)] p′ + [Sp(Y)] p′, (|X + Y|p)p′ ≤ (|X|p)p′ + (|Y|p)p′ .

4. INDEPENDENT SEQUENCES OFDECISION VARIABLES

We consider, in this section, sequences of independent decision variables
and the analogues of the classical limit theorems of the probability calculus.

Definition 15. A sequence of independent decision variables identically
cost of costc on (U,U,K) (i.i.c.) is an application X from U intoRN
which induces a density cost satisfying

cX(x) =
∞∑

i=0

c(xi ), ∀x = (x0, x1, . . . ) ∈ RN .

Remark 16. 1. The cost density is finite only on minimizing sequences
of c, elsewhere it is equal to+∞.

2. We have defined a decision sequence by its density and not by its value
on the open sets ofRN because the density can be defined easily.

In order to state the limit theorems, we define several type of convergence
of sequences of decision variables.

Definition 17. For the numerical decision sequence{Xn,n ∈ N} we say
that

1. Xnconverges weaklytowards X, denoted Xn
w→ X, if for all f in

Cb(R) (whereCb(R) denotes the set of uniformly continuous and lower
bounded functions onR) we havelimnM[ f (Xn)] = M[ f (X)] .When
the test functions used are the set of affine functions we say that it
convergesweakly∗ (w∗);

2. Xn ∈ Dp converges in p-sensitivitytowards X∈ Dp denoted Xn
D p−→

X, if limn ‖Xn − X‖p = 0 ;
3. Xn converges in costtowards X, denoted Xn

K−→ X, if for all ε > 0
we havelimnK{u | |Xn(u)− X(u)| ≥ ε} = +∞;

4. Xn converges almost surelytowards X, denoted Xn
a.s.−→ X, if we have

K{u | limn Xn(u) 6= X(u)} = +∞ .

Some relations between these different kinds of convergence are given in
the following theorem.
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Theorem 18. 1. Convergence in sensitivity implies convergence in cost
but the converse is false.

2. Convergence in cost implies almost sure convergence and the converse
is false.

3. Almost sure convergence does not imply weak convergence.
4. Convergence in cost implies the weak convergence.

Proof. See Akian[2]. In Bellalouna[5] the point 3 has been proved previ-
ously.

We have the analogue of the law of large numbers.

Theorem 19. Given a sequence of independent decision variables belong-
ing toDp, p ≥ 1, identically cost (i.i.c.){Xn, n ∈ N} we have:

lim
N→∞

YN
def= 1

N

N−1∑
n=0

Xn = O(X0) ,

where the limit can be taken in the sense of the weak, almost sure, cost and
p-sensitivity convergence.

Proof. We have only to estimate the convergence in sensitivity. The re-
sults follows from simple computation of the p-seminorm ofYN. It satisfies
(|YN|p)p′ = N(|X0|p)p′/N p′ thanks to theorem 14.

We have the analogue of the central limit theorem of the probability calcu-
lus.

Theorem 20. Given an i.i.c. sequence{Xn,n ∈ N} centered of order p we
have

weak∗ lim
N

ZN
def= 1

N1/p′

N−1∑
n=0

Xn = X ,

where X is a decision variable with cost equal toMp
0,Sp(X0)

.

Proof. We have limN [F(ZN)](θ) = 1
p′ [S

p(X0)θ ] p′.

5. BELLMAN CHAINS

We can generalize i.i.c. sequences to the analogue of Markov chains that
we will call Bellman chains.

Definition 21. A finite valued Bellman chain(E,C, φ) with i) E a finite
set called the state space of|E| elements, ii) C : E × E 7→ R satisfying
infy Cxy = 0 called the transition cost, iii) φ is a cost measure on E called
the initial cost, is the decision sequence{Xn} on(U,U,K), taking its values

in E, such that cX(x
def= (x0, x1, . . . )) = φx0 +

∑∞
i=0 Cxi xi+1 , ∀x ∈ EN.

Theorem 22. For any function f from E intoR, a Bellman chain satisfies
the Markov propertyM{ f (Xn) | X0, . . . , Xn−1} = M{ f (Xn) | Xn−1} .
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The analogue of the forward Kolmogorov equation giving a way to com-
pute recursively the marginal probability to be in a state at a given time is
the following Bellman equation.

Theorem 23. The marginal costwn
x = K(Xn = x) of a Bellman chain is

given by the recursive forward equation:

wn+1 = wn ⊗ C
def= min

x∈E
(wn

x + Cx.) ,

withw0 = φ .
The cost measure of a Bellman chain is normalized which means that its

infimum on all the trajectories is 0. In some applications we would like to
avoid this restriction. This can be done by introducing the analogue of the
multiplicative functionals of the trajectories of a stochastic process.

Theorem 24. The value

vn
x

def= M{
N−1∑
k=n

f (Xk)+ ψ(XN) | Xn = x}

with f,ψ ∈ R|E| can be computed recursively by

vn = F ⊗ C ⊗ vn+1 = f (.)+min
y
(C.y + vn+1

y ), vN = ψ ,

where F is the(|E|, |E|) matrix defined by Fxy
def= fx if x = y and+∞ else-

where. The matrix F can be seen as a normalizing factor of the transition
cost.

6. CONTINUOUS-TIME BELLMAN PROCESSES

We can define easily continuous time decision processes which corre-
spond to deterministic controlled processes with a cost associated to each
trajectory. We discuss here only decision processes with continuous trajec-
tories.

Definition 25. Associated to continuous time decision processes we have
the following definitions.

1. A continuous time Bellman processXt on (U,U,K), with continuous
trajectories, is a function from U intoC(R+) (whereC(R+) denotes
the set of continuous functions overR+ intoR) having the cost density

cX(x(·)) def= φ(x(0))+
∫ ∞

0
c(t, x(t), x′(t))dt ,

with c(t, ·, ·) a family of transition costs (that is a mapping c fromR3

into R+ such thatinfy c(t, x, y) = 0, ∀t, x) andφ a cost density on
R. When the integral is not defined the cost is by definition equal to
+∞.

2. The Bellman process is saidhomogeneous ifc does not depend on the
time t.
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3. The Bellman process is saidwith independent incrementsif c does not
depend on the state x. Moreover if this process is homogeneous c is
reduced to the cost density of a decision variable.

Example 26. The following processes are fundamental.

1. Thep-Brownian decision process, denoted by Bpt , is the process with
independent increments and transition cost density c(t, x, y) = 1

p yp.

2. Thep-diffusion decision process, denoted byMp
m,σ,t will correspond

to the transition cost density c(t, x, y) =Mp
m(t,x),σ (t,x)(y).

As in the discrete time case, the marginal cost to be in a statex at a time
t can be computed recursively using a forward Bellman equation.

Theorem 27. The marginal costw(t, x)
def= K(Xt = x) is given by the

Bellman equation:

∂tw + ĉ(∂xw) = 0, w(0, x) = φ(x) ,(1)

whereĉ means here[ĉ(∂xw)](t, x)
def= supy[y∂xw(t, x)− c(t, x, y)] .

Example 28. Let us give two examples where explicit computation can be
made.

1. For the brownian decision process Bp
t starting from0, the marginal

cost to be at time t in the state x satisfies the Bellman equation:

∂tw + (1/p′)[∂xw] p′ = 0, w(0, ·) = δc .

Its solution can be computed explicitly, it isw(t, x) = Mp

0,t1/p′ (x) .
Therefore we have

M[ f (Bp
t )] = inf

x

[
f (x)+ x p

pt
p
p′

]
.

2. The marginal cost of the p-diffusion decision processMp
m,σ,t starting

from O, satisfies the Bellman equation:∂tw+m∂xw+ 1
p′ [σ∂xw] p′ = 0,

w(0, ·) = δc . Explicit solution is known only in particular cases
for instance when m(t, x) = −αx and σ is constant. This case
gives a generalization of the well known LQ problem. The solution is
w(t, x) = (1/p)q(t)(x/σ)p where q(t) satisfies the Bernouilli equa-
tion

q̇/p− αq + qp′/p′ = 0, q(0) = +∞ .

The backward Bellman equation gives a mean to compute the analogue
of the multiplicative functionals of a stochastic process.

Theorem 29. The functionalv(t, x) = M{ψ(XT ) | Xt = x} , whereψ is
a mapping fromR into R and Xt is a Bellman process of transition cost c
and initial costφ, can be computed recursively by the Bellman equation

∂tv(t, x)+ inf
y

[y∂xv(t, x)+ c(t, x, y)] = 0, v(T, x) = ψ(x) .
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Moreover we haveM[ψ(XT)] = infx [w(t, x) + v(t, x)], ∀t, wherew is
the solution of (1).

Example 30. In the case of the p-Brownian decision process Xt = Bp
t we

have an explicit formula dual of the formula given in the previous example:

v(t, x)
def= M{ψ(XT) | Xt = x} = inf

y

[
ψ(y)+ 1

p
(y− x)p/(T − t)p/p′

]
,

moreover when the initial cost of the brownian isφ we have:

M{ψ(XT )} = inf
x,y

[
ψ(y)+ 1

p
(y− x)p/T p/p′ + φ(x)

]
.

Other explicit formulas involving stopping time, in the particular case
p=2, are given in [15].

Theorem 31. Given n an integer, h= T/n, the linear interpolation of the
Bellman chain of transition cost ch(x, y) defines a decision process with
trajectories inC[0,T ]. This process converges weakly, when n goes to∞,
towards the order p processMp

m,σ,t as soon as:

[F(ch(x, x + ·)](θ) = [m(x)θ + (1/p′)(σ (x)θ)p′]h+ o(h) ,

or equivalently if

i ) OXk=x[ Xk+1− Xk] = m(x)h+ o(h) ,

ii ) Sp
Xk=x[ Xk+1− Xk] = σ(x)h1/p′ + o(h1/p′) .

This result is called min-plus invariance principle. See Samborski and
Dudnikov in these proceedings for related results.

7. CONCLUSION

Let us conclude by summarizing the morphism between probability cal-
culus and decision calculus in Table 2.

Notes 32. Bellman[6] was aware of the interest of the Fenchel transform
(which he calls max transform) for the analytic study of the dynamic pro-
gramming equations. The Cramer transform is an important tool in large
deviations literature[4],[12],[17]. Maslov has developed a theory of idem-
potent integration[13]. In [15] and [7] the law of large numbers and the
central limit theorem for decision variables has been given in the particu-
lar case p= 2. In two independent works[5] and [8] the study of decision
variables have been started. Some aspects of[18] are strongly related to
this morphism between probability and decision calculus in particular the
morphism between LQG and LEG problem and the link with H∞ problem.
In [14] idempotent Sobolev spaces have been introduced as a way to study
HJB equation as a linear object.

We would also like to thank P.L. Lions and R. Azencott for some nice
comments showing us the role of the Cramer transform in the morphism
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TABLE 2. Morphism between probability calculus and de-
cision calculus.

Probability Decision
+ min
× +

Measure:P Cost:K∫
dP(x) def= 1 minxK(x)

def= 0
Nm,σ M2

m,σ

Convolution Inf-Convolution
Laplace Fenchel

Random Variable:X Decision Variable:X

E(X) def= ∫ xd F(x) M(X) def= infx{x +K(x)}
O(X) def= arg minxK(x)

σ (X)
def=
√
E[(X − E(X))2] S2(X)

def= √1/c′′X(O(X))
φ(X)

def= E(eθX) F(X) def= −M(−θX)
logφ(X)′(0) = E(X) F(X)′(0) = O(X)

logφ(X)′′(0) = (σ (X))2 F(X)′′(0) = (S2(X))2

Markov Chain Bellman Chain
Kolmogorov Eq. Bellman Eq.

Stochastic Process Decision Process
Brownian Motion 2-Brownian Decision Process
Diffusion Process 2-Diffusion Decision Process

Heat Equation Quadratic HJB Equation
∂t +m(x)∂x + 1

p′ (σ (x))
p′∂(p

′)
x ∂tv +m(x)∂xv − 1

p′ |σ(x)∂xv|p′
Gaussian Kernel Quadratic Kernel

1√
2π t

e−(x−y)2/2t (x − y)2/2t
Invariance Principle (Min,+) Invariance Principle

between probability and decision calculus. These comments have been an
important step in the maturation process of this paper.
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