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1. INTRODUCTION

The mapping lim.,qlog, defines a morphism of algebra between the
asymptotics (around zero) of positive real functions of a real number and
the real numbers endowed with the two operations min and plus, indeed:

Iimologg(ea + ¢P) = min(a, b), log,(¢%") = a+b.

This morphism sends probability calculus into optimal control problems.
Therefore almost of the concepts introduced in probability calculus have an
optimization counterpart. The purpose of this paper is to make a presen-
tation of known and new results of optimal control with this morphism in
mind. The emphasis of this talk i on the trajectory point of view by op-
position to the cost point of view and) on the optimization counterpart of
processes with independent increments.

2. INF-CONVOLUTION AND CRAMER TRANSFORM

Definition 1. Given two mappings f and g froRiinto R d=EfIRU{+oo}, the
inf-convolution of f andg is the mapping z R > infyy [ f(X) + g(y) |
X +y = Z]. Itis denoted flg. When f and g are lower bounded]g is
also lower bounded.

Example 2. For m € R let us define the convex Dirac function:

+oo0 for X £ m,
On(¥) = { 0 forx i m,
and consider the functiop (x) = %(|x — m|/o)P for p > 1 with
MP o = 85 . We have the formula

MP OME = MP

m+m,[c? +5P]Y/P

,withl/p+1/p'=1.
This result is the analogue of
Nino # Nig = Ny vo7ia?
in the particular case p= 2, whereN,,, denotes the Gaussian law of mean
m and standard deviatiom and* the convolution operator.

Therefore there exists a morphism between the set of quadratic forms
endowed with the inf-convolution operator and the set of exponentials of

quadratic forms endowed with the convolution operator. This morphism is
1
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a particular case of the Cramer transform that we will define later. Let us
first recall the definition of the Fenchel transform.

Definition 3. Let c e Cy, whereC, denotes the set of mappings frdmnto

R convex, |.s.c. and proper. Its Fenchel transform is the function fom

into R defined byé(®) ' [F(0)](0) £ sup[6x — c(X)].

Example 4. The Fenchel transform o¥1p  is
1 ,
[FMRNI0) = HIGGID +me,

with 1/p + 1/p = 1. The particular case p= 2 corresponds to the
characteristic function of a Gaussian law.

Theorem 5. For f,g € Cx we have ) F(f) € Cy, ii) F is an involution
that is F(F(f)) = f,iii) F(fOg) = F(f) + F(), iv) F(f +g) =
F(HOF(Q).

Definition 6. The Cramer transfornt is a function fromM, the set of

positive measures, intg, defined by’ Lro logoL, wherel denotes the
Laplace transform.

From the definition and the properties of the Laplace and Fenchel trans-
form the following result is clear.

Theorem 7. For u,v € M we haveC(u x v) = C(u)IC(v).

The Cramer transform changes the convolutions into inf-convolutions.
In Table 1 we summarize the main properties and examples concerning the
Cramer transform. The difficult results of this table can be found in Azen-
cott [4]. In this table we have denoted Bythe interior of the seA.

3. DECISION VARIABLES

The morphism between convolution and inf-convolution described in the
previous section suggests the existence of a formalism adapted to optimiza-
tion analogous to probability calculus. Some of the notions given here have
been introduced in Bellalouna [5]. Another similar and independent work
can be found in Del Moral [8]. We start by defining cost measures which
can be seen as normalized idempotent measures of Maslov [13].

Definition 8. We call decision spacéhe triplet (U, U/, K) where U is a
topological spacel/ the set of the open sets of U akda mapping froni/
into R such that: ) K(U) = 0, i) K@) = +oo, iii) K(U,A) =
inf, K(A,) forany A, € U.

The mappind is called acost measure

Amapc:ueU — c(u) € R " such thatK(A) = infucac(u), VAC U

is called acost densityof the cost measur&.

The set Q(’=Ef{u € U | c(u) # 400} is called thedomainof c.
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TABLE 1. Properties of the Cramer transform.

Hx) Eoifx> 0

400 elsewhere

|| M | log(L(M)) = F(C(M)) | CM)
m ¢,(0) =log [ eXdu(x) C,.(X) = sup (Ox — €(H))
0 —00 400
$ 0 8¢
8a fa 85
e "™ H(—6) — log(—6) H(x) — 1 —log(x)

)Le—kx— H(X)

HO —0) +log(r/(A —6))

H(X) + Ax — 1 — log(Ax)

ps + (1 — p)d1

log(p+ (1 — p)&’)

xlog(£5)
+(L = x) log(:5*)
+HX) + HAL—X)

- 127 e~ 3(x-m?/o? mé + %(09)2 M2,
Inf. divis. distrib. mé + 5 lo6|P MP,
Feller [10] with p>1, 1/p+1/p =1
mé + H(—0+ 1/0) ML,
+H@® +1/0)
advhl,a<hb H(Xx—a)+ H(=x+Db)
7R €. +¢6, c,.Odc,
ku log(k) + € ¢ — log(k)
nw=>0 ¢ convexl.s.c. c convexl.s.c.
mo &'/ &(0) = log(mo) infy c(x) = — log(mo)
mp=1 ¢0) =0 infxc(x) =0
PLE =0 m=1 Dc £'dom(c)
S LT ) ¢ strictly convexinDg De =S,
nwePp C*® in D¢ clin D¢
mo=1 m% [xu &) =m c(m) =0
mo=1 my % [ Xu &(0) = 02 B m, - m? ¢’/(m) = 1/02

mp=1
¢=10617 /p' + 0(I6]”)

P (0%) =T (p)oP

cP@O) =T(p)/oP

Theorem 9. Given a l|.s.c. positive real valued function ¢ such that
inf,c(u) = 0, K(A) = infyca c(u) for all A open set of U defines a cost
measure. Conversely any cost measure defined on the open sets of a Pol-
ish space admits a unique minimal extensibnto P(U) (the set of the

parts of U) having a density ¢ which is a I.s.c. function on U satisfying
inf,c(u) = 0.

Proof. This precise result is proved in Akian[1]. See Maslov[13] for the
first result of this kind. See also Del Moral[8] for analogous results. ]

We have seen that the images by the Cramer transform of the probability
measures ar€! and convex cost density functions.

By analogy with the conditional probability we define now the condi-
tional cost excess.

Definition 10. The conditional cost exced® take the best decision in A
knowing that it must be taken in B is

K(AB) £'K(AN B) — K(B) .
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Definition 11. By analogy with random variables we define decision vari-
ables and related notions.

1.

W N

7.
| X]p

9.

A numerical decision vectoX on (U, i/, K) is a mapping from U into
R". It inducesKyx a cost measure ofR", B) (B denotes the set of
open sets oR") defined byKx(A) = K, (X 1(A)), YA € B. The
cost measur& x has a |.s.c. density denoteg ¢ When the vector is
of dimension 1 we call it decision variable

. A decision variable is saidegularwhen its cost measure is regular.
. Two decision variables X and Y are sandiependenivhen:

Cx,v (X, Y) = Cx(X) + Cy (Y).

. Theconditional cost excess X knowing Y is defined by:

Cxy (X, Y) E KX =X | Y =y) = Cxy(X, y) — Cy(Y).

. Theoptimumof a decision variable is defined by

O(X) gef arg mincy (x)

when the minimum exists. When a decision variable X satisfies
O(X) = O we say that it ixentered

. When the optimum of a decision variable X is unique and when near
the optimum, we have:
1|x—0x)]|°
Cx(X) = D X=009 +o(Ix = 0",

we define thesensitivity of orderp of K by SP(X) &' 5. When a

decision variable satisfieSP(X) = 1 we say that it i®of order p and
normalized When we speak of sensitivity without making the order
precise, we implicitly mean that this order is 2.

The numbers

1
=linf {a [ ox00 = TIx - @(X>>/a|p} and|| X[lp £ [X|p + 0(X)]
define respectively a seminorm and a norm on the set of decision vari-

ables having a unique optimum such thjat|| , is bounded. The cor-
responding set of decision variables is called.

. Themeanof a decision variable X i#1(X) def infy (X + cx(X)), the

conditional mearis M(X | Y = y) £'inf(x + cxpy (X, Y)).

Thecharacteristic functiowf a decision variable ig'(X) gef F(Cx)

(clearly F characterizes only decision variables with costi).

Example 12. For a decision variable X of cost1f ., p > 1, we have

1 /
OX)=m. 8°(X) = [X|p =0, M) =m— Zo” .

The role of the Laplace or Fourier transform in the probability calculus
is played by the Fenchel transform in the decision calculus.
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Theorem 13. If the cost density of a decision variable is convex, admits a
unigue minimum and is of order p, we have:

F(X)'(0) = O(X), [F(X—0X)]®(0) =T (p)[SPX)]P .

Theorem 14. For two independent decision variables X and Y of order p
and ke R we have

Cxry = Cxoy, F(X4Y) =F(X) +F(Y), [FKkX)]®)=[F(X)]KkI),
O(X+Y) = 0(X) +O(Y), OKX)=kO(X), SP(kX)=KISP(X),
[SP(X +Y)]P = [SP(X)]P + [SP]P, (X + Y < (X][p)P + (YIP .

4. INDEPENDENT SEQUENCES OFDECISION VARIABLES

We consider, in this section, sequences of independent decision variables
and the analogues of the classical limit theorems of the probability calculus.

Definition 15. A sequence of independent decision variables identically
cost of costc on (U, %/, K) (i.i.c.) is an application X from U intdR"
which induces a density cost satisfying
cx(X) =Y _c(X), VX=(Xo,X1....) eR".
i=0
Remark 16. 1. The cost density is finite only on minimizing sequences
of c, elsewhere it is equal tpoo.
2. We have defined a decision sequence by its density and not by its value
on the open sets &'’ because the density can be defined easily.

In order to state the limit theorems, we define several type of convergence
of sequences of decision variables.

Definition 17. For the numerical decision sequent¥,, n € N} we say
that
1. X,converges weaklyowards X, denoted X— X, if for all f in
Cp(R) (whereC,(R) denotes the set of uniformly continuous and lower
bounded functions dR) we havdim, M[ f (X,)] = M[ f (X)] . When
the test functions used are the set of affine functions we say that it
convergesveaklyx (wx);
2. X, € DP converges in p-sensitivityowards X e DP denoted X =
3. X, converges in codbwards X, denoted ,}(ﬁ X, ifforalle > 0
we havdim, K{u | | Xp(u) — X(u)| > €} = +o0;
4. X, converges almost suretgwards X, denoted ,xa—'si X, ifwe have
K{u | lim, X, (u) # X(u)} = 400 .

Some relations between these different kinds of convergence are given in
the following theorem.
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Theorem 18. 1. Convergence in sensitivity implies convergence in cost
but the converse is false.
2. Convergence in cost implies almost sure convergence and the converse
is false.
3. Almost sure convergence does not imply weak convergence.
4. Convergence in cost implies the weak convergence.

Proof. See Akian[2]. In Bellalouna[5] the point 3 has been proved previ-
ously. O

We have the analogue of the law of large numbers.

Theorem 19. Given a sequence of independent decision variables belong-
ing toDP, p > 1, identically cost (i.i.c.{ X,, n € N} we have:

N—-1
. def 1
lim Yy = — Xn = X
NI—>OO N N an:) n ©( 0) 9
where the limit can be taken in the sense of the weak, almost sure, cost and

p-sensitivity convergence.

Proof. We have only to estimate the convergence in sensitivity. The re-
sults follows from simple computation of the p-seminorn¥at It satisfies
(YnIp)P = N(|Xolp)P /NP thanks to theorem 14. O

We have the analogue of the central limit theorem of the probability calcu-
lus.

Theorem 20. Given an i.i.c. sequendeX,, n € N} centered of order p we
have
def 1 =
Weak*h“’] ZN = anzc:)xn: X,

where X is a decision variable with cost equaldf g, x,-

Proof. We have limy[F(Zn)](0) = %[Sp(xo)e] P, O

5. BELLMAN CHAINS

We can generalize i.i.c. sequences to the analogue of Markov chains that
we will call Bellman chains.

Definition 21. A finite valued Bellman chaifE, C, ¢) with i) E a finite
set called the state space |&| elements, ii C : E x E — R satisfying
infy Cy = 0 called the transition cost, i)i ¢ is a cost measure on E called
the initial cost, is the decision sequene,} on (U, U/, K), taking its values

in E, such that ¢(x def (X0s X15++-)) = s+ D ing Cxixar » ¥VX E EN.

Theorem 22. For any function f from E int®, a Bellman chain satisfies
the Markov propertyI{ f (X,) | Xo, ..., Xn_1} = M{f(Xy) | Xn_1} .
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The analogue of the forward Kolmogorov equation giving a way to com-
pute recursively the marginal probability to be in a state at a given time is
the following Bellman equation.

Theorem 23. The marginal cosw} = K(X, = x) of a Bellman chain is
given by the recursive forward equation:

wtl=uw"®C d=Efmin(w)'2 +C),
xeE
withw® = ¢ .

The cost measure of a Bellman chain is normalized which means that its
infimum on all the trajectories is 0. In some applications we would like to
avoid this restriction. This can be done by introducing the analogue of the
multiplicative functionals of the trajectories of a stochastic process.

Theorem 24. The value

N—-1
o EMEY” (X + ¥ (Xn) | Xn =X)
k=n

with f, € R can be computed recursively by
V=F®C®u" = f()+minC,+vy™h), WN=y,
y

where F is the€|E|, |E|) matrix defined by def fy if X = y and+4-o0 else-
where. The matrix F can be seen as a normalizing factor of the transition
cost.

6. CONTINUOUS-TIME BELLMAN PROCESSES

We can define easily continuous time decision processes which corre-
spond to deterministic controlled processes with a cost associated to each
trajectory. We discuss here only decision processes with continuous trajec-
tories.

Definition 25. Associated to continuous time decision processes we have
the following definitions.
1. A continuous time Bellman proce3s on (U, U, K), with continuous
trajectories, is a function from U int6(R*) (whereC(R*) denotes
the set of continuous functions o\t into R) having the cost density

cx(X(-) £ p(x(0)) + / o(t. x(0), X' (t)dt ,
0
with c(t, -, -) a family of transition costs (that is a mapping ¢ frdd
intoR " such thatinfy c(t, X, y) = 0, Vt,x) and¢ a cost density on
R. When the integral is not defined the cost is by definition equal to

+o00.
2. The Bellman process is sdmbmogeneous if does not depend on the
timet.
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3. The Bellman process is saidth independent incremenifsc does not
depend on the state x. Moreover if this process is homogeneous c is
reduced to the cost density of a decision variable.

Example 26. The following processes are fundamental.

1. Thep-Brownian decision procesdenoted by B, is the process with
independent increments and transition cost density>g y) = %yp.

2. Thep-diffusion decision processlenoted byMp, , . will correspond
to the transition cost densityt X, y) = M} ) oa0 V).
As in the discrete time case, the marginal cost to be in a statea time
t can be computed recursively using a forward Bellman equation.

Theorem 27. The marginal costw(t, X) gef K(X; = x) is given by the

Bellman equation:
(1) atw + é(axw) = O’ w(o’ X) = ¢(X) )

where€ means hergf(oxw)](t, X) d=‘3fsupj[yaxw(t, X) —c(t, X, y)] .
Example 28. Let us give two examples where explicit computation can be
made.
1. For the brownian decision process’Btarting from0, the marginal
cost to be attime t in the state x satisfies the Bellman equation:
dw + (1/p)[ow]” =0, w(0,-) = 5.

Its solution can be computed explicitly, itis(t, X) = Mgtl/p, (x) .
Therefore we have

p
M f (B)] = inf [f(x>+ XB} .
X pt p/
2. The marginal cost of the p-diffusion decision procgdg , ; starting
from O, satisfies the Bellman equatidhw-+maxw+[o dxw]” = 0,
w(0, ) = §° . Explicit solution is known only in particular cases
for instance when 1, X) = —ax ando is constant. This case
gives a generalization of the well known LQ problem. The solution is
w(t,X) = (1/p)q(t)(x/o)P where (t) satisfies the Bernouilli equa-
tion
4/p—ad+9°/p =0, q(0) = +oo.

The backward Bellman equation gives a mean to compute the analogue
of the multiplicative functionals of a stochastic process.

Theorem 29. The functionab(t, x) = M{y(Xt) | Xt = X} , wherey is
a mapping fromR into R and X is a Bellman process of transition cost ¢
and initial cost¢, can be computed recursively by the Bellman equation

orv(t, X) + ir;f [yoxv(t,X) +c(t,X,y)] =0, v(T,X) =y (X).
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Moreover we hav®[y (X1)] = infy [w(t, X) + v(t, X)], Vt, wherew is
the solution of (1).

Example 30. In the case of the p-Brownian decision process=XB we
have an explicit formula dual of the formula given in the previous example:
def

. 1 ,
u(t,x) = M{y(X7) | Xy =X} = lgf [W(Y) + B(y_ X)P/(T — t)p/p] :

moreover when the initial cost of the browniarpisve have:
i 1 p p/p’
M{y (X1)} = 'an vy + E(y— X))/ THE+o(X) | -

Other explicit formulas involving stopping time, in the particular case
p=2, are given in [15].

Theorem 31. Given n an integer, h= T/n, the linear interpolation of the
Bellman chain of transition cost,¢x, y) defines a decision process with
trajectories inC[0, T]. This process converges weakly, when n goesto
towards the order p proces$t}, ., as soon as:

[F(Cn(X, X + 9](8) = [M(x)8 + (1/p) (o (x)8)P]h + o(h) ,
or equivalently if
i) Oxex[Xks1 — Xi] = m(x)h 4 o(h) ,

i) SE [ Xipr — Xu] = o (X)hY? 4+ o(h¥P) .

This result is called min-plus invariance principle. See Samborski and
Dudnikov in these proceedings for related results.

7. CONCLUSION

Let us conclude by summarizing the morphism between probability cal-
culus and decision calculus in Table 2.

Notes 32. Bellman[6] was aware of the interest of the Fenchel transform
(which he calls max transform) for the analytic study of the dynamic pro-
gramming equations. The Cramer transform is an important tool in large
deviations literaturd4],[12],[17]. Maslov has developed a theory of idem-
potent integratior{13]. In [15] and [7] the law of large humbers and the
central limit theorem for decision variables has been given in the particu-
lar case p= 2. In two independent work$] and[8] the study of decision
variables have been started. Some aspec{d&jfare strongly related to
this morphism between probability and decision calculus in particular the
morphism between LQG and LEG problem and the link with groblem.
In [14] idempotent Sobolev spaces have been introduced as a way to study
HJB equation as a linear object.

We would also like to thank P.L. Lions and R. Azencott for some nice
comments showing us the role of the Cramer transform in the morphism
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TABLE 2. Morphism between probability calculus and de-
cision calculus.

| Probability Decision |
+ min
X +
MeasureP Cost: K
[dPx) £'1 min, K(x) 20
Nons M2,
Convolution Inf-Convolution
Laplace Fenchel
Random VariableX Decision VariableX
E(X) £ [ xdF(x) M(X) E'inf{x + K(x))

O(X) gef arg min, K(x)
def

c(X) EVE[(X—EX)Z | $%(X) £ I/ O0X)
o (X) 'R F(X) &' _M(—0X)
log ¢ (X)'(0) = E(X) F(X)'(0) = O(X)
log¢ (X)"(0) = (0 (X))? F(X)"(0) = (S*(X))?
Markov Chain Bellman Chain
Kolmogorov Eq. Bellman Eq.
Stochastic Process Decision Process
Brownian Motion 2-Brownian Decision Process
Diffusion Process 2-Diffusion Decision Process
Heat Equation Quadratic HIB Equation
B 4+ MO + 5 (0 (X)) PP | dv + M) v — 2lo () dxv]|”
Gaussian Kernel Quadratic Kernel
e Y (X —y)2/2t
Invariance Principle (Min,+) Invariance Principle

between probability and decision calculus. These comments have been an
important step in the maturation process of this paper.
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