ON AGGRECATICON METHCDS

J.P+ QUADRAT

INTRODUCTION.

The purpose of this paper is to give an informal discussion of ideas
of aggregation wich appear with different names in many fields :
system theory, probability, numerical analysis, econometrics, power systems.
The idea is always the same we make a projection on a more or less well
approximated invariant subspace of the initial linear system.

After a brief discussion of aggregation introduced by Aoki [2,3] and the
dual notion of coherency discussed in Kokotovic [14] we show that the parti-
cularization of this notion to Markov chains gives at least conceptually the
generalization of this notion to non Tinear systems. Then we discuss its
interest to solve linear systems of equations. We give a new result of con-
vergence of iterative aggregation methods explained for example in
Khomyakov 181, which consist in adapting the aggregation in such way that we
can prove the convergence to the exact solution.

We recall the results obtained in finite element methods which show
a way to build the aggregated operators with nice robustness properties.
We show that reversible Markov chains have a variational formulation very
similar to the one used for the approximation of elliptic operators. Final-
ly, we discuss multigrids methods (Brandt 23], Nicolaides [301, Hackbush [241)
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which use the ideas of aggregation to design very fast iterative algorithms
to solve some linear systems obtained by discretization of partial differen-

tial equations.



2. AGGREGATION AND COHERENCY OF LINEAR SYSTEMS.

The aggregation has been introduced in system theory by Aoki L21].
It is a straight forward application of the observability results of
Tinear system, to their order reduction.

Given the dynamic system :

X = Ax
(2.1)
x(0) given

where A is a (N,N) matrix, the observation
(2.2) y = Cx

where C is a (r,N) matrix, r < N, we can define an aggregated model of (1)
by :

y =AYy
(2.3)

y(0) = C x(o)
if it exists a (r,r) matrix A such that :

(2.4)  CA = ch

holds ; that is the kernel of C denoted by N(c) is an invariant subspace of
A : A Nc)<enN(c). ¥(c) is the maximal A-invariant subspace of’RN unobservable
from y. We say that A is C aggregable.

Clearly the dual notion exists it is the coherency point of view
Kokctovic [141. The (N,r) control matrix B defines the aggregated model :
(2.5)

v(o) given

if it exists a (r,r) matrix Ac’ and v(o) such that :



AB = BAB
(2.6)

x(0) = B v(o)

that is R(B) is an invariant subspace of A : A £(B) < E(B). #(B) 1is the
maximal A-invariant subspace controlable by v, of the dynamic system

(2.7) X = Ax + Bv.
We shall say that A is B coherent.

Clearly, weaker notion of aggregability [resp. coherencyl can be
introduced by keeping the observable part [resp. the controlable part] of
the system (A,C) [resp.(A,B)] to obtain an order reduction A.V. Gaitsgori
and A.A. Pervozvanskii [171, E.C.Y. Tse, J.V. Medanic, W.R. Perkins [297.

Specific algorithms for choosing a matrix C are given in Bertrand [19],
Commault [20].



3. SPECIALIZATION TO MARKOV CHAINS AND GENERALIZATION TO NON LINEAR SYSTEMS.

We first specialize the results given in the part 2 to stochastic
matrices A with B and C formed with vectors having disjoint supports.
Then we show that in some sense this particular case is a good conceptual
generalization of aggregation to non linear systems.

We consider the recurrent irreductible Markov chain Xt defined on the
set E = {1,2,...,N} , its (N,N) transition matrix is denoted by M whose
entry M%k denotes the probability to go in x' from x, ¥x,x' e E. pt denotes
the N-vector whose entry p§ is the probability to be in x at time t.

pt satisfies :

t+1
(3.1) p = Mp

t
Given a partition U= {El’EZ"“’Er} we denote by U the (r,N)
characteristic matrix of this partition that is :

1'ifX€E_i

(3-2) U_iX -
' 0 elsewhere

Then, the U aggregation of the matrix M : UM = MU is the strong
Tumpability condition of Kemeny-Snell [5 ]

(3.3) 2 M, =M. ¥X € Ej . VE?’Ej el

The interest of this particular case is the stochastic interpretation
of the (r,r) matrix M as the transition matrix of the aggregated chain Yt
defined by :

(3.4) Y, = UX

t t

that is Yt = Ei when Xt € Ei

The dual notion that is the coherency can be seen as the aggregability
of the reversed chain that is of the Markov chain it of transition matrix
QM'Q'l, with Q = diag {q}, where g denotes the invariant measure of Xt (which
is unique by the irreductibility of Xt). Thus, we can take :



(3.5) B =qu(uu')t

U
B is the conditional probability law q where U denotes the partition
defined by U indeed

(3.6) BX1' =0y = 5 9 VE_i e U , ¥x ek

U - Ua
Thus if the Markov chain Xt is B coherent pt = q pt if p0 = q p0

with Bt the probability Taw of Yt which is a Markov process of transition
matrix M, = UMB. A more detailed discussion of this notions, stochastic and

B
network interpretations, can be found in Delebecque-Kokotovic-Quadrat [31].

It is well known that the discretization of non linear stochastic
systems leads to a discrete problem which can be interpreted in term of
Markov chains. Let us consider the triangular Tinear system

Xp = ApXg
(3.7)
XZ = alxl + a2x2

The corresponding Markov chain is obtained by discretization of the
operator :

] ]
(3.8) Alxl §§1 + (alx1 + a2x2) 5;;

which is defined by the transition matrix Ah : RZXZ +~RZXZ whose non zero
entries

Agl,xzsx1+h,x2 < O’

Azl,ng xphox, © % (Axq)” X < Zh
-2 t]‘1”‘23><1’><2+h = (g a)" xp e Zh

ah h = E (a1x1+a2x2)_

X12%p3XpsXo"

h

- 1-k
Xy XpiXpXp 1 -H{|k1x1[ +lagxg + agx,|}




k can be seen as a discretization step in time.

Than the Markov chain 1iving on Z x Z, of transition matrix Ah gives
an approximation of the solution (3.7) indeed pt solution of

(3.10) pt+1 - Ah pt

converges in law to g, when k and h -~ o. k/h fixed see for example Stroock-
Varadhan ™gl, Kushner 27, Quadrat 28l.

Now if we take for definition of the partition U= {E ., x; € Zh} with

EX = {(xl,xz) s Xy = Zh} the condition of aggregation is 1 satisfied for

the corresponding U indeed

h k +
(3.11) ) A o o1 = T (AgXxq) ¥x e E
R EA s AL X
and
h k -
(3.12) ) A v oot = (Agx0) ¥x e E

X2
and then we have seen that associated to the invariant space Xy =0 in the
formulation (3.7) corresponds a fibration of the space parallel to this
invariant subspace such that there exists an aggregation for the corresponding
Markov chain. Clearly the fact that the fibration is Tinear is not important.
We needs only to find a nonlinear system of coordinate such that the dynamic
has the form

il al(xl)
(3.13)

1

aq(XqsX

Xy = ap(xy%))

" Find such a system of ccordinate corresponds to find invariant distributions of
a vector field Isidori-Krener-Monaco 132]. Thus we see that in some sense the
particularization of the acgregation to the characteristic function of a par-
tition is a generalization to noniinear stochastic systems of the notion of

aggregation for the Tinear ones.



4. ITERATIVE AGGREGATION.

Based on the aggregation ideas of the former paragraph it is possible
to design a class of multi-scale algorithm to solve exactly Tinear systems.
This idea has been used in economic litterature for example V.A. Khomyakov [181,
I.Y. Vakhutinsky-L.M. Dudkin, A.A. Ryvkin [21]. We adapt one of these
algorithm using multigrid ideas to obtain the natural conditions of conver-
aence. This result improves the Khomyakov one .

Let us consider the Markov chain Xt and suppose that we want compute

the cost
+ o0 1
(4.1) Vv, =E { —— f(X,)|X(0) = x} ¥x ¢ E
X téo (1+A)t+1 t
where f : E >RY s seen as a vector belonging to H%N, A is an actualization rate

>\€]R+,}\>O.
V is solution of the Kolmogorov equation

4.2y v=Mv+f

with

T
1+

4.0y =L
1+)

' denotes the transposition.

Until the end of this part we do not write the index ).

The (k+1)th iteration of the algorithm is

k k

compute Bk define by (3.5) with g =V

- Aggregation step : compute pktl

- Given V

solution of

k+1 kk+1 +

(4.5) T = umMB*Y Uf



- Desaggregation ( m relaxation steps)

k k

(4.6) Vy,q= M+ f 1=1,2,...,m"1
—k+1

4.7y V& =8k

k+1 _ k
(4.8) v = Vm
Theorem 1

¥\ > 0, it exists m()\) such that Vk -» V solution of (4.2). Moreover

we have the relation keveo
@.9) & ol wky ek - 1)k

with
(4.10) § =V -V

(4.11) p" =B

Proof : is given for completness in annex 1, but is straight forward from
the Khomiakov one.

Remark 4.1.

The algorithm of Khomyakov [181 is the particular case m = 1, and is
applied for matrix M having the same properties than the transposed matrix
used here, but the conditions of convergence are much more restrictive.

Remark 4.2.

The one stage method of multigrids is similar tc the case where
Bk is independant of k, for example W. Hackbush [247.

Remark 4.3,

Neither the aggregation nor the coherency norperty of part 3 are supposed
to be true here, and in fact with the definition (4.3), the operator U and B
are not applied on the right side.
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Remark 4.4.

To solve the Tinear system (4.5) we can reiterate the same method indeed
UMBk and M have the same property. This is the idea of Multigrid methods see
part 6.

Remark 4.5.

The formula (4.9), in the context of random walk, shows that :

- (I - Pk) is a projector which plays the role of "sTow-pass-filter",

- M plays the role of a "high-pass-filter".
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5. ROBUSTNESS AND VARIATIONAL METHODS.

The point of view used in finite element methods to approximate the
solution of partial differential equation is very closed of the one discussed
in part 3. The main differences are the approximated character of the aggre-
gation and the overlapping support aspect of the columns of B. Never-
theless by this way the "slow part " (restriction to the space cenerated
by the eigenvectors associated to small eigenvalues) is well represented in
the approximate model. We recall some results of Strang and Fix[12 Jon the
approximation of eigenvalues and eigenvectors, discuss this result, and show
that reversible Markov chains have the property which explains robustness by
aggregation based on "grouping matrix".

First let us recall the finite element method on an example.

Given 0 a bounded open set of'IR2 of boundary T enough regular we want

solve.

M = W = f xe0
(5.1)

where 1 e R, u>o, fe¢ LZ(O), B denotes the exterior normal to the boundary of 0.

The operator A =& - \I can be seen as a linear bounded operator from
V= Hl(O)* into identified V' dual of V when we have identified LZ(O) with its
dual.

Given the operators

(5.2)
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The operator

(5.3) A" =cpB :R" —— R"

An

2(0), 2L < L%(p) i = 1,2}

axi

Hl(o) = {vlv e L

defines an anproximation of (£.1).

We have the diagramm

A
V —

B 1 K l c
R"— —~ R"

In general we choose C = B'.

Associated to the symmetric operator A we define the quadratic form

(5.4)  a(W.W) = f W2+ OW.TM dO
0

where V denotes the gradient operator.
The solution of (5.1) minimizes on V, a(¥:¥) - (f, ¥) and the solution
is unique because a is coercive on V that is it exists

o = Min (A,1) : a(W,W) = u|[wH$. With the choice C = B' the solution of

(5.5) T
with

minimize a(BW", BW") - (f, BW") on R". BW" is the best approximation of

(5.1) for the norm defined by (5.4).

In the simplest finite element method we choose B as follows.
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We make a partition of O with triangular sets after having approximated
n
0 by a polyhedra O

For each nodes of this triangularization we associate a "column of B" :
the function piecewise Tinear taking the value 1 at this node and o elsewhere.

We are almost in the situation where the columns of B have disjoint
support. For example on fig. 1 the columns 4 and 8 have disjoint support,
but 4 and 7 overlapp on the dash zone. Moreover the condition of aggregation
and/or coherency AB = BAn or CA = AnC is not satisfied. Nevertheless the
eigenvalues and eigenvectors of A and An are related in the following way
Strang and Fix [127.

6.7 Al <l <l w on?hy?
(5.8)  a(v! - vl vl o vy <onfly?

1 1 th . . 1 1
where A', V' denotes the 1 eigenvalue and eigenvector of A and A Vn

denotes the 1th generalized eigenvalue and eigenvector of (An,CB) that is

11 gyl
(5.9) AV, = A CBV

o is a constant and h is the largest diameter of the triangles of the
partition.

When © is an hypercube, his of order L > N increases like T ¢ 1,...,n
n
(with 1) thus the approximation is good only for the small eigenvalues. This

remark shows that on one hand it would be possible to obtain a Tower order
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model as precise as CAB if we were able to conserve only the invariant
space associated to the eigenvalue which are well approximated in CAB, on
the other hand this construction gives a way to build a space containing
almost the invariant slow spaces of A.

Moreover it is clear that an invariant space of A be]qnging toR(B) is the
image of a ceneralized invariant space of CAB. More cenerallu to have a good ap-

proximation of an invariant space X it is necessary that d(X,R)) = sup Inf d(x.y)
xeX yeR (B)

Fix11=1

The slow eigenspace have a better representation in the aggregated model
than the fast one because the eigenvectors associated to large eigenvalue are
less "smooth" or oscillate more than the slow one.

This property is not true in general but can easily be verified on
this example indeed by definition of the eigenvalue,the eigenvectors V1
satisfies

a(VVV]) a(W“VP) i

v

which implies that

_J vV, WV, dO _J VWV, 0
(4.9) L

J vz]do J v2do
'll

and J VV]VV]dO is a measure of the smootheness of vl. Moreover it is
clear that smooth function will have better approximation in R(B) than very

osciilating ones.

N V1(x) A small p» vy (x) A large
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l.,et us show now that the reversible Markov chains have the same-pro-
perty as that is :it exists a variational formulation which measures the
smoothness of the solution.

Let us consider the reversible Markov of transition matrix M it is an
irreducible recurrent Markov chain and 1f q denotes its invariant measure
Mg = q and Q = diag {q} , M satisfies

(5.10) M=0Q MQ

For such Markov chains to solve

(5.11) AV -V = f with A =M - I
is equivalent to

1 2

5.12)  Mi
(5.12) In ) ,; ;

i J#i
Indeed (5.11) 1is equivalent to
(5.13) Qv - Qv = Qf
but QM 1s symetric than (5.13) is equivalent to
(5.14) M;n - V'QAV + uVv'Qv - 2v'Qf
but

(5.15)  V'OAV = [V, T qai. (V.- V)
1

i#i J

because % a;; = 0.

(5.16)  V'QAV = § Vs 1;j a5 ag;5 (V5 = V5)




- 16 -

because ) 9; 355 =0 which is true because q is invariant measure of M, thus :
.i
AV = - & - -

and (5.17) is a measure of the smoothness of V.

Then for this Markov chain we are in a situation very close of the P.D.E.
one described before and we can hope to have analogous properties when we make
an aggregation by grooping matrices, or finite elements (which, clearly, can be
also used to aggregate finite dimensional systems).
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6. MULTIGRIDS METHODS Fedorenko [331, Brandt [23], Nicolaides [301,
Hackbush 24 ].etc....

This technique is used in the context of the resolution of Targe linear
systems obtained by discretization of partial differential equations. It is
wanted to design an iterative algorithm with a contraction factor independent
of the mesh size. This result is obtained using aggregation ideas. We build
a pyramidal set of more and more aggregated models, the more aggregated ones
giving a good approximation of the "slower part" of the system.

More precisely we have to solve :

(6.0) AX +u =0 with A : V -~ V' Tinear, bounded, coercif.

We use the diagram ueV'
A
v RS
B 1 [
Ny A Ny
R ~ R A = C B,
Beo1 4 S
A
N k-1 N
k-1 k-1 _
R — R Ag-1 = Ck-1ABr-1
B, S
TNl A lwl
R - R A = CAB,
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To solve the approximate problem

(6.1) Aka +U =0 with Cou = U

we use an iterative method which is a numerical integration of the diffe-
rential equation

(6.2) X = AX, + Uy

k k™k

By a correct choice of Ck and Bk’ Ak keeps the propertise of A : all
its eigenvalues are negative. This property insure the stability of (6.2)
and

. _ -1
Lim Xk(t) = - Ao U

T

But the eigenvalues of Ak are spread in general on a very large interval
for example in the case

(6.3) A=A
(6.4) 0 = [o,7]
(6.5  AX = iﬁ VLR U IRV WL ISPV L SR IRV PO R RN
(6.6) h=m/ /NL +1

the eigenvalues of Ak are

= - (f% s1‘n2 %? + f% Sin? %?) m=1,...,
h h

(6.7) Ama

=
1
—
9
:
%%
~ 1 x

and the corresponding eigenvectors are

(6.8) y?’g = Sin m ih Sin n jh
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The eigenvalues are spread on the interval [- nNk, - £] where n and g
are two constants of order 1 and the conditioning factor is £ . Then the

discrete version of (6.2) nNy
n+l n
(6.9) _EE_____EE_ =a X"+ oy
) 0 k™k k

after ontimizing o has a contraction factor of order T%" and (6.9) is an
algorithm in 6Ni Tog Nk to solve (6.1) with a precisioA<of order (T%f)é.
We remark also that the conjugate gradient method has a computational cost
of order (Nk)2 (Nk iterations each one having a cost of order Nk). Direct
methods 1ike Gauss elimination using the sparsity of the matrix gives
algorithm of order Ni/z;

Let us suppose now that R(Bk_l) (resp.IR(Bk_1 Bk—Z) is the right
invariant space of Ak containing the Nk_1 [resp. Nk—2""] sTowest modes and
that R(C, ;) [resp. R(Cé_l C&-Z)"’] is the left invariant space of A, contai-

k-1
ning the N, _, [resp.' Ny _55...1] slowest modes than

Pect = Brop Cyop frespe Ppp =By g Brop Cpop Cpogoeed

is a projector on R(Bk_l) parallel to N (Ck_l).

(6.10) Ze= A T+ oy 4 Prgt oy Prop + oo 0y P17, + U,

with o. > o has the same properties of stability than (6.2) and Zk(t) + Lo
. .1 too
which is such that

[>o]

(6.11) (L4 g Ppq + -ee +0q PPZ_= = AU =X

but the conditioning of the operator of Kk = Ak r+ ...+ aq P1] can be

. = 1,..., k-1 indeed the eigenvalue of Ek are

improved by a good choice of o

kil
A (1 + o) i=1,N
1 '|=1 1 1
k-1
(6.12) { A (1 + 122 o) = Npygseen Ny
\ =N o+ 1,... N
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For example in Ehe cife Nep = N /25 ap_q = loop g = 2 oy _is1

the conditioning of Ak = 5 independently of k that is the eigenvalues of
Ak are spread on the interval [- nNk, - %} Nk].In general it is difficult
to know a good set of operators Bj’ Cj‘ Nevertheless using the continuity
of the eigenvalues with respect to the perturbation of the operator it is
sufficient to find a set of operator BJ CJ having approximatively the
invariance property needed. And, for example, we can take for B a linear
interpollation and for CJ Th]S choice is enough prec1se 1n the
case of discretization of e111pt1c operators to give to Ak a conditio-
ning:< 1, independently of Nk, which leads to an algorithm which solve

(6.1) in GNk log Nk with a precision of (~l~*)6.

Ve

The implementation of the algorithm is a discrete version of

7. = A

(= ATt oy By Loy o B Brp g b 3
(6.13)
Zyen = Crop Cpe Ayt oeq Cpp Aet Dot * Ao Ty Zyp o1t

T+

Ch2 k-1 Uk
The properties discussed here are proved in Hackbush [24] for example.

To show the meaning of the equation (6.13) let us consider the parti-
cular case with only one level of aggregation and A_q = 1

Ly = ALZ + By L1+ Uy
(6.14)
7

k-1~ C

k-1 Ml t At Zeer t G Y

which can be written

Do = M B+ By B+ Uy

k =7k

(6.15) |
Z A

k-1 = Ck-1 Ak Bio1 Zko1 * O TAZ * Ud
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Zk-l is a correction term obtained by solving an aggregate system,
the second equation of (6.15), with a forcing term equal to an aggregate
of the error between Zk and the equilibrium point - Ailuk. In fact, this
is the initial point of view leading to multigrid me thods.
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7. CONCLUSION.

We have discussed the ideas of aggregation and approximated aggregation
and shown its practical interest in designing fast algorithm for solving
Tinear system of equations. The ideas used in multigrid methods can be certainly
extended to the resolution of systems of equations appearing in some network
problems .
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ANNEX

Proof of theorem 1 (adaptation of Khomyakov [187 one) (4.5) and (4.6) gives

(A1) v = mpK Ky g
1 1
Then
m-2
n.2) v ol okl g Ty e
g=0
but
m-2
(A3)  ve=Mta-mtee 3 M
g=0
then
a4y ol owt ool r

We have also by definition of Bk

(A.5) (1 - KWK = (1 - vk

and denoting

(A.6)  fF= (1 - mpk
we have
(A7) (1 MKy (1 - m)h ek = K
which proves that
ky-1 1, ¢k

(A.8) (I -MPHY " - (I -M)7"1f =0
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from (A.4) and (A.8) we have

L T LA Lat I QYL S I ) is IO SRV N
m.10) & o pr - eyt - - ey - 1 6K
TR R LA Lt LA U § VL R AR
12y oL - k)R - 1) 6

From (A.12) and the definition of M we have
k+1 1 .m 2 k
(h13) 1€ < (g™ £ 1186

which proves the convergence of the iteration when X > o for m large enough.
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