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Abstract

A unified treatment of aggregability, lumpability, coherency,
reversibility, partial balance, and similar properties of dynamic network
models and Markov chains clarifies most of the known and reveals some new
conditions for model simplification. Coherency condition, well known in
power systems, implies the existence of a finite state filter for Markov
chains. Aggregability and coherency yield a new condition for decentralized
computation of the invariant measure, which differs from the partial balance
condition. Such conditions are indispensable tools in the study cf large

scale dynamic systems and networks of queues.
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1. Introduction

In as diverse fields as economics, fluid dynamics, vibration
analysis of structures, models of queues, power systems and many others,
concepts of aggregation [1-4,23-30], lumping [5-11], mass condensatiocn
[12,13], coherency [14-19], and partial balance [20-22] appear independently,
but refer to a common set of properties allowing model simplifications. This
paper is an attempt to treat such properties in a»unified manner. The unifi-
cation is possible because of the common decomposition-aggregation pattern.
First, in the original n-dimensional system, N<<n '"local"” subsystems are
identified. Second, each local subsystem is represented by an "aggregate"
variable. Third, an N-dimensional aggregate model is formed describing
the interaction of the aggregate variables.

From a general algebraic formulation in Section 2 we deduce most
of the known and some new conditions for aggregability and coherency of
electromechanical models of power systems {Section 3) and for lumpability
of Markov chains (Section 4). Coherency is shown to be a weak lumpability
property which implies the existence of a finite state filter. In Sectiomn 5
we discuss relations between different conditioms, such as reversibility
and partial balance, under which the computation of the invariant measure
can be decentralized and the residual system can be decomposed into N local

subsystems.



2. Decomposition and Projection Views of Aggregation and Coherency

Aggregation can be seen as a coordinate transformation into a
block-triangular model with the aggregate appearing as an independent diagonal
block, or, equivalently, as a projection of the n original variables x to an
N-dimensional subspace independent of the phenomena in the rest of the
n-dimensional space. To characterize these two aspects of aggregation we
introduce (n,N)-matrix B and (N,n)-matrix C and their annihilators B, and C

such that

BB =0, CC =0; (CB)' and (qul)-l exist (2.1)
/(B)® %C) = R", (2.2)

where & is the range space, 7 is the null space and prime denotes a transpose.
When C is the aggregation matrix, then the transformation of x into a set of

N "ageregate" variables y=Cx and n-N "local" variables z==le is

x= T.X (2.3

where x, ¥, and z are column vectors. The inverse transformation is

-1 -1 . -1
I = [B(CB) ~ i ¢ (B,C) 7). (2.4)

The aggregation is a projection P on &(B) parallel to M(C),
-1
P = B(CBR) “C (2.5)

where obviously PP=P,PB=B, and CP=C. The projection on M(C) parallel to

®R(B) is

o _ -1
P=1I-P = cl(aicl) B, (z2.6)



and, hence, PP=P, PP=PP=0, f’Ci=Cl, and Blf=Bl. A system whose (n,n)-

matrix in the original basis x is A, is represented in the new basis (2.3) by

CAB(CB)_l CAC, (B, C )'l
-1 /]
TAT, = 1 1| (2.7)
B, AB(CB) B, AC, (B, C))

The so-called "C-aggregate"

A = cAB(cB) "t (2.8)

separates from the rest of the system, that is TCAT(-:l is lower block triangular

iff

CAC, = 0 o= A is C-aggregable, (2.9

In coherency TCAT-l

c is upper block triangular, that is

BlAB = 0 <= A is B-coherent. {(2.10)

If both (2.9) and (2.10) hold then TCATE1 is block~diagonal. A further
desirable property would be the "decentralization" of the residual BlAQi(BlQl)—l
into N diagonal blocks representing "local subsystems.”" Although such ideal
properties seldom occur in reality, their study helps us to identify classes

of systems in which they approximately hold. A unified framework for this

study is provided by the following equivalent forms of necessary and sufficient

conditions for C-aggregability and B-coherency.

Proposition 2.1 (C-aggregability): Each of the following statements is

equivalent to (2.9).
2.1.1. A WO = MC) and, hence, A'R(C') =K(C").
2.1.2. There exists projector P such that 7(P) = N(C) and PA= PAP.

2.1.3. There exists projector P such that Q(P) = N(C) and AP = PaP.



2.1.4. There exists AC such that CA = ACC.

2.1.5. There exists AC such that AC, = C.LAC'
Proof is by straightforward verification. As an illustration let

us note from (2.5) that CPA=CA and, from 2.1.2, that

CPA = CPAP = CAP = CAB(CB) C = AC (2.11)

which verifies 2.1.2 <= 2.1.4 and exhibits the same aggregate matrix AC as in
(2.8).

Proposition 2.2 {B-cohereacy): Each of the following statements is equivalent

to (2.10)
2.2.1. AR(B) =R(B) and, hence, A'7(B') =T(B').
2.2.2. There exists a projector P such that ®(P) =&(B) and AP = PAP.
2.2.3. There exists a projector P such that 9A(P) = R(P) and PA=PAP.
2.2.4. There exists AB such that AB = BAB.
2.2.5. Tﬁere exists AB such that BLA';ABBL‘
Matrix A is both C-aggregable and B-coherent 1iff any ome of the
statements of Proposition 2.1 and any one of the statements of Proposition 2.2
hold simultaneously. In particular, T AT_l is block-diagonal iff 2.1.2 and

¢ C
2.2.2 hold, that is iff

PA = AP. (2.12)

If the variables are arranged as row-vectors, then we employ B as
the aggregation matrix in the transformation of row-vectors
-1
-1 (CB) “C

T.=[B C], T, = . (2.13)
B B -1
(Hﬁ) B,

Then B-aggregability of A is the property that the transformed matrix



-1 (ce) "Lcas (CB)”ICACl
Ty ATy = -1 -1 (2.14)
(B,C;) "B AB (3,C ) "B AC

be lower block-triangular, and the C-coherency is that T;IATB be upper block-

triangular. The aggrepate is the same as in 2.2.4, that is
-1
AB = (CB) “CAB. (2.15)
The corresponding decomposition
R(C)eN(B') = R" (2.16)

ig dual to (2.2) and the projectors are P' and P'. Clearly, if A is
C-aggregable then A' is C'-coherent. If A is B-coherent, then A' is
Bf-aggregable. Therefore Propositioms 2.1 and 2.2, respectively, are also
necessary and sufficient for C'-coherency and B'~aggregability of A'. The

aggregates A_ and AB are similar matrices

c

ay = (CB)MAL(CB), hemce B = 1= 4= ac=k (2.17)

Furthermore, (2.12) is necessary and sufficient for the two pairs of pro-
perties to hold simultaneously.

Let us give a system theory interpretation of these concepts.
In dynamic systems C-aggregability indicates that an output y=Cx is an

N-dimensional aggregate of the n-dimensional state X,

'cdl'i'c" Ax, y=Cx, CA= ACC => § o= Acy, vt, Vx(O)eRn (2.18)

that is n © is the maximal A -invariant subspace of Rp'unobservable
from y, [2,3,4]. The less familiar B-coherency concept is implicit in

economic literature [ 1] and more explicit in power system practice when



synchronous machines which "'swing together' after a disturbance form "coherent
areas" [14-19). If the disturbance is modeled as an N-dimensiomal input v and

the input matrix is B, then B-coherency means that

d
d—: = Ax + Bv, x(0)€R(B), AB = Ba, <« x(t)ER(B), Vv(t)ERN, Ytz 0 (2.19)

that is R(B) is the maximal A-invariant subspace of Rn controllable by v,

3. Agzregation and Coherency in Networks

In networks and Markov chains B and C depend on the partition into
groups (areas) and the weights with which members of groups enter the
aggregates., Let a set E={1,...,n} of n states, machines or similar elements
consist of N groups U= {J|JCE, UJ=E, NJ=¢} and denote by U the (n,N)-
partition matrix whose (i,J)-entry is

1 if 1€7J

u, ;= Vi€eE, VJelU. (3.1)
0 if i¢J

For example, if in the network in Fig. 1 the set of n=5 nodes

E={1,2,3,4,5} is partitioned into N=2 groups {1,2,4} and {3,5}, then

ie {1,2,4} = J=1

i€ {3.5} =J=2 . (3.2)

I

"
O OKH+
HFOROO

We consider aggregation with only one aggregate variable per group

and form B and C using U, a weighting matrix W, and a scaling matrix §



g = i = J'"WU = di

W dlag(wl,---,wn), S=U"WU dlag(sl,...,sN) (3.3)
with all weights vy positive. It is useful to note that S3 is the sum of
weights in group J

s.= T w,, J=1,...,% (3.4)

I se7d
and that S-lU'W scales each sum of group weights to 1. Thus for U in (3.2) we

have sl=wl+w2+w4, sz=w3+w5 and

~ "
w., W w
T £ 0 & oo

1 1 51 1
S TU'W = . (3.3)
Y3 Vs |

0 0 ;;— 0 ;:-

9 2 2-

For our study of networks and Markov chains we choose

1

B=U, C=85 U'W=P=1UC (3.6)

and specialize the aggregability and coherency conditions not only for A, but
also for

latw = g=p, (3.7)

A =W
which will be helpful in subsequent applications. From the equivalent

relations

1 1

CA = AC == U'WAW ~ = SAS -U'
e A = DA (3.8)

e A is B-coherent

we make the following conculsion



Corollary 3.1:

3.1.1. A is C-aggregable = A is B-coherent
3.1.2. A is B-coherent «= A {s C-aggregable.

A further observation is that if AP = AP, that is if
AUC = AUC (3.9)

then the aggregate matrices A= CAB and E- CAB are equal, §=§, and the aggre-
gability and coherency imply each other.

As an application we consider networks consisting of n
storage nodes connected by branches without storage effects. Typically the

state equations of such networks are

dx a?x -1
(a) === Ax or (b) —5x = Ax, A=M K (3.10)
dt dt2

where M==diag(ml,...,m2) characterizes node storages and K represents the
branches. For example, 1f (a) is an RC network, then the entries of M are

capacitances and the entries of K are resistances. If (b) is 2 mass-spring

RreA
™May T=f

Fig. | ™,



system then M is the mass matrix and K is the stiffness matrix. When the
eigenvalues A of A are real nonpositive, then the same analysis applies to
both (a) and (b), except that instead of 8" and A in (a), the state space in

) is R°D

and the nonzero modes j:/x are oscillatory. To be specific, we
will consider (b) in (3.10) as a linearized electromechanical model of a
power system in which m; is the inertia of the i-th synchronous machine (node i)

and K is the lossless admittance matrix reduced to the machine nodes. An

example is the power system in Fig. 1 where

M = diag(5,1,4,1,1), K = (3.11)

H oD
OO Wwho
|
N = O N
OWwWrrom
WOMNMOPKH
.

Commonly used aggregate variables for such networks are the area centers of
inertia

1 = _ s =
y; == I mx,, @ T j=1,...,N (3.12)

where ﬁJ is the aggregated mass of area J. With B=TU, M=V, and hence

S=M=U'MU, the vector form of (3.12) is
=1
vy=M U'Mx = Cx. (3.13)

Network matrix At=M—1K ic aggregable with respect to the centers

of inertia (3.12) for the partition 4 iff

1

- -1 -1
UM "U'R = UM TU'KUM U'M. (3.14)

which is a consequence of 2.1.2. The aggregate network consists of masses

ﬁl,...,ﬁN connected with springs whose stiffness matrix is K, since

- -1 -
A=CAB=M K, K= U'KU. (3.15)
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It can be readily verified that M and K in (3.11) and Fig. la satisfy (3.14)

for partition (3.2) and that the resulting network
M= , K= R (3.16)

represents the two machine system in Fig. 1b. The meaning of (3.14) is clearer

from the equivalent condition
S
U'RM v =0 (3.17)

which is a consequence of CACl =0, see (2.9), and CJ. -M-lUl', where UJ_ is a

full rank (n-N,n) matrix such that ULU==0. To select ql we pick in each

group J a "local reference" xj, 3eJ, and as local variables z define xi-xj,

VYie J, i#j, that is

-1 0 0 0 xz—xl
z=Ux=|-1 0 0 1 Ofx= X, =%, (2.18)
0] o -1 0 1 X=X,

where we have shown UL and z when in (3.11) the reference of

{1,2,4} is X and the reference of {3,5} is x From (3.17) it follows that

3-
M-lK is aggregable with respect to (3.13) iff

1 1
= I k,==— I k,_, Vi,red, View. (3.19)
my oge; 4 m, gey ir PEES

The local reference form of Ul is also convenient for an interpretation of
coherency. From (2.19) and (3.18) coherency is the property that
x(0)€ Q(U) &= z(t) = 0, Vvt _ (3.20)

which is an analytic expression of the practical observation that 'the

machines in the same area swing together,' since

z(t) = 0 o= xi(t) = xj(t); vt, Vi,jeJ, VIel . (3.21)
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A set of scalar coherency conditions similar to the aggregability conditions
(3.19) can be obtained from

UlM-l‘KU =0 (3.22)
which is a consequence of (2.10). Finally, using {3.17) and (3.28), we see
that M_lK is both aggregable and coherent iff

u M KU = UM KD = 0. (3.23)
The épecial case when K is symmetric and, hence, A=A has appeared in the

coherency based aggregation of power systems [17-18].

4, Lumpability, Coherency, and Finite State Filters of Markov Chains

In this section we first review the notion of lumpability [5] of a
recurrent Markov chain Xt defined on E= {1,...,n}. Then we show that coherency
is a form of weak lumpability and that under the condition of coherency there
exists a finite srtate filter for Xt'

Let oF =€(Xt+l= j [Xt= 1) be the (i,j)-entry of the transition
probability matrix A of Xi, and p(t) be the row n-vector whose i-th component

is pi(t)=6’(xt=i). Then
p(t+l) = p(L)A, t=0,1,2,... &.1)

As in (3.1) we partition E into N groups U and define the %-valued

process Yt such that

Y = J  whenever X = je J. (4.2)
We point out that Yt does not have to be a Markov process. TFollowing [5, page
124] Markov process Xt is called lumpable with respect to partition U iff Yt

is a Markov process on 9, that is iff row N-vector r(t), whose J-th

component is rJ(t)=6%Yt=J), satisfies



1z

r(t+l) = r(t)d, t=0,1,2,... (4.3)
for some (N,N) stochastic matrix A and all initial probability measures
p(0) of Xo' By (4.1), (4.2), and (4.3)
r(t+l) = p(t+1)U = p(t)AU = r(t)A = p(t)UA, t=0,1,2,... (6.4)
holds for all p(0). EHEence, Xt is lumpable iff
AU = UA | (4.5)
or, equivalently, iff

-3 VieJ, K=1,...,N (4.6)

kex S3k TR
that is iff the probability for Xt to go from i€J to group K depends only on
J, and is independent of j.

Corollary 4.1: Markov chain Xt is lumpable with respect to partition ¢ iff its

transition matrix A satisfies Proposition 2.2 with B = U, that is AU = Uag. Then

1

Ay = R o= CAB = §U'NAU = (U'0) U AU (4.7)

is independent of the choice of W in (3.3).
Markov chain Xt is called "coherent with weight W" iff, as in

Proposition 2.1,

Ly, (4.8)

C(w)A = AC(w), C(w) =S
In this case the invariant measures q of A and q of A are related by
JC(W)A = GAC(W) = gC(w) = g (4.9)

which in view of CU=1, implies that

q = qU (4.10)
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From (4.9) and (4.10) we see that coherency is possible only with

the weight W satisfying

" 43
T T = CJj(q); jeJ, 0 elsewhere (4.11)
€I 3 €3]

CJj (w) =

and has the following probabilistic interpretation.

Corollary 4.2: If Markov chain X is coherent with weight W then C(w) = C(q)==q‘u
is the conditional law of q, the invariant measure of A, knowing the partition
2. Moreover if the initial probability measure p(0) of Xt is in the row space
of C, p(0)=r(0)C, then Yt in (4.2) is a Markov chain with the transition
matrix A in (4.7) and its invariant measure g is gqU.

It should be pointed out that coherency and lumpability (i.e., aggre-
gability) are different properties, each being a sufficient condition fer the
weak lumpability as defined in [5].

An important consequence of coherency is the existence of a finite state

filter
m(t) = conditional law of X _ knowing S SPPRIN O (4.12)

In general 7(t), t=0,1,..., can visit an infinite set of points in the simplex

4 of Rn,

n
J= {rer%:7.20, I m, =1} (4.13)
i i=1 1

In the case of coherency {4.11), however, if there exists r(0) such that
7(0) =r(0)C, then filter w(t) visits only N points qJ of 4, where qJ is the
J-th row of C. Its j-th component qg, j=1,...,n is the conditional pro-
bability for the invariant probability measure of A, of an event to be in j,
knowing that it is in J. Thus w(t) is a process on 2 whose law at time t

belongs to the set of probability measures wﬁxé) on J. This process is a
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finite state Markov chain whose states are the points qJ,.I-]"...,N.

The JK-entry of its transition matrix is

K

@ (r(t+1) = g |r () = q) = A = Ta (4.16)

where IF is the indicator vector of the set K, c:'J is the J~th row of C and uK
1s the K-th column of U.

When A is both lumpable and coherent the calculation of its
invariant probability measure q is "decentralized." To show this we denote
by A‘IK the submatrix of the transitions from j€J to kK. Then the conditions

(2.12) for simultanecus aggregability and coherency can be written as

JJK _+ K

QA DK=L, N (4.15)

where qi is the row vector of the entries of qJ for j€J. Thus qi is the

invariant measure of AJJ normalized by A

JJ’
JJ
qi = qi %—— . (4.16)
JJ
Since
A = =1,... 4.17
AJ‘J k,éJ ajk’ jed, J=1, N (4.17)

we see that qi is obtained by solving the J-th local problem (4.15) with J=K.

Corollary 4.3: Invariant measure q of a Markov chain Xt which is aggregable

and coherent with respect to partitiom % is given by

- J
= i 4.18
qj quj, vieJ, WelU ( )

- . . . J . .
where q is the invariant measure of the aggregate chain Yt and qj is obtained

from (4.16).
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Let us illustrate the notions of aggregability and coherency and
the existence of a finite state filter by the simple three state chain in

Fig. 2a, whose transition matrix A and invariant measure q are

B 2 1
C 3 3
i 1 -1 & 2
A=17 3 0f e=13 3 gl (4.19)
1 1
2 0 3

This chain is both lumpable and coherent with respect to partition 4 defined by

1 0
U=;0 1 (4.20)
0 i
and the transition matrix A of the aggregate chain Yt is
0 i
A=|1 1 (4.21)
2 2

and is given in Fig. Zb. Due to coherency the optimal filter based on the
observation whether Xt is in class J=1, or in class J=2, is itself a two-
state Markov chain. Its transition matrix is the same as in (4.21) and
its states are indicated in Fig. 2c¢, where the simplex 2 is the triangular

sector W, 2 o+ T+ .
1'0’ 1 "2 TT3=l

5., Partial Balance and Decentralization

For a2 Markov chain Xt with invariant measure g and transition matrix

A the reversed Markov chain X is defined by the transition matrix A==Q-1A'Q,



N>

18/

(a)

(&)

(¢)

Fig. Z
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where Q=:diag(ql,...,qn). We note that with Q=W matrix A is the same as in
(3.7). Chain Xt is called reversible if A=A. 1In a reversible chain every

possible path Cﬁj between states i and j,

iy = 130, Gpa3g) s (s )] (5.1)
has the property that

9 Sxk "

—_—= I (5.2)
UG kkDe, Tk
3
and, hence, q can be obtained by scalar computations. A property less
restrictive than reversibility of A is the sc-called partial balance
U'QA = U'A'Q (5.3)
which for P=P=1UC is equivalent to
AP = AP (5.4)
or, in scalar form,
fqg.a, = Iqa . =q ZLa., VIk. (5.5)
je3 13k yey K K3 k jer K

This condition, introduced by Kelly [20 ], allows & decentralized computation
of the invariant measure g of A:

Proposition 5.1: If the partial balance condition (5.3) is satisfied then

- J - .
qj quj where q; 1is defined by

a; = Ig (5.6)

3eJ 3

which is obtained by solving the aggregate problem

94 = q; (5.7)
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and we can find conditional probabilities

q
¢ ==l, jes (5.8)
| 93
solving N local problems
J . JJ J.J
q+A = gD, J=1,...,N (5.9

where AJJ and qi are defined as in (4.15) and

DJ = diag( L a K’ j€n). (5.10)
keJ A

Although neither aggregability nor coherency have been assumed,
the aggregate matrix K==S-1U'QAU of (4.7) with W=Q appears in (5.7). To see
that this is due only to the partial balance, we multiply (5.3) by U from the

right and by the row N-vector eN=-[l 1 ... 1] from the left,

e Vot -
eNSS U QAU = e U A QU enQU g (5.11)

N
where eNU'A'==en, because A is a stochastic matrix.

The relationship between partial balance, aggregability, and
coherency can be deduced from Corecllary 3.1 and (5.4). Under the condition

of partial balance, aggregability and coherency imply each other and the

aggregate chain A is reversible

- =—l_

A=Q A Q. (5.12)

On the other hand aggregability, coherency, and the reversibility of the

aggregate chain imply

AP = PA = PAP = PAP = AP = PA (5.13)

which is the partial balance property. When applied tc queuing networks,

the partial balance leads to the "product form" property [21,22] which is one of



18

the most useful, if not the only tool for computing the invariant measure
of a large scale network of gueues.

A further step in the decentralization is to require this property
not only for an eigenvector (invariant measure) of A, but for the whole
matrix. We already know that aggregability and coherency guarantee the
existence of the block-diagonalizing transformation (2.7), that is the
separation of the aggregate A= CAB from the residual matrix BLACL(BLCL)—l‘
We now give necessary and sufficient conditions under which the off-diagonal
blocks of the residual matrix are zero.

Proposition 5.2: If A is C-aggregable and B-coherent a necessary and

sufficient condition for the residual matrix to consist of N diagonal blocks

is that the (L,J) block of A for L#J; L,J=1,...,N be of the form

)% S J
AT = 4 e ®a, (5.14)
L
that is
atd = 3 | ViEL, Vi€J (5.153)
23 LJ 3.’ i ’

J

where ny is the number of the elements in the group L, and (® is the tensor
product.
Proof: Since P=1I-P is block-diagonal we have

(ﬁAﬁ)LJ - fLLALJPJJ (5.16)

and, since in view of aggregability and coherency
PaP = AP = Pa, (5.17)

the proof will follow if

sLL,LT _ ,LIg3J

P ATTP 0, VL#J. (5.18)

J

For (5.18) to hold A™ must be of the form
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A = ke &qi (5.19)

D.L

where k is a scalar. From coherency

L. 13 - J
q+A =& 9, (5.20)

and hence k-iLJ.

5. Conclusion

We have developed a unified framework which encompasses various
aggregability-lumpability conditions. The aggregation matrix, either C or B',
can be chosen to define meaningful aggregate variables such as centers of
interzia or probabilities for lumped states. Matrices BL and Ci express common
properties shared by the members of the same group, such as coherency. These
properties can be weaker than aggregability and allow aggregation for
restricted sets of initial conditions.

We have shown that coherency, defined in econometrics and in power
systems,also implies the existence of a finite state filter for Markov chains.
Aggregability (coherency) of a chain implies coherency (aggregability) of the
reversed chained. Aggregability and coherency yield a new condition for
decentralized computation of the invariant measure. This condition differs
from the well-known partial balance condition. A necessary and sufficient

condition is also given for decomposability of the residual system into N

local subsystems which are coupled through the N-dimensional aggregate.

Acknowledgment

The authors express their thanks to Professors Bruce Hajek, University

of Illinois and Guy Cohen, Ecole des Mines. for helpful criticism and comments.



10.

11.

12.

13.

14,

20

References

H. A. Simon and Ai Ando, "Aggregation of Variables in Dynamic Systems,"
Econometrica, Vol. 29, pp. 111-138, 1963,

M. Aoki, "Control of Large Scale Dynamic Systems by Aggregation," IEEE
Trans. on Automatic Control, Vol. AC-13, pp. 246-253, 1968.

M. Acki, '"Some Approximation Methods for Estimation and Control of Large
Scale Systems," IEEE Trans. on Automatic Control, Vol. AC-23, pp. 173-181,
1978.

E. C. Y. Tse, J. V. Medanic, and W. R. Perkins, "Generalized Hessenberg
Transformations for Reduced-Order Modeling of Large-Scale Systems," Int,
J. Control, Vol. 27, No. &4, pp. 493-152, 1978.

J. G. Kemeny and J. L. Snell, Finite Markov Chains, Van Nostrand, Princeton,
N.J., 1967.

V. G. Gaitsgori and A. A. Pervozvanskii, "Aggregation of States in a
Markov Chain with Weak Interactioms," Kybernmetika, pp. 91-98, May-June,
1975.

A. A. Pervozvanskii and V. G. Gaitsgori, Decomposition, Aggregation, and
Approximate Optimization (in Russian)}, Nauka, Moscow, 1979.

P. J. Courtois, Decomposability: Queuing and Computer System Applications,
Academic Press, New York, 1977.

F, Delebecque and J. P. Quadrat, "Optimal Control of Markov-Chains
Admitting Strong and Weak Interactions,'" Automatica, Vol. 17, No. 2,
Pp. 281-296, 1981.

R. G. Phillips and P. V. Kokotovic, "A Singular Perturbation Approach to
Modeling and Control of Markov Chains," IEEE Trans. on Automatic Control,
Vol. AC-20, Oct. 1981.

H. T. Vantilborgh, R. L. Garner, and E. D. Lazowska, "Near-Complete
D-composability of Queueing Networks with Clusters of Strongly Interacting
Servers,”" ACM, pp. 81-92, 1980.

A. Jennings, "Mass Condensation and Simultaneous Iteration for Vibration
Problems,"” Int. J. for Numerical Methods in Engineering, Vol. 5, pp. 343-
552, 1973.

G. Strang and J. Fix, An Analvsis of the Finite Element Method, Prentice-
Hall, 19873.

1

R. Podmore, "Identification of Coherent Generators for Dynamic Equivalents,’
IEEE Trans. on Power Apraratus and Svstems, Vol. PAS-79, pp. 1344-1354,
1978.




15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28,

29.

30.

21

U. DiCaprio and R. Marcomato, "Structural Coherency Conditions in
Multimachine Power Systems,' Proc. of IFAC 7th Triennial World Congress,
Helsinki, Finland, pp. 35-45, 1978.

J. Lawler, R. A. Schlueter, P. Rusche, and D. L. Hackett, 'Modal-
Coherent Equivalents Derived from an RMS Coherency Measure,' IEEE
Trans. on Power Apparatua and Systems, Vol. PAS-99, pp. 1415-1425, 1980,

B. Avramovic, P. V. Kokotovic, J. R. Winkelman, and J. H. Chow, “Area
Decomposition of Electromechanical Models of Power Systems,' Automatica,
Vol. 16, pp. 637-648, 1980.

P. V. Kokotovic, B. Avramovic, J. H. Chow, and J. R. Winkelman, "Coherency
Based Decomposition and Aggregation," Automatica, Vol. 17, No. 6, 1981.

S. Sastry and P. Varaiya, "Coherency for Interconnected Power Systems,'
IEEE Trans. on Automatic Control, Vol. AC-26, pp. 218-226, 1981.

F. P. Kelly, Reversibility and Stochastic Networks, J. Wiley, 1979.

C. H. Sauer and K. M. Chandy, "Approximate Solution of Queuing Models,"
Computer, pp. 25-32, April 1980.

C. H. Sauer and K. M. Chandy, Computer Systems Performance Modeling,
Prentice-Hall, 1981.

V. G. Gaitsgori and A. A. Pervozvanskii, "Aggregation of Linear Control
Systems,” Automatika i Telemekhanika, No. 8, pp. 88-35, 1980.

V. A. Khomyakov, "Generalization of One Proof of Convergence of a Process
of Iterative Aggregation for Solving Systems of Linear Equatioms,”
Automatika i Telemekhanika, No. 7, pp. 170-173, July 1973.

C. Commault, "Optimal Choice of Modes of Aggregation,' Automatica, Vol.
17, No. 2, pp. 397-399, 1981.

B. I. Vaklnetisky, L. M. Dudkin, and A. A. Ryvkin, "Iterative Aggregation-
A New Approach to the Solution of Large Scale Problems," Econometrica,
Vol. 47, No. 4, pp. 821-841, 1979.

P. Bertrand, G. Michailesco, J. M. Siret, '"Sur la synthese de modeles
reduits par agregatiom," RAIRO, Vol. 10, Ne. 7, pp. 105-112, July 1976.

W. Whitt, "Approximations of Dynamic Programs I and II," Math. of
Operat. Research, Vol. 3, No. 3, August 1978; Vol. &4, No. 2, May 1979.

A. Brandt, "Multilevel Adaptive Computations in Fluid Dynamics,' AIAA
Journal, Vel. 18, No. 10, Oct. 1980,

W. Hackbush, '"On the Convergence of Multigrid Iterations,"” Bertrage zur
Numerischan Mathematik, Veol. 9, pp. 213-239, 1981.




