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Abstract. For timed event graphs, linear models were obtained using dioid algebra. After describing
backward equations which solve an optimal tracking problem and which introduce co-state variables,
this paper presents preliminary results concerning the matrix of ‘ratios’ (i.e. conventional differences)
of co-states over states: this matrix sounds like a Riccati matrix, although a neat analogue to a Riccati
equation has not been found yet.
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1 INTRODUCTION

In the last ten years, a new paradigm has emerged under the
now classical name of ‘discrete event (dynamic) systems’
(DEDS). Among the various aspects of these systems1, the
scope is here performance evaluation. Hence the focus is
on dates of occurrence of events, number of events occurred
within a certain time interval, etc. It was shown that when
synchronization is the basic phenomenon which drives the
dynamics of such systems (this supposes that such issues
as concurrency, scheduling, etc., have been already handled
by some predefined rules), it is possible to develop a the-
ory which offers a striking analogy with conventional linear
system theory. The clue here is the use of an algebraic frame-
work particularly suited to handle synchronization phenom-
ena (Baccelli et al., 1992), known under the name of dioid
algebra (among other names). In the language of Petri net
theory, the class of systems one can study with this approach
is the class of (timed) event graphs.

There are indeed several points of view for modeling sys-
tems in this perspective and, according to the one which is
adopted, different dioid algebras are used. One can mention
the ‘dater’, the ‘counter’, and the ‘two-dimensional domain’
points of view. Using either of these modeling approaches,
several notions have been introduced so far and a fair amount
of results have been obtained, which parallel those of conven-
tional system theory. Among others, one may quote ‘state
space’ and input-output (transfer matrix) representations of
systems, eigenvalue-eigenvector pairs and their connection
with asymptotic periodic regimes, frequency responses, sta-
bilization by feedback control, etc. (see (Baccelli et al., 1992)
and the references therein). Most of these developments may
be viewed as pertaining to the ‘first-order’ theory of such sys-
tems.

1roughly speaking, they can be classified into qualitative and quantitative
aspects
Optimization problems regarding resources have also been
addressed (Gaubert, 1992). Other quantities of interest, such
as sojourn times of tokens in some parts of an event graph,
or dually numbers of tokens in process in certain parts of the
system, require considering the (conventional) differences of
the variables which are handled in the first-order theory. It
should be realized that (conventional) subtraction is a nonlin-
ear operation in the dioid setting considered in this theory:
more precisely, subtraction can be related to the so-called
residual of + (which plays the role of multiplication), hence
it is a kind of inverse operation of multiplication (a sort of
‘division’). Residuation is a well-established theory in the
framework of lattice-ordered semigroups (which is another
view point on dioids) and it proves to be very useful in dealing
with all these issues.

From the system-theoretic point of view, it turns out that ma-
nipulating such nonlinear objects can be viewed as making
the first steps into the realm of second-order system theory
because of the analogy these quantities offer with correla-
tions, autocorrelations or Riccati matrices. A first account
of these new developments can be found in (Max Plus, 1991).
In this reference, the focus was on sojourn times and numbers
of tokens in process. Algebraically, these quantities behave
as correlations.

There are other interesting quantities which are obtained by
conventional differences. For example, in the dater point of
view, forward dynamic equations provide the earliest possi-
ble dates at which successive events (transition firings) can
occur once the ‘inputs’ (e.g. source transition firing times)
are given. In this paper, it will be shown that some back-
ward dynamic equations in a dual algebra can be derived in
order to calculate the latest possible firing times of all tran-
sitions (especially the source transitions) once output (sink)
transition firing times are given. This amounts to ‘invert-
ing’ a dynamical system and it appeals again to the the-
ory of residuation (Blyth and Janowitz, 1972, Baccelli et al.,



1992, Cuninghame-Green, 1979). The backward equations
are remindful of co-state (or adjoint-state) equations in opti-
mal control theory. Once earliest and latest dates have been
obtained by dynamic forward and backward equations, one
may be interested in subtracting the former from the later to
obtain ‘margins’ on processing times, which allows to an-
swer questions such as: “How long a particular event can be
delayed without altering the delivering time of products at
the outlet of the system?”. From the mathematical point of
view, one is again dealing with quantities which are derived
from other quantities by conventional subtraction (that is, by
dioid division). In the present case, the ratio of a variable
similar to a co-state variable by a variable similar to a state
variable2 was considered: this is again very reminiscent of
Riccati matrices in LQ optimal control problems. This pa-
per proposes preliminary developments of this second-order
theory of discrete event systems.

Throughout this paper, and without further mention, the tech-
nical background which is only briefly alluded to because of
the lack of space can be found in more details in (Baccelli et
al., 1992).

2 DIOIDS

A dioid is a set endowed with two internal operations denoted
⊕ (addition) and ⊗ (multiplication), both associative and
both having neutral elements denoted ε and e respectively,
such that⊕ is also commutative and idempotent (i.e. a⊕a =
a), ⊗ is distributive with respect to⊕, and ε is absorbing for
the product (i.e. ε ⊗ a = a ⊗ ε = ε,∀a). When ⊗ also
is commutative, the dioid is said to be commutative. The
symbol ⊗ is often omitted.

The set Z ∪ {−∞} with max as ⊕ and + as ⊗ is a dioid
of interest for us, and it is denoted Zmax. Another dioid that
will be used is Zmin = (Z ∪ {+∞},min,+).

If D is a dioid, the set Dn×n of n × n matrices with coeffi-
cients in D is also a dioid. The identity element of Dn×n is
also denoted e for any n. Note that n-dimensional row or
column vector problems can be handled by embedding such
vectors in square matrices with n − 1 additional arbitrary
(say, identically ‘zero’, i.e. ε) rows or columns.

Dioids can be endowed with a natural order: a ≥ b if a =
a ⊕ b. Then they become sup-semilattices and a ⊕ b is the
least upper bound of a and b. Note that the natural order in
Zmin is just reversed with respect to the usual order. A dioid
is complete if sums of infinite numbers of terms are always
defined, and if multiplication distributes over infinite sums
too. In particular, the sum of all the elements of the dioid is
denoted > (for ‘top’).

By adding > = +∞ (resp. > = −∞) to Zmax (resp. Zmin),
one obtains a complete dioid denoted Zmax (resp. Zmin) (3).

A complete dioid (sup-semilattice) becomes a lattice by con-
structing the greatest lower bound of a and b, denoted a∧ b,
as the least upper bound of the (nonempty) subset of all ele-
ments which are less than a and b.

2The ratio of scalar variables has been discussed, but this ratio can be
embedded in a more global ‘division’ of vector or matrix objects.

3Translate the equality ε⊗> = ε into conventional notation in both Zmax

and Zmin.
3 FORWARD EQUATIONS

Event graphs is a special class of Petri nets for which places
have only one transition upstream and only one downstream.
Such graphs express synchronization in the form of forks and
joins at transitions. Without loss of generality, firing times
may be assumed to be zero and only places bear holding
times. In the dater point of view, where ui(k) denotes the
epoch or date at which the transition named ui incurs its
firing ]k, linear equations can be obtained, possibly after
some manipulations, under the standard form

x(k) = Ax(k − 1)⊕ Bu(k) ,
y(k) = Cx(k)⊕Du(k) ,

(1)

where u is the vector of daters for source transitions, y is for
sink transitions, x concerns internal transitions, and all calcu-
lations (in particular matrix/vector products) are to be under-
stood in the dioid Zmax. Similar equations can be obtained in
the dioid Zmin using the counter point of view and variables
u(t), x(t), y(t): for example, ui(t) = sup{k | ui(k) ≤ t}
(4). Generally, the overline for counter symbols will be
dropped and the same name ui will be kept for the dater
and the counter variables related to the same transition also
named ui: the only way to understand the context is to look
at the argument which is either the event numbering k (thus
daters are defined on the event domain) or the running time t
(thus counters live in the more usual time domain). Note also
that, in order to obtain equations in standard form for both
daters and counters, it is generally necessary to use a state
vector with different dimensionality in each point of view.
The basic rule is the following: consider a transition xi and
assume that xi is reached by a single arc and that this arc
comes from transition xj through a place with holding time
αij and initial marking with βij tokens. Then equations in
both points of view are

xi(k) = αij ⊗ xj(k − βij) ,
xi(t) = βij ⊗ xj(t− αij) .

(2)

Using the analogue of the z-transform for daters, based on the
‘backward shift operator’ γ in the event domain (formally,
γu(k) = u(k − 1)), an input-output (transfer matrix) repre-
sentation is obtained in the dioid Zmax[[γ]] of formal power
series in γ with positive and negative exponents and coeffi-
cients in Zmax. Similarly, another representation in Zmin[[δ]]
is obtained from counters, based on the ‘backward shift op-
erator’ δ in the time domain (formally, δu(t) = u(t − 1)).
Finally, a two-dimensional domain representation manipu-
lates power series in both γ and δ with Boolean coefficients,
with the conventional sum and product of power series, plus
additional simplification rules (due to the fact that only non-
decreasing trajectories of daters and counters are of interest):

γk ⊕ γ l = γmin(k,l) and δt ⊕ δs = δmax(t,s) .

This structure is denoted ax
in [[γ, δ]]. In ax

in [[γ, δ]], Eq. (2)
yields

Xi(γ, δ) = γβij δαijXj(γ, δ) .

More generally, a timed event graph yields equations in
ax
in [[γ, δ]] of the form

X = X ⊕ U , Y = X ⊕ U , (3)

4Another seemingly less natural, but mathematically more convenient,
definition is ui(t) = inf{k | ui(k) ≥ t}. However, equations remain the
same for this alternative definition.



where , , , , X, U, Y are matrices or vectors with entries
in ax

in [[γ, δ]], but those of , , , are polynomial. Since
the least solution of the implicit equation X = X ⊕ b
(‘least’ in the natural order of the dioid) is X = ∗b with
∗ = e ⊕ ⊕ 2 ⊕ . . . , one then obtains Y = U with
= ∗ ⊕ : is the transfer matrix.

The following observation will allow us to handle various
representations and contexts with formally the same equa-
tions and calculations. Indeed, Eq. (1) are amenable to the
form (3) by appealing to the γ-transform and by correctly
interpreting the symbols , , , , X, U, Y . Similarly, this
can also be viewed as a δ-transform representation. Con-
sider now the situation of Eq. (1) with matrices A,B,C,D
depending on k, which occurs for example along any sam-
ple path of a stochastic timed event graph. Suppose that k
is confined to a finite interval {0, . . . , K} (5). Then, it suf-
fices to arrange the vectors, say x(k), k = 0, . . . , K, into
a big vector X, and to similarly arrange the matrices, say
A(k), k = 0, . . . , K, into appropriate big matrices, say , to
arrive at the same formal equations (3).

4 RESIDUATION THEORY

A mapping f : D → E , where D and E are ordered sets,
is residuated if for all y ∈ E , the least upper bound of the
subset {x | f (x) ≤ y} exists and belongs to this subset. It
is then denoted f ](y). The mapping f ] : E → D is called
the residual of f . When D and E are complete dioids, a
mapping f is residuated if and only if f(ε) = ε and f is
lower-semicontinuous, that is,

f

(
⊕

i∈I

ai

)
=

⊕

i∈I

f (ai) (4)

for any (finite or infinite) set I . A residual mapping is always
upper-semicontinuous, that is, an equality such as (4) holds
true for f ] with ∧ replacing⊕. Obviously, f ](>) = >. Any
upper-semicontinuous mapping g satisfying this property is
then dually residuated and its dual residual is denoted g[:
g[(x) is the greatest lower bound of {y | g(y) ≥ x} (and it
belongs to this subset).

This theory can be applied to the mappings x 7→ a⊗ x and
x 7→ x⊗ a in a complete (but not necessarily commutative)
dioid. These mappings are residuated (but generally not
dually residuated). The residual mappings will be denoted

y 7→ a ◦\y =
y

a
and y 7→ y◦/a =

y

a

in one- and two-dimensional displayed expressions. When
passing from a dioid D to the matrix dioid Dn×n, one has,
for two matrices A and B, that

(A ◦\B)ij =
∧

k

Bkj

Aki
and (B◦/A)ij =

∧

k

Bik

Ajk
. (5)

The mnemonic way to remember these formulæ is to think
of A′¯B and B¯A′ respectively, where the prime denotes
transposition and ¯ would be a special matrix product in
which ⊕ is replaced by ∧ and ⊗ is replaced by ◦\ and ◦/ re-
spectively. These formulæ extend without difficulty to non-
square matrices (remember the trick to embed nonsquare into

5Consider that x(−1) is identically ‘zero’—i.e. ε—so that A(0) is irrele-
vant, say A(0) = A(1) and x(0) = B(0)u(0), that is, u(0) is used to set the
initial condition.
larger square matrices). In particular, for two n-dimensional
column vectors X and Y , X ◦\Y is a scalar whereas Y ◦/X is
a square matrix. This section is concluded by recalling some
formulæ (see Table 1) which will be useful later on.

TABLE 1 Formulæ involving division

x ∧ y
a

=
x

a
∧ y

a
,

x ∧ y
a

=
x

a
∧ y

a
, (f.1)

x

a⊕ b
=

x

a
∧ x

b
,

x

a⊕ b
=

x

a
∧ x

b
, (f.2)

a
x

a
≤ x ,

x

a
a ≤ x , (f.3)

x

ab
=

a ◦\x
b

,
x

ba
=

x◦/a

b
, (f.4)

a ◦\x
b

=
x◦/b

a
,

x◦/a

b
=

b ◦\x
a

, (f.5)

If the underlying dioid in Zmax, a ◦\b = b◦/a = b−a (conven-
tional minus sign) at least for finite a and b, and of course
∧ is min. However it should be noticed that ε◦/ε = >,
hence −∞ − (−∞) = +∞, whereas ε ⊗ > = ε, hence
−∞+∞ = −∞. This shows the ambiguity of the conven-
tional notation in some circumstances, and the dioid notation
is recommended even for Zmax.

5 BACKWARD EQUATIONS

The following problem, which will be formulated in the dater
point of view, is addressed. A similar problem can be raised
in the counter point of view, and in fact the two-dimensional
domain approach can handle both view points at the same
time. Given a sequence {z(k)}k=0,...,K of desired outputs,
find the latest input sequence {u(k)}k=0,...,K such that the
desired output is matched as closely as possible, that is, in
more mathematical terms, given Z (the desired output se-
quence), find the maximum U (input sequence) such that
U ≤ Z, where is the transfer matrix of the system. The

desired output sequence given in the interval {0, . . . , K} can
be completed for k < 0 by ε and for k > K by> in order to
consider its γ-transform Z. As already discussed, u(0) in-
deed sets the initial condition in (1) as long as x(k) = ε for
k < ε. This may require using a special matrix B for k = 0
and thus one is led to consider again k-dependent matrices,
a case that was discussed earlier. It was shown that whatever
point of view is adopted, the system model can be described
by equations of the form (3) with different interpretations of
the underlying dioid and of the symbols , , , , X, U, Y .

Since the transfer mapping U 7→ U is residuated, the an-
swer to the previous problem is U = ◦\Z. Let us make this
formula more explicit. Since = ∗ ⊕ , successive
applications of (f.2) and (f.4) lead to

U =
Z
∗ ∧ Z

=
∗ ◦\( ◦\Z) ∧ Z

.

Let Ξ = ∗ ◦\( ◦\Z). It can be proved that Ξ is the greatest
solution of the implicit equation below, and an internal rep-
resentation of the mapping Z 7→ ◦\Z is obtained, namely,

Ξ =
Ξ ∧ Z

, U =
Ξ ∧ Z

. (6)



Of course, by construction Y = U ≤ Z. Remember
that, in the counter interpretation (δ-transforms), this means
that U produces at least as much events (firings at the output
transitions) as required byZ . Returning to the dater interpre-
tation over a finite interval {0, . . . , K}, from (6) one derives
the following recursive equations (matrices are assumed to
be k-independent to alleviate notation):

ξ(k) =
ξ(k + 1)

A
∧ z(k)

C
, u(k) =

ξ(k)

B
∧ z(k)

D
.

This form exhibits the backward nature of the recursion
which starts at K with ξ(K + 1) = >. Moreover, be-
cause ‘division’ implies transposition of the matrix in the
denominator (see (5)), the event graph is also swept from
output to input transitions. These equations can be derived
by direct reasoning on the graph, and written with standard
notation min and −, with, however, the caution required to
handle possible infinite terms. The quantity ξi(k) indicates
the latest date at which the internal transition xi should incur
its firing ]k in order not to delay future outputs beyond the
deadline provided by Z. It will be proved indeed that X,
caused by that U specified by (6), is less than Ξ. Observe
first that, because ( ∗)

2
= ∗ and thanks to (f.4), one has

that

Ξ =
Z
∗ =

Z
∗ ∗ =

∗ ◦\Z
∗ =

Ξ
∗ .

Then, since U ≤ ◦\Ξ ,

X ≤ ∗
(

Ξ
)

= ∗
(

Ξ
∗

)
= ∗

(
Ξ
∗

)
≤ Ξ ,

where (f.4) was again used, the last inequality being due to
(f.3).

6 MARGINS

A (nonnegative) difference ξi(k)−xi(k) represents the ‘spare
time’ or the ‘margin’ which is available at transition xi for
the firing ]k, i.e. an exogenous event may delay this event
by this amount without preventing the future deadlines to
be met. The same quantity, in terms of counters (denoted
ξi(t)− xi(t) according to our notational convention) is non-
positive (remember the reversed order in Zmin) and it repre-
sents the number of firings which may ‘accidentally be lost’
up to time t. The translation of this information in terms of
‘numbers of tokens which could be lost in the places’ would
require a more thorough study combining the results of (Max
Plus, 1991) with the present results (both using differences,
that is, ‘divisions’, of variables attached either to the same
transition or to a pair of transitions located upstream and
downstream the same place). This is beyond the scope of
this short paper.

By returning to dioid notation, differences such as ξ(k) −
x(k) emerge from the calculation of Σ = Ξ◦/X (whereas
σ = X ◦\Ξ, as a scalar, carries less information). If e.g. X
is interpreted as the concatenation of the whole trajectory
{x(k)}k=0,...,K into a single big column vector, then Σ is
a big square matrix of dimension n(K + 1) (n being the
dimension of x(k)) for which diagonal terms are of direct
interest for us. Let us now establish an equation for Σ. One
has that X = ∗ U and Ξ = ∗ ◦\Z. Observe that (f.5)
reads (a ◦\x)◦/b = a ◦\(x◦/b): this is a kind of associativity
property which makes parentheses useless. Using this and
(f.4) repeatedly, one obtains

Σ=
∗ ◦\Z
∗ U

=
∗ ◦\(Z◦/U)

∗ = ∗ ◦\ ( ◦\(Z◦/U )◦/ ) ◦/ ∗.

Let Q = Z◦/U = Z◦/( ◦\Z) (in the context of daters, this
matrix contains information about the minimum time spent
within the system since it involves differences between the
target output and the latest input which matches this output).
Then, it can be shown that Σ is the greatest solution of the
following equation (which is reminiscent of a Lyapounov
equation):

Σ = ◦\Σ ∧ Σ◦/ ∧ ◦\Q◦/ .

7 CONCLUSION

Finally, what has been considered here is a kind of opti-
mal tracking problem (given the output trajectory z(·) to be
tracked) and x(·), resp. ξ(·), plays the role of the state, resp.
the co-state, vector of this ‘optimal control problem’. The
fact that, in a conventional LQ optimal control problem, the
co-state is ‘proportional’ to the state via a Riccati matrix
P (·), suggested us that the matrix S(k) = ξ(k)◦/x(k) (di-
agonal block of Σ) might play the role of a Riccati matrix
and a backward recursive equation satisfied by S(·) has been
searched for. For the time being, this question remains open
and it is unlikely that it can be answered positively without
additional features (i.e. for any z(·)).
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