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Abstract. For timed event graphs, linear models were obtained using dioid algebra. After describing
backward equations which solve an optimal tracking problem and which introduce co-state variables,
this paper presents preliminary results concerning the matrix of ‘ratios’ (i.e. conventional differences)
of co-states over states: this matrix sounds like a Riccati matrix, although a neat analogue to a Riccati

equation has not been found yet.
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1 INTRODUCTION

In the last ten years, a new paradigm has emerged under the
now classical name of ‘discrete event (dynamic) systems
(DEDS). Among the various aspects of these systems!, the
scope is here performance evaluation. Hence the focus is
on dates of occurrence of events, number of events occurred
within a certain time interval, etc. It was shown that when
synchronization is the basic phenomenon which drives the
dynamics of such systems (this supposes that such issues
as concurrency, scheduling, etc., have been aready handled
by some predefined rules), it is possible to develop a the-
ory which offers a striking anal ogy with conventional linear
systemtheory. The clue hereisthe use of an algebraic frame-
work particularly suited to handle synchronization phenom-
ena (Baccelli et a., 1992), known under the name of dioid
algebra (among other names). In the language of Petri net
theory, the class of systems one can study with this approach
isthe class of (timed) event graphs.

There are indeed severa points of view for modeling sys-
tems in this perspective and, according to the one which is
adopted, different dioid algebras are used. One can mention
the ‘dater’, the‘ counter’, and the ‘two-dimensional domain’

points of view. Using either of these modeling approaches,
several notions have been introduced so far and afair amount
of resultshave been obtained, which parallel those of conven-
tional system theory. Among cthers, one may quote ‘state
space’ and input-output (transfer matrix) representations of
systems, eigenvalue-eigenvector pairs and their connection
with asymptotic periodic regimes, frequency responses, sta-
bilization by feedback control, etc. (see (Baccelli et al., 1992)
and thereferencestherein). Most of these developments may
beviewed aspertaining tothe‘first-order’ theory of such sys-
tems.

Lroughly speaking, they can be classified into qualitative and quantitative
aspects

Optimization problems regarding resources have also been
addressed (Gaubert, 1992). Other quantitiesof interest, such
as sojourn times of tokens in some parts of an event graph,
or dually numbers of tokensin processin certain parts of the
system, require considering the (conventional) differences of
the variables which are handled in the first-order theory. It
should berealized that (conventional) subtractionisanonlin-
ear operation in the dioid setting considered in this theory:
more precisely, subtraction can be related to the so-called
residual of 4 (which plays the role of multiplication), hence
it isakind of inverse operation of multiplication (a sort of
‘division’). Residuation is a well-established theory in the
framework of lattice-ordered semigroups (which is another
view point on dioids) andit provesto bevery useful indealing
with all these issues.

From the system-theoretic point of view, it turns out that ma-
nipulating such nonlinear objects can be viewed as making
the first steps into the realm of second-order system theory
because of the analogy these quantities offer with correla-
tions, autocorrelations or Riccati matrices. A first account
of these new developments can befound in (Max Plus, 1991).
Inthisreference, thefocuswason sojourntimesand numbers
of tokensin process. Algebraically, these quantities behave
as correlations.

There are other interesting quantities which are obtained by
conventional differences. For example, in the dater point of
view, forward dynamic equations provide the earliest possi-
ble dates at which successive events (transition firings) can
occur once the ‘inputs’ (e.g. source transition firing times)
are given. In this paper, it will be shown that some back-
ward dynamic equations in adual algebra can be derived in
order to calculate the latest possible firing times of al tran-
sitions (especially the source transitions) once output (sink)
transition firing times are given. This amounts to ‘invert-
ing’ a dynamical system and it appeals again to the the-
ory of residuation (Blyth and Janowitz, 1972, Baccelli et al.,



1992, Cuninghame-Green, 1979). The backward equations
areremindful of co-state (or adjoint-state) equations in opti-
mal control theory. Once earliest and latest dates have been
obtained by dynamic forward and backward eguations, one
may beinterested in subtracting the former from the later to
obtain ‘margins’ on processing times, which alows to an-
swer questions such as: “How long a particular event can be
delayed without atering the delivering time of products at
the outlet of the system?’. From the mathematical point of
view, oneis again dealing with quantities which are derived
from other quantities by conventional subtraction (that is, by
dioid division). In the present case, the ratio of a variable
similar to a co-state variable by a variable similar to a state
variable? was considered: this is again very reminiscent of
Riccati matrices in LQ optimal control problems. This pa-
per proposes preliminary devel opments of this second-order
theory of discrete event systems.

Throughout this paper, and without further mention, thetech-
nical background whichisonly briefly alluded to because of
the lack of space can befound in more detailsin (Baccelli et
al., 1992).

2 DIOIDS

A dioidisaset endowed withtwointernal operationsdenoted
@ (addition) and ® (multiplication), both associative and
both having neutral elements denoted « and e respectively,
suchthat ¢ isalso commutative and idempotent (i.e. a®a =
a), ® isdistributive with respect to &, and ¢ is absorbing for
the product (i.e. e ®a = a ® € = ¢,Va). When ® aso
is commutative, the dioid is said to be commutative. The
symbol ® is often omitted.

The set Z U {—oo} with max as ® and + as ® is adioid
of interest for us, and it is denoted Z,,,... Another dioid that
will be used iS Zyi, = (Z U {400}, min, +).

If D isadioid, the set D™*" of n x n matrices with coeffi-
cientsin D isalso adioid. The identity element of D"*" is
also denoted e for any n. Note that n-dimensional row or
column vector problems can be handled by embedding such
vectors in square matrices with n — 1 additiona arbitrary
(say, identically ‘zero', i.e. €) rows or columns.

Dioids can be endowed with a natural order: @ > b if a =
a & b. Then they become sup-semilattices and a 4 b is the
least upper bound of @ and b. Note that the natural order in
Zumin iSjust reversed with respect to the usual order. A dioid
is complete if sums of infinite numbers of terms are always
defined, and if multiplication distributes over infinite sums
too. In particular, the sum of al the elements of the dioid is
denoted T (for ‘top’).

By adding T = +oo (resp. T = —00) t0 Zax (resp. Zmin),
one obtains a complete dioid denoted Z,. (resp. Zuin) (%).

A complete dioid (sup-semilattice) becomes alattice by con-
structing the greatest lower bound of a and b, denoted a A b,
as the least upper bound of the (nonempty) subset of all ele-
ments which areless than a and b.

2The ratio of scalar variables has been discussed, but this ratio can be
embedded in amore global ‘division’ of vector or matrix objects.

3Translatethe equality e ® T = ¢ into conventional notation in both Zax
and Zmin-

3 FORWARD EQUATIONS

Event graphs isaspecial class of Petri nets for which places
have only onetransition upstream and only one downstream.
Such graphs express synchronization in theform of forksand
joins at transitions. Without loss of generality, firing times
may be assumed to be zero and only places bear holding
times. In the dater point of view, where v;(k) denotes the
epoch or date at which the transition named u; incurs its
firing #k, linear equations can be obtained, possibly after
some manipulations, under the standard form

z(k) = Axz(k—1)® Bu(k) , o)
y(k) = Cu(k) @ Du(k) ,

where u isthe vector of daters for sourcetransitions, y isfor
sink transitions, = concernsinternal transitions, and al calcu-
lations (in particular matrix/vector products) areto be under-
stood inthe dioid Z,,,,... Similar equations can beobtained in
the dioid Z.,,,;, using the counter point of view and variables
u(t), z(t),y(t): for example, w;(t) = sup{k | u;(k) < ¢}
(Y). Generaly, the overline for counter symbols will be
dropped and the same name u; will be kept for the dater
and the counter variables related to the same transition also
named u;: the only way to understand the context is to look
at the argument which is either the event numbering & (thus
daters are defined on the event domain) or the running time ¢
(thuscountersliveinthemoreusua timedomain). Notealso
that, in order to obtain equations in standard form for both
daters and counters, it is generaly necessary to use a state
vector with different dimensionality in each point of view.
The basic ruleis the following: consider atransition z; and
assume that z; is reached by a single arc and that this arc
comes from transition «; through a place with holding time
a;; and initial marking with ;; tokens. Then equations in
both points of view are

zi(k) = oy@zi(k—5y),

zi(t) = By @a;(t—ay) . @

Using theanal ogueof the z-transform for daters, based onthe
‘backward shift operator’ ~ in the event domain (formally,
~vu(k) = u(k — 1)), an input-output (transfer matrix) repre-
sentation is obtained in the dioid Z,,., [y] of formal power
seriesin v with positive and negative exponents and coeffi-
Cients in Zy,y. Similarly, another representation in Z,, [6]
is obtained from counters, based on the ‘backward shift op-
erator’ ¢ in the time domain (formally, 6u(t) = u(t — 1)).
Finally, a two-dimensional domain representation manipu-
lates power seriesin both v and § with Boolean coefficients,
with the conventional sum and product of power series, plus
additional simplification rules (due to the fact that only non-
decreasing trajectories of daters and countersare of interest):

,Yk @ ’7[ _ ,ymin(k,l) and [St D6 = 611121:((1‘,,5) )

This structure is denoted MR [, 6]. In MR [y, 6], Eq. (2)
yields
Xi(v,8) = 7%60 X;(7,6) .

More generally, a timed event graph yields equations in
MR [y, 8] of the form

X=MX@BU , Y=CX0IU , A3)

4Another seemingly less natural, but mathematically more corvenient,
definition is w;(t) = inf{k | u;(k) > t}. However, equations remain the
same for this aternative definition.



wheredb, B,C, D, X, U, Y arematricesor vectorswith entries
in MRy, 6], but those of b, B, C, D are polynomial. Since
the least solution of the implicit equation X = &X @ b
(‘least’ in the natural order of the dioid) is X = J*b with
b =e®db®M @ ..., onethen obtains Y = I6U with
6 = CA*B @ D: I6 isthe transfer matrix.

The following observation will allow us to handle various
representations and contexts with formally the same equa-
tions and calculations. Indeed, Eq. (1) are amenable to the
form (3) by appealing to the v-transform and by correctly
interpreting the symbols f, B, C, D, X, U, Y. Similarly, this
can also be viewed as a §-transform representation. Con-
sider now the situation of Eq. (1) with matrices A, B, C, D
depending on k&, which occurs for example along any sam-
ple path of a stochastic timed event graph. Suppose that &
is confined to afiniteinterval {0,..., K} (°). Then, it suf-
fices to arrange the vectors, say z(k),k = 0,..., K, into
a big vector X, and to similarly arrange the matrices, say
A(k),k =0,..., K, into appropriate big matrices, say f, to
arrive at the same formal equations (3).

4 RESIDUATION THEORY

A mapping f : D — &, where D and £ are ordered sets,
is residuated if for adl y € &, the least upper bound of the
subset {z | f(x) < y} existsand belongs to this subset. It
is then denoted f*(y). The mapping f* : £ — D iscaled
the residual of f. When D and £ are complete dioids, a
mapping f is residuated if and only if f(¢) = e and f is
lower-semicontinuous, that is,

(@)
il il

P (@) @
for any (finite or infinite) set 7. A residual mappingisaways
upper-semicontinuous, that is, an equality such as (4) holds
truefor f* with A replacing . Obviously, f#(T) = T. Any
upper-semicontinuous mapping g satisfying this property is
then dually residuated and its dual residual is denoted ¢’:
g’ (z) is the greatest lower bound of {y | g(y) > =z} (and it
belongs to this subset).

This theory can be applied to the mappings © — a ® = and
x — x ® a in acomplete (but not necessarily commutative)
dioid. These mappings are residuated (but generally not
dually residuated). The residual mappings will be denoted

y—ayy=<2 and ye yha= L
a a
in one- and two-dimensional displayed expressions. When
passing from a dioid D to the matrix dioid D"*", one has,
for two matrices A and B, that

(A\B),; /\ and (BfA); /\A

The mnemonic way to remember these formulaeis to think
of A’® B and B ® A’ respectively, where the prime denotes
transposition and ® would be a special matrix product in
which @ isreplaced by A and @ is replaced by § and ¢ re-
spectively. These formulaeextend without difficulty to non-
sguare matrices (remember thetrick to embed nonsquareinto

5Consider that 2(—1) isidentically ‘zero'—i.e. e—so that A(0) isirrele-
vant, say A(0) = A(1) and 2(0) = B(0)u(0), that is, u(0) is used to set the
initial condition.

larger square matrices). In particular, for two n-dimensional
column vectors X and Y, X \Y isascalar whereas Y/ X is
asquare matrix. Thissection isconcluded by recalling some
formulae(see Table 1) which will be useful later on.

TABLE 1 Formuleeinvolving division

R i A N N
a a a a a’  a

x x T T r

— = A = —_— = A= f.2
a®b a b a®b a b (t.2)
a— <z —a <z (f.3)
a a

x aXx x xfa

=/ f.4

ab b ba b 4
e 2 N &)
b a b a

If the underlying dioid in Z,,.y, a§b = bfa = b — a (conven-
tional minus sign) at least for finite « and b, and of course
A is min. However it should be noticed that efe = T,
hence —oco — (—o0) = +o0, wherease ® T = ¢, hence
—00 + 00 = —oo. This shows the ambiguity of the conven-
tional notation in some circumstances, and the dioid notation
is recommended even for Z,,...

5 BACKWARD EQUATIONS

Thefollowing problem, which will beformulated in the dater
point of view, isaddressed. A similar problem can be raised
in the counter point of view, and in fact the two-dimensional
domain approach can handle both view points at the same
time. Given a sequence {z(k)}/— 0 - Of desired outputs,

desired output is matched as closely as poss bIe that is, in
more mathematical terms, given Z (the desired output se-
quence), find the maximum U (input sequence) such that
U < Z, wheredt isthe transfer matrix of the system. The
desired output sequencegiven intheinterval {0, ..., K} can
be completed for £ < 0 by e andfor k£ > K by T inorder to
consider its y-transform Z. As already discussed, «(0) in-
deed sets theinitial condition in (1) aslong as z(k) = ¢ for
k < . Thismay require using a special matrix B for k = 0
and thus one isled to consider again k-dependent matrices,
acase that was discussed earlier. It was shown that whatever
point of view is adopted, the system model can be described
by equations of the form (3) with different interpretations of
the underlying dioid and of the symbolsf, B,C,D, X, U, Y.

Since the transfer mapping U — I6U is residuated, the an-
swer to the previous problemisU = J6}Z. Let usmakethis
formula more explicit. Since 36 = CA*B ¢ D, successive
applications of (f.2) and (f.4) lead to

Z Z

- e\ Z
U=tn "o~ "o "3

Let = = A"} (C}Z). It can be proved that = is the greatest
solution of the implicit equation below, and an internal rep-
resentation of the mapping Z — J6}Z is obtained, namely,

=z =z
_7'%-/\G , UffB-/\B-. (6)



Of course, by construction Y = 36U < Z. Remember
that, in the counter interpretation (6-transforms), this means
that U produces at least as much events (firings at the output
transitions) asrequired by Z. Returning to thedater interpre-
tation over afiniteinterval {0, ..., K}, from (6) one derives
the following recursive equations (matrices are assumed to
be k-independent to alleviate notation):

et = S5

This form exhibits the backward nature of the recursion
which starts at K with {(K + 1) = T. Moreover, be-
cause ‘division’ implies transposition of the matrix in the
denominator (see (5)), the event graph is also swept from
output to input transitions. These equations can be derived
by direct reasoning on the graph, and written with standard
notation min and —, with, however, the caution required to
handle possible infinite terms. The quantity &;(k) indicates
the latest date at which the internal transition x; should incur
its firing #k in order not to delay future outputs beyond the
deadline provided by Z. It will be proved indeed that X,
caused by that U specified by (6), is less than =Z. Observe
first that, because (rﬂo*)2 = Jb* and thanks to (f.4), one has

ulk) = =g D

that
- Z __Z _CWyz =
B G K ER T

Then, sinceU < By=,

X < Z) = ' i ()<=
= (R) R (tﬁuﬂ)‘“’

where (f.4) was again used, the last inequality being due to
(f.3).

6 MARGINS

A (nonnegative) difference¢; (k) —x; (k) representsthe’ spare
time' or the ‘“margin’ which is available at transition z; for
the firing fik, i.e. an exogenous event may delay this event
by this amount without preventing the future deadlines to
be met. The same quantity, in terms of counters (denoted
&i(t) — ;(t) according to our notational convention) is non-
positive (remember the reversed order in Z,,,) and it repre-
sents the number of firings which may ‘accidentally be lost’
up to time t. The trandation of this information in terms of
‘numbers of tokens which could belost in the places’ would
require amore thorough study combining theresults of (Max
Plus, 1991) with the present results (both using differences,
that is, ‘divisions’, of variables attached either to the same
transition or to a pair of transitions located upstream and
downstream the same place). This is beyond the scope of
this short paper.

By returning to dioid notation, differences such as ¢ (k) —
x(k) emerge from the calculation of ¥ = Z§X (whereas
o = X\E, asascaar, caries lessinformation). If eg. X
is interpreted as the concatenation of the whole trajectory
a b|g square matrix of dimension n(K + 1) (n being the
dimension of z(k)) for which diagonal terms are of direct
interest for us. Let us now establish an equation for . One
has that X = &*BU and = = CA*}Z. Observe that (f.5)
reads (aXz)fb = aX(xfb): thisis akind of associativity

property which makes parentheses useless. Using this and
(f.4) repeatedly, one obtains

_CMNZ G (ZAU)
TOBRU Mot B

Let Q = ZJU = Z# (96X Z) (in the context of daters, this
matrix contains information about the minimum time spent
within the system since it involves differences between the
target output and the latest input which matches this output).
Then, it can be shown that ¥ is the greatest solution of the
following equation (which is reminiscent of a Lyapounov
equation):

=Y (X (ZAU ) f

= XE A Ehl A CRQEB .

7 CONCLUSION

Finally, what has been considered here is a kind of opti-
mal tracking problem (given the output trajectory z(-) to be
tracked) and z(-), resp. £(+), playstherole of the state, resp.
the co-state, vector of this ‘optimal control problem’. The
fact that, in a conventional LQ optimal control problem, the
co-state is ‘proportional’ to the state via a Riccati matrix
P(-), suggested us that the matrix S(k) = £(k)fx(k) (di-
agona block of ¥2) might play the role of a Riccati matrix
and abackward recursive equation satisfied by .S(-) has been
searched for. For the time being, this question remains open
and it is unlikely that it can be answered positively without
additional features (i.e. for any z(+)).
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